Клеточная стенка из целлюлозы у кого. Клеточная стенка бактерий

Клеточная стенка (клеточная оболочка) характерный признак растительной клетки, отличающий ее от клетки животной. Клеточная стенка придает клетке определенную форму. Культивируемые на специальных питательных средах клетки растений, у которых ферментативным путем удаляется стенка, всегда принимают сферическую форму. Клеточная стенка придает клетке прочность и защищает протопласт, она уравновешивает тургорное давление и препятствует, таким образом, разрыву плазмалеммы. Совокупность клеточных стенок образует внутренний скелет, поддерживающий тело растения и придающий ему механическую прочность.

Клеточная стенка бесцветна и прозрачна, легко пропускает солнечный свет. Обычно стенки пропитаны водой. По системе клеточных стенок осуществляется транспорт воды и растворенных в ней низкомолекулярных соединений (транспорт по апопласту).

Клеточная стенка состоит в основном из полисахаридов, которые можно подразделить на скелетные вещества и вещества матрикса.

Скелетным веществом клеточной стенки растений является целлюлоза (клетчатка) , представляющая собой бета-1,4-D-глюкан. Это самое распространенное органическое вещество биосферы. Молекулы целлюлозы представляют собой очень длинные неразветвленные цепи, они располагаются параллельно друг другу группами по нескольку десятков и скреплены многочисленными водородными связями. В результате образуются микрофибриллы , которые создают структурный каркас стенки и обусловливают ее прочность. Микрофибриллы целлюлозы видны только в электронный микроскоп, их диаметр равен 10-30 нм, длина достигает нескольких мкм.

Целлюлоза нерастворима и не набухает в воде. Она очень инертна в химическом отношении, не растворяется в органических растворителях, концентрированных щелочах и разведенных кислотах. Микрофибриллы целлюлозы эластичны и очень прочны на разрыв (сходны со сталью). Эти свойства определяют широкое применение целлюлозы и ее продуктов. Мировая продукция хлопкового волокна, состоящего почти целиком из целлюлозы, составляет 1,5 10 7 тонн в год. Из целлюлозы получают бездымный порох, ацетатный шелк и вискозу, целлофан, бумагу. Качественную реакцию на целлюлозу проводят с реактивом хлор-цинк-йод , целлюлозная клеточная стенка окрашивается в сине-фиолетовый цвет.

У грибов скелетным веществом клеточной стенки является хитин – полисахарид, построенный из остатков глюкозамина. Хитин еще более прочен, чем целлюлоза.

Микрофибриллы погружены в аморфный матрикс , обычно представляющий собой насыщенный водой пластичный гель. Матрикс является сложной смесью полисахаридов, молекулы которых состоят из остатков нескольких различных сахаров и представляют собой более короткие, чем у целлюлозы, и разветвленные цепи. Матричные полисахариды определяют такие свойства клеточной стенки, как сильная набухаемость, высокая проницаемость для воды и растворенных в ней низкомолекулярных соединений, катионообменные свойства. Полисахариды матрикса делят на две группы – пектиновые вещества и гемицеллюлозы .

Пектиновые вещества сильно набухают или растворяются в воде. Они легко разрушаются под действием щелочей и кислот. Простейшими представителями пектиновых веществ являются растворимые в воде пектовые кислоты – продукты полимеризации альфа-D-галактуроновой кислоты (до 100 единиц), связанных 1,4-связями в линейные цепи (альфа-1,4-D-галактуронан). Пектиновые кислоты (пектины) – это более высокомолекулярные (100-200 единиц) полимерные соединения альфа-D-галактуроновой кислоты, в которых карбоксильные группы частично метилированы. Пектаты и пектинаты – кальциевые и магниевые соли пектовых и пектиновых кислот. Пектиновые кислоты, пектаты и пектинаты растворимы в воде в присутствии сахаров и органических кислот с образованием плотных гелей.

В клеточных стенках растений в основном присутствуют протопектины – высокомолекулярные полимеры метоксилированной полигалактуроновой кислоты с арабинанами и галактанами, у двудольных растений в состав цепей галактуронана входит небольшое количество рамнозы. Протопектины нерастворимы в воде.

Гемицеллюлозы представляют собой разветвленные цепи, построенные из остатков нейтральных сахаров, чаще встречаются глюкоза, галактоза, манноза, ксилоза; степень полимеризации 50-300. Гемицеллюлозы химически более устойчивы, чем пектиновые вещества, они труднее гидролизуются и слабее набухают в воде. Гемицеллюлозы могут откладываться в стенках клеток семян в качестве запасных веществ (финиковая пальма, хурма). Пектиновые вещества и гемицеллюлозы связаны взаимными переходами. Помимо полисахаридов, в матриксе клеточных стенок присутствует особый структурный белок. Он связан с остатками сахара арабинозы и поэтому является гликопротеидом.

Матричные полисахариды не просто заполняют промежутки между целлюлозными микрофибриллами. Их цепи располагаются упорядоченно и образуют многочисленные связи как друг с другом, так и с микрофибриллами, что значительно повышает прочность клеточной стенки.

Клеточные стенки растений часто подвергаются химическим видоизменениям. Одревеснение , или лигнификация происходит в том случае, если в матриксе откладывается лигнин – полимерное соединение фенольной природы, нерастворимое в воде. Одревесневшая клеточная стенка теряет эластичность, резко повышается ее твердость и прочность на сжатие, снижается проницаемость для воды. Реактивами на лигнин являются: 1) флороглюцин и концентрированная хлористоводородная или серная кислота (одревесневшие стенки приобретают вишнево-красную окраску) и 2) сульфат анилина , под действием которого одревесневшие стенки становятся лимонно-желтыми. Лигнификация характерна для стенок клеток проводящей ткани ксилемы (древесины) и механической ткани склеренхимы.

Опробковение , или суберинизация происходит в результате отложения с внутренней стороны клеточной стенки гидрофобных полимеров – суберина и воска . Суберин представляет собой смесь эфиров полимерных жирных кислот. Мономерами воска являются жирные спирты и восковые эфиры. Воск легко извлекается органическими растворителями и быстро плавится, образует кристаллы. Суберин – аморфное соединение, не плавится и не растворяется в органических растворителях. Суберин и воск, образуя чередующиеся параллельные слои, выстилают всю полость клетки с внутренней стороны в виде пленки. Субериновая пленка практически непроницаема для воды и для газов, поэтому после ее образования клетка обычно отмирает. Опробковение характерно для стенок клеток покровной ткани пробки. Реактивом на опробковевшую клеточную стенку является судан III , окраска оранжево-красная.

Кутинизации подвергаются наружные стенки клеток покровной ткани эпидермы. Кутин и воск откладываются чередующимися слоями на наружной поверхности клеточной стенки в виде пленки – кутикулы . Кутин представляет собой жироподобное полимерное соединение, близкое по химической природе и свойствам суберину. Кутикула предохраняет растение от излишнего испарения воды с поверхности растения. Окрасить ее можно реактивом судан III в оранжево-красный цвет.

Минерализация клеточной стенки происходит вследствие отложения в матриксе большого количества минеральных веществ, чаще всего кремнезема (оксида кремния), реже оксалата и карбоната кальция. Минеральные вещества придают стенке твердость и хрупкость. Отложение кремнезема характерно для клеток эпидермы хвощей, осок и злаков. Приобретенная в результате окремнения жесткость стеблей и листьев служит защитным средством против улиток, а также значительно снижает поедаемость и кормовую ценность растений.

У некоторых специализированных клеток наблюдается ослизнение клеточной стенки. При этом вместо целлюлозной вторичной стенки происходит отложение аморфных, сильно гидратированных кислых полисахаридов в виде слизей и камедей , близких по химической природе к пектиновым веществам. Слизи хорошо растворяются в воде с образованием слизистых растворов. Камеди клейкие, вытягиваются в нити. В сухом виде они имеют роговую консистенцию. При отложении слизи протопласт постепенно оттесняется к центру клетки, его объем и объем вакуоли постепенно уменьшаются. В конце концов, полость клетки может целиком заполниться слизью, и клетка отмирает. В некоторых случаях слизь может проходить через первичную клеточную стенку на поверхность. В синтезе и секреции слизи основное участие принимает аппарат Гольджи.

Выделяемая растительными клетками слизь выполняет различные функции. Так, слизь корневого чехлика служит в качестве смазки, облегчающей рост кончика корня в почве. Слизевые железки насекомоядных растений (росянка) выделяют ловчую слизь, к которой приклеиваются насекомые. Слизь, выделяемая наружными клетками семенной кожуры (лен, айва, подорожники), закрепляет семя на поверхности почвы и защищает проросток от высыхания. Слизь окрашивается реактивом метиленовый синий в голубой цвет.

Выделение камедей обычно происходит при поранении растений. Например, камедетечение из пораненных участков стволов и ветвей часто наблюдается у вишни и сливы. Вишневый клей представляет собой застывшую камедь. Камедь выполняет защитную функцию, закрывая рану с поверхности. Образуются камеди в основном у древесных растений из семейств бобовых (акации, трагакантовые астрагалы) и розоцветных подсемейства сливовых (вишня, слива, абрикос). Камеди и слизи используются в медицине.

Клеточная стенка является продуктом жизнедеятельности протопласта. Полисахариды матрикса, гликопротеид стенки, лигнин и слизи образуются в аппарате Гольджи. Синтез целлюлозы, образование и ориентация микрофибрилл осуществляются плазмалеммой. Большая роль в ориентации микрофибрилл принадлежит микротрубочкам, которые располагаются параллельно откладывающимся микрофибриллам вблизи плазмалеммы. Если микротрубочки разрушить, образуются только изодиаметрические клетки.

Образование клеточной стенки начинается во время деления клетки. В плоскости деления образуется клеточная пластинка, единый слой, общий для двух дочерних клеток. Она состоит из пектиновых веществ, имеющих полужидкую консистенцию; целлюлоза отсутствует. Во взрослой клетке клеточная пластинка сохраняется, но претерпевает изменения, поэтому ее называют срединной , или межклеточной пластинкой (межклеточным веществом) (рис. 2.16 ). Срединная пластинка обычно очень тонка и почти неразличима.

Сразу после образования клеточной пластинки протопласты дочерних клеток начинают откладывать собственную клеточную стенку. Она откладывается изнутри как на поверхности клеточной пластинки, так и на поверхности других клеточных стенок, принадлежавших ранее материнской клетке. После деления клетка вступает в фазу роста растяжением, который обусловлен интенсивным осмотическим поглощением клеткой воды, связанным с образованием и ростом центральной вакуоли. Тургорное давление начинает растягивать стенку, но она не рвется благодаря тому, что в нее постоянно откладываются новые порции микрофибрилл и веществ матрикса. Отложение новых порций материала происходит равномерно по всей поверхности протопласта, поэтому толщина клеточной стенки не уменьшается.

Стенки делящихся и растущих клеток называют первичными . Они содержат много (60-90%) воды. В сухом веществе преобладают матричные полисахариды (60-70%), содержание целлюлозы не превышает 30%, лигнин отсутствует. Толщина первичной стенки очень невелика (0,1-0,5 мкм).

Для многих клеток отложение клеточной стенки прекращается одновременно с прекращением роста клетки. Такие клетки окружены тонкой первичной стенкой до конца жизни (рис. 2.16).

Рис. 2.16. Паренхимная клетка с первичной стенкой.

У других клеток отложение стенки продолжается и по достижении клеткой окончательного размера. При этом толщина стенки увеличивается, а объем, занимаемый полостью клетки, сокращается. Такой процесс носит название вторичного утолщения стенки, а саму стенку называют вторичной (рис. 2.17 ).

Вторичная стенка может рассматриваться как дополнительная, выполняющая главным образом механическую, опорную функцию. Именно вторичная стенка ответственна за свойства древесины, текстильного волокна, бумаги. Вторичная стенка содержит значительно меньше воды, чем первичная; в ней преобладают микрофибриллы целлюлозы (40-50% от массы сухого вещества), которые располагаются параллельно друг другу. Из полисахаридов матрикса характерны гемицеллюлозы (20-30%), пектиновых веществ очень мало. Вторичные клеточные стенки, как правило, подвергаются одревеснению. В неодревесневших вторичных стенках (лубяные волокна льна, волоски хлопчатника) содержание целлюлозы может достигать 95%. Большое содержание и строго упорядоченная ориентация микрофибрилл определяют высокие механические свойства вторичных стенок. Часто клетки, имеющие вторичную одревесневшую клеточную стенку, после завершения вторичного утолщения отмирают.

Срединная пластинка склеивает соседние клетки. Если ее растворить, стенки клеток теряют связь друг с другом и разъединяются. Этот процесс называется мацерация . Довольно обычна естественная мацерация, при которой пектиновые вещества срединной пластинки переводятся в растворимое состояние с помощью фермента пектиназы и затем вымываются водой (перезрелые плоды груши, дыни, персика, банана). Часто наблюдается частичная мацерация, при которой срединная пластинка растворяется не по всей поверхности, а лишь в углах клеток. Вследствие тургорного давления соседние клетки в этих местах округляются, в результате чего образуются межклетники (рис. 2.16 ). Межклетники образуют единую разветвленную сеть, которая заполняется парами воды и газами. Таким образом, межклетники улучшают газообмен клеток.

Характерная особенность вторичной стенки – ее неравномерное отложение поверх первичной стенки, в результате чего во вторичной стенке остаются неутолщенные участки – поры . Если вторичная стенка не достигает большой толщины, поры выглядят как мелкие углубления. У клеток с мощной вторичной стенкой поры в разрезе имеют вид радиальных каналов, идущих от полости клетки до первичной стенки. По форме порового канала различают поры двух типов – простые и окаймленные (рис. 2.17 ).


Рис. 2.17.Типы пор : А – клетки с вторичными стенками и многочисленными простыми порами; Б – пара простых пор; В – пара окаймленных пор.

У простых пор диаметр порового канала по всей длине одинаковый и имеет форму узкого цилиндра. Простые поры характерны для паренхимных клеток, лубяных и древесинных волокон.

Поры в двух смежных клетках, как правило, возникают друг против друга. Эти общие поры имеют вид одного канала, разделенного тонкой перегородкой из срединной пластинки и первичной стенки. Такая совокупность двух пор смежных стенок соседних клеток носит название пары пор и функционирует как одно целое. Разделяющий их канал участок стенки называется замыкающей пленкой поры , или поровой мембраной . В живых клетках замыкающая пленка поры пронизана многочисленными плазмодесмами (рис. 2.18 ).

Плазмодесмы присущи только растительным клеткам. Они представляют собой тяжи цитоплазмы, пересекающие стенку смежных клеток. Число плазмодесм в одной клетке очень велико – от нескольких сотен до десятков тысяч, обычно плазмодесмы собраны в группы. Диаметр плазмодесменного канала составляет 30-60 нм. Его стенки выстланы плазмалеммой, непрерывной с плазмалеммой смежных клеток. В центре плазмодесмы проходит мембранный цилиндр – центральный стержень плазмодесмы , непрерывный с мембранами элементов эндоплазматической сети обеих клеток. Между центральным стержнем и плазмалеммой в канале находится гиалоплазма, непрерывная с гиалоплазмой смежных клеток.

Рис. 2.18. Плазмодесмы под электронным микроскопом (схема ): 1 – на продольном срезе; 2 – на поперечном срезе; Пл – плазмалемма; ЦС – центральный стержень плазмодесмы; ЭР – элемент эндоплазматического ретикулума.

Таким образом, протопласты клеток не полностью изолированы друг от друга, а сообщаются по каналам плазмодесм. По ним происходит межклеточный транспорт ионов и мелких молекул, а также передаются гормональные стимулы. Посредством плазмодесм протопласты клеток в растительном организме образуют единое целое, называемое симпластом , а транспорт веществ через плазмодесмы получил название симпластического в отличие от апопластического транспорта по клеточным стенкам и межклетникам.

У окаймленных пор (рис. 2.17 )канал резко суживается в процессе отложения клеточной стенки, поэтому внутреннее отверстие поры, выходящее в полость клетки, гораздо уже, чем наружное, упирающееся в первичную стенку. Окаймленные поры характерны для рано отмирающих клеток водопроводящих элементов древесины. У них поровый канал по направлению к замыкающей пленке воронковидно расширяется, а вторичная стенка нависает в виде валика над расширенной частью канала, образуя камеру поры. Название окаймленной поры происходит оттого, что при рассмотрении с поверхности внутреннее отверстие имеет вид маленького круга или узкой щели, тогда как наружное отверстие как бы окаймляет внутреннее в виде круга большего диаметра или более широкой щели.

Поры облегчают транспорт воды и растворенных веществ от клетки к клетке, в то же время не снижая прочности клеточной стенки.


Клеточная стенка отграничивает размер протопласта и предохраняет его разрыв за счет поглощения воды вакуолью.

Плазмодесмы - цитоплазматические тяжи, соединяющие содержимое соседних клеток. Они проходят через клеточную стенку. представляют собой узкие каналы, выстланные плазматической мембраной.

Клеточная стенка имеет специфические функции, которые важны не только для клетки и ткани, в которой клетка находится, но и для всего растения. Клеточные стенки играют существенную роль в поглощении, транспорте и выделении веществ, а, кроме того, в них может быть сосредоточена лизосомальная, или переваривающая активность.

Компоненты клеточной стенки. Наиболее типичным компонентом клеточной стенки является целлюлоза, которая в значительной степени определяет её архитектуру. молекулы целлюлозы состоят из повторяющихся молекул глюкозы, соединенных конец к концу. Длинные тонкие молекулы целлюлозы объединены в микрофибриллы толщиной 10 – 25 нм. Микрофибриллы перевиваются и образуют тонкие нити, которые в свою очередь могут обматываться одна вокруг другой, как пряди в канате. Каждый такой «канат», или макрофибрилла, имеет толщину около 0,5 мкм, достигая в длину 4 мкм. Макрофибриллы прочны, как равная по величине стальная проволока.

Целлюлозный каркас клеточной стенки заполнен переплетающимися с ним целлюлозными молекулами матрикса. В его состав входят полисахариды, называемые гемицеллюлозами, и пектиновые вещества, или пектины, химически очень близкие к гемицеллюлозам.

Другой компонент клеточной стенки – лигнин – является самым распространенным после целлюлозы полимером растительных клеток. Лигнин увеличивает жесткость стенки и обычно содержится в клетках, выполняющих опорную или механическую, функцию.

Кутин, суберин, воска – обычно откладываются в оболочках защитных тканей растений. Кутин, например, содержится в клеточных оболочках эпидермы, а суберин - вторичной защитной ткани, пробки. Оба вещества встречаются в комбинации с восками и предотвращают чрезмерную потерю воды растением.

Слои клеточной стенки. Толщина стенки растительных клеток варьирует в широких пределах в зависимости от роли клеток в структуре растений и возраста самой клетки. Под электронным микроскопом просматривается в растительной клеточной стенке два слоя: срединная пластинка (называемая также межклеточным веществом), и первичной клеточной стенки. Многие клетки откладывают ещё один слой – вторичную клеточную стенку. Срединная пластинка располагается между первичными стенками соседних клеток. Вторичная стенка, если она есть, откладывается протопластом клетки на внутреннюю поверхность первичной клеточной стенки.

Срединная пластинка. Срединная пластинка состоит в основном из пектиновых веществ. Там, где должна возникнуть клеточная стенка, между двумя вновь образующимися клетками, вначале отмечается густое сплетение из канальцев эндоплазматической сети и цистерны аппарата Гольджи (диктиосом). Затем в этом месте появляются пузырьки, заполнены пектиновым веществом (из полисахаридов). Пузырьки эти отделяются от цистерн аппарата Гольджи. Ранняя клеточная стенка содержит различные полисахариды, основные из которых пектины и гемицеллюлоза. Позже в её состав входят более плотные вещества – целлюлоза и лигнин.

Первичная клеточная оболочка. Это слой целлюлозной оболочки, который откладывается до начала или во время роста клетки. Помимо целлюлозы, гемицеллюлоз и пектина первичные оболочки содержат гликопротеин. Первичные оболочки могут лигнифицироваться. Пектиновый компонент придаёт пластичность, которая позволяет первичной оболочке, растягивается по мере удлинения корня, стебля или листа.

Активно делящиеся клетки (большинство зрелых клеток, вовлеченных в процессы фотосинтеза, дыхания и секреции) имеют первичные оболочки. Такие клетки с первичной оболочкой и живым протопластом способны утрачивать характерную форму, делиться и дифференцироваться в новый тип клеток. Именно они участвуют в заживлении ран и регенерации тканей у растений.

Первичные клеточные оболочки не одинаковы по толщине на всем своем протяжении, а имеют тонкие участки, которые называются первичными поровыми полями. Тяжи цитоплазмы, или плазмодесмы, соединяющие протопласты соседних клеток, обычно проходят через первичные поровые поля.

Вторичная клеточная оболочка. Несмотря на то, что многие растительные клетки имеют только первичную оболочку, у некоторых к центру клетки протопласт откладывает вторичную оболочку. Обычно это происходит после прекращения роста клетки и площадь первичной оболочки более не увеличивается. По этой причине вторичная оболочка отличается от первичной. Вторичные оболочки особенно нужны специализированным клеткам, укрепляющим растение и проводящим воду. После отложения вторичной оболочки протопласт этих клеток, как правило, отмирает. Во вторичных оболочках больше целлюлозы, чем в первичных, а пектиновые вещества и гликопротеины в них отсутствуют. Вторичная оболочка растягивается с трудом, ее матрикс состоит из гемицеллюлозы.

Во вторичной оболочке можно выделить три слоя – наружный, средний и внутренний (S 1 , S 2 , S 3). Слоистая структура вторичных оболочек значительно увеличивает их прочность. Микрофибриллы целлюлозы во вторичной оболочке откладывается плотнее, чем в первичной. Лигнин – обычный компонент вторичных оболочек древесины.

Поры в оболочках контактирующих клеток расположены напротив друг друга. Две лежащие друг против друга поры и поровая мембрана образуют пару пор. В клетках, имеющих вторичные оболочки, существуют два основных типа пор: простые и окаймленные. В окаймленных порах вторичная оболочка нависает над полостью поры. В простых порах этого нет.

Рост клеточной оболочки. По мере роста клетки увеличивается толщина и площадь клеточной оболочки. Растяжение оболочки – процесс сложный. Он контролируется протопластом и регулируется гормоном ауксином.

В клетках, растущих во всех направлениях равномерно, отложение миофибрилл носит случайный характер. Эти миофибриллы образуют неправильную сеть. Такие клетки обнаружены в сердцевине стебля, запасающих тканях и при культивировании клеток in vitro. В удлиняющихся клетках миофибриллы боковых оболочек откладывается под прямым углом к оси удлинения.

Вещества матрикса – пектины, гемицеллюлозы и гликопротеины переносятся к оболочке в пузырьках диктиосом. При этом пектины более характерны для растущих клеток, а гемицеллюлозы преобладают в не растущих клетках.

Целлюлозные микрофибриллы синтезируются на поверхности клетки с помощью ферментного комплекса, связанного с плазматической мембраной. Ориентация микрофибрилл контролируется микротрубочками, расположенными у внутренней поверхности плазматической мембраны.



Лекция 2.

Клеточная оболочка

Химический состав

Плазмодесмы

Поры

Наличие клеточной оболочки более чем все другие признаки отличает растения от животных. Например, простейшие жгутиковые, покрытые оболочкой, причисляют к примитивным растениям (Protophyta), а голые жгутиковые к примитивным животным (Protozoa) . У низших растений голыми являются лишь репродуктивные клетки, а клетки, составляющие вегетативное тело, имеют клеточные стенки. У высших растений клеточной стенкой обладают даже гаметы: как яйцеклетка, так и пыльцевая трубка.

Клеточная оболочка окружает собственно клетку со всех сторон и служит связующим звеном между ней и соседними клетками, обеспечивая, таким образом, единство и целостность всего растительного организма. В жестких оболочках растительных клеток образуются каналы, в которых располагаются тончайшие тяжи цитоплазмы - плазмодесмы . Благодаря этому, осуществляются межклеточные взаимодействия. Иными словами, у растений клеточные оболочки призваны обеспечивать те функции, которые у животных выполняют скелет, кожа и система кровообращения (т.е. опорную, защитную и транспортную.) Не удивительно поэтому, что в ходе эволюции у растений возникли весьма разнообразные по структуре и химическому составу типы клеточных стенок. Собственно говоря, растительные клетки во многом различают и классифицируют именно по форме и природе клеточных стенок.

Оболочка, как правило, бесцветна и прозрачна. Она легко пропускает солнечный свет. Оболочки соседних клеток как бы сцементированы межклеточными веществами, образующими так называемую срединную пластинку. Вследствие этого соседние клетки оказываются отделёнными друг от друга стенкой, образованной двумя оболочками и срединной пластинкой. Это и даёт основание называть оболочку также клеточной стенкой.

Клеточная стенка растительных клеток состоит, главным образом, из полисахаридов. Оболочку эмбриональных тканей и клеток, растущих растяжением, называют первичной . В этот период оболочка достаточно эластична. После прекращения роста клетки изнутри на первичную клеточную стенку начинают откладываться новые слои и образуется вторичная клеточная стенка, придающая клетке жёсткость и прочность.

Химический состав

Все компоненты, входящие в состав клеточной стенки, можно разделить на 4 группы:

Структурные компоненты, представленные целлюлозой у большинства автотрофных растений, хитином (грибы), глюканом (дрожжи), манналом и ксиланом (водоросли).

Компоненты матрикса, т.е. основного вещества, наполнителя оболочки - гемицеллюлозы, белки, липиды.

Компоненты, инкрустирующие клеточную стенку, (т.е. откладывающиеся и выстилающие её изнутри) - лигнин и суберин.

Компоненты, адкрустирующие стенку, т.е. откладывающиеся на её поверхности, - кутин, воск.

Основной структурный компонент оболочки - целлюлоза представлена длинными неразветвленными полимерными молекулами, состоящими из 1000-11000 остатков b -D глюкозы, соединённых между собой гликозидными связями. Наличие гликозидных связей создаёт возможность образования поперечных стивок.

Благодаря этому, длинные и тонкие молекулы целлюлозы объединяются в элементарные фибриллы или мицеллы . Каждая мицелла состоит из 60-100 параллельно расположенных цепей целлюлозы.

Мицеллы сотнями группируются в мицеллярные ряды и составляют микрофибриллы диаметром 10-25 нм. Целлюлоза обладает кристаллическими свойствами благодаря упорядоченному расположению мицелл в микрофибриллах.

Микрофибриллы, в свою очередь, перевиваются между собой как пряди в канате и объединяются в макрофибриллы . Макрофибриллы имеют толщину около 0,5 мкм и могут достигать в длину 4 мкм. Они так же прочны, как равная им по толщине стальная проволока.

Целлюлоза относится к индиферентным веществам: она не обладает ни кислыми, ни щелочными свойствами. По отношению к тепловым воздействиям она достаточно стойка и может быть нагрета без разложения до температуры 200 градусов.

Многие из важных свойств целлюлозы обусловлены её высокой стойкостью отношению к ферментам и химическим реагентам. Она не растворима в воде, в спирте, в эфире и в других нейтральных растворителях; не растворяется и в кислотах и щелочах.

Если целлюлоза и растворяется при известных условиях под действием и щелочей, то это растворение сопровождается сильным разрушением её организации. Без разрушения мицелл целлюлоза может быть растворена в реактиве Швейцера (аммиачном растворе окиси меди), при этом целлюлоза превращается в гель с беспорядочным расположением молекул. Такой гель более гигроскопичен и легче окрашивается, чем природная целлюлоза.

При кратковременной и осторожной обработке целлюлозы серной кислотой образуется амилоид , представляющий по некоторым свойствам нечто промежуточное между клетчаткой и крахмалом: по консистенции амилоид подобен клейстеру. Приготовление "пергаментной бумаги", не пропускающей масла, основано именно на этом принципе. Листы бумаги погружаются на очень короткое время в серную кислоту, затем отмываются и высушиваются, при этом тонкий верхний слой бумаги превращается в непромокаемый для жиров амилоид.

Действием азотной кислоты могут быть получены нитроцеллюлозы. Нитроцеллюлозы находят обширное применение в технике: они используются для изготовления шёлка, пороха, лаков, красок пластмасс.

Целлюлоза, пожалуй, самый распространенный вид органических макромолекул на Земле. Она составляет основу питания многих гетеротрофных организмов. Целлюлоза разрушается действием определенных ферментов, содержащихся в теле некоторых низших растений, грибов, животных. Например, грибы - домовой гриб и трутовики, используя клетчатку живых деревьев или построек, разрушают целлюлозу. Термиты способны переваривать целлюлозу, благодаря наличию в их пищеварительном тракте простейших, энзимы которых перерабатывают клетчатку в вещества, усваиваемые термитами. В пищеварительном аппарате крупных травоядных животных содержится целая микрофлора организмов, подготавливающих клетчатку к усвоению.

Микрофибриллы оболочки погружены в амморфный пластичный гель - матрикс. Матрикс является наполнителем оболочки. В состав матрикса входят полисахариды, называемые гемицеллюлозами и пектиновыми веществами. На долю гемицеллюлоз приходится около 30-40 % сухого веса клетчатых стенок.

По строению гемицеллюлозы напоминают целлюлозу и крахмал (это тоже полимеры); их цепи состоят из остатков гексоз либо пентоз, связанных кислородными мостиками. Но если молекулы целлюлозы насчитывают в своём составе от 1000 до 10000 мономеров, то цепочки гемицеллюлоз состоят из 150-300 молекул мономеров. Они значительно короче. Именно поэтому гемицеллюлозы нередко называют полуклетчатками. Основными гексозами гемицеллюлоз являются D- глюкоза и D- галактоза; пентозами - L- ксилоза и L- арабиноза.

По отношению и химическим агентам гемицеллюлозы гораздо менее стойки, чем целлюлоза: они растворяются в слабых щелочах без подогревания; гидролизуются с образованием сахаров в слабых растворах кислот; растворяются полуклетчатки и в глицерине при температуре 300 градусов.

Гемицеллюлозы в теле растений играют:

механическую роль, участвуя наряду с целлюлозой и другими веществами в построении клетчатых стенок.

роль запасных веществ, отлагающихся, а затем расходующихся. При этом функцию запасного материала несут преимущественно гексозы; а гемицеллюлозы с механической функцией обычно состоят из пектоз. В качестве запасных питательных веществ гемицеллюлозы отлагаются также в семенах многих растений, особенно у однодольных, например, в клеточных стенках эндосперма многих пальм (в частности финиковой пальмы).

Пектиновые вещества имеют довольно сложный химический состав и строение. Химики определяют их, как кальциевые-магниевые соли полимерной a -D галактуроновой кислоты, соединённые a -1,4-связями, т.е. мономером является галактуроновая кислота. Характерная особенность: пектиновые вещества сильно набухают в воде, а некоторые даже в ней растворяются. Легко они разрушаются и под действием щелочей и кислот.

Все клеточные стенки на ранней стадии развития почти нацело состоят из пектиновых веществ.

Межклеточное вещество срединной пластинки, как бы цементирующее оболочки смежных стенок, состоит обычно из пектиновых веществ, главным образом из пектата кальция. Пектиновые вещества, хотя и в небольших количествах, имеются в основной толщине и взрослых клеток.

В состав матрикса клеточных стенок помимо углеводных компонентов входит также структурный белок, называемый экстенсином . Он является гликопротеином, углеводная часть которого представлена остатками сахара арабинозы.

Одревеснение клеточных оболочек

Сильному метаморфозу состава и структуры подвергаются оболочки при одревеснении, опробковении, ослизнении и минерализации. Одревеснение состоит в том, что часть целлюлозной толщи стенки пропитывается лигнином.

Ароматическое вещество лигнин является основным инкрустирующим веществом клеточной стенки. Это полимер с неразветлённой молекулой, состоящей из ароматических компонентов. Мономерами лигнина могут быть конифериловый, синаповый и другие спирты.

Интесивная лигнификация клеточных стенок начинается после прекращения роста клетки.

Отношение между целлюлозой и лигнином в одревесневших слоях оболочки было признано аналогичным конструкции железобетонных сооружений. Лигнин, подобно бетонной массе, заполняет промежутки ячеек сетки; при этом арматура и заполнение образуют монолитное целое.

Одревеснение широко распространено в растительном царстве, за исключением низших растений и мохообразных.

У папоротникообразных одревеснение - явление довольно обычное; а у голосеменных и покрытосеменных распространено повсеместно; здесь одревеснение встречается во всех органах и в разнообразных тканях.

Понятно, что особенно сильному одревеснению подвержены клетки деревьев и кустарников. Так, древесина хвойных содержит 27-30 % лигнина, а древесина лиственных - 18-27 %.

Одревеснение понижает пластичность клеточных стенок, закрепляет их форму. Однако клетки с одревесневшими стенками могут оставаться живыми десятки лет.

Лигнин обладает и консервирующими свойствами и потому действует как антисептик, придавая тканям повышенную стойкость по отношению к разрушительному действию грибов и бактерий.

При разложении в почве растительных остатков относительное содержание лигнина в них повышается. Несомненно, высокая стойкость лигнина играет большую роль при торфо- и углеобразовании. Кроме того, разрушение и конденсация лигнина в почве служит одним из факторов образования гумуса.

Опробковение и кутинизация клеточных оболочек

Весьма распространено в растительном мире наличие в толще клеточных оболочек, либо на их поверхности веществ, называемых кутинами, суберинами и спорополленинами. Общим для них являются следующие черты. Все они - высокополимерные вещества, обязательным компонентом которых являются насыщенные и ненасыщенные, жирные кислоты и жиры. От жиров, встречающихся в полости клетки, в протопласте, они отличаются нерастворимостью в ряде реактивов. Эти вещества стойки даже по отношению к концентрированной серной кислоте. Суберины, кутипы и спорополленины почти непроницаемы для воды, воздуха и других газов.

Эти свойства объясняют нам значение суберинов, кутипов и спорополленинов для растений и их локализацию в растениях. Они находятся в оболочках перефирических (покровных) тканей и защищают органы растения от излишней потери воды.

Суберины . Клеточные оболочки, содержащие суберины, называют опробковевшими. Суберин отлагается внутри клеточной оболочки и поэтому относится к инкрустирующим веществам. Обычно суберин составляет пластинку, находящуюся в так называемом вторичном слое клеточной стенки, так называемые субериновые пластинки.

Кутины - это адкрустирующие гидрофобные вещества, покрывающие поверхность эпидермальных клеток растенеия в виде пленки - кутикулы.

Обычно кутикулярная пленка многослойна.

У папоротников кутикула отсутствует или слабо развита; не выражена кутикула и в корнях растений.

Спорополленины имеются в наружных оболочках спор, в том числе пыльцевых зерён голосеменных и покрытосеменных растений.

Спорополленины настолько стойки к разрушающим факторам, что пыльцевые зёрна со всеми тонкостями структуры их оболочек прекрасно и надолго сохраняются в почве и в торфяных отложениях и могут быть использованы для особого споро-пыльцевого анализа, позволяющего восстановить картину растительности былых эпох.

Ослизнение клеточных оболочек

При ослизнении клеточных оболочек образуются слизи и камеди. Те и другие представляют собой высокомолекулярные углеводы, состоящие большей частью из пентоз и их производных. Они нерастворимы в спирте, эфире, а в воде сильно набухают.

Резкой границы между ними не установлено. Обычно их различают по консистенции в набухшем состоянии: камеди клейки и могут вытягиваться в нити, слизи же сильно расплываются и в нити не тянутся.

В сухом состоянии камеди и слизи очень тверды и хрупки, и лишь при смачивании водой они переходят в тягучее желеобразное состояние.

Ослизение бывает или нормальным явлением в жизни растения, или же происходит как патологический процесс.

В некоторых случаях слизи и камеди появляются в клеточных оболочках путём отложения на ранее образовавшиеся слои клеток, иногда они образуются из имеющегося уже материала стенок в результате химического метаморфоза - "слизистого перерождения".

При патологическом ослизнении - камедетечении (или гуммозе ) - в камедь превращаются и стенки, и содержание клеток; процесс этот захватывает большие участки тканей. Гуммоз часто наблюдается у вишен, слив, персиков, у многих акаций и астрагалов.

Значение ослизнения клеточных стенок во многих случаях очевидно. Например, ослизненные наружные слои клеток кожицы семян, набухая весной, входят в соприкосновение с почвой. Слизь, благодаря клейкости, закрепляет семена на влажном месте и, поглощая воду из почвы, улучшает водный режим проростка, передавая ему воду и защищая от высыхания.

Слизь может использоваться как запасное, питательное вещество.

Минерализация клеточных оболочек

В более поздней стадии развития оболочки содержат минеральные вещества, причём в некоторых случаях в весьма значительных количествах. Эти вещества могут отлагаться и в толще оболочки и на её внутренней и наружной поверхности, или же в особых выростах клеточных стенок. По структуре эти отложения могут быть аморфными и кристаллическими.

Наиболее распространены отложения кремнезёма и солей извести.

Богаты кремнезёмом клетки кожицы стеблей и листьев хвощей, злаков, осок. Окремнение стенок свойственно и многим растениям из двудольных, особенно из семейства мареновых. Окремнению подвергаются жгучие волоски у крапивы двудольной.

Кальций встречается в клеточных оболочках в виде углекислой, щавелевокислой и пектиновокислой извести.

Широко распространено наличие кальция в срединной пластинке клеточных стенок.

Структурная организация клеточной оболочки

Клеточная стенка, как мы видели, построена из немногих основных компонентов. Применение химических методов анализа позволило выявить, что:

соседние цепи целлюлозы в микро - и макрофибриллах связаны водородными связями;

молекулы гемицеллюлозы прикреплены к поверхности целлюлозных микрофибрилл также водородными связями;

некоторые молекулы гемицеллюлозы связаны с молекулами кислого пектина через молекулы нейтрального пектина;

сами пектиновые полимеры сшиваются между собой ионами кальция (Ca);

гликопротеины вероятно присоединены к молекулам пектина; и, наконец,

существуют ковалентные связи между лигнином и целлюлозой.

Таким образом, согласно этой модели, клеточную стенку можно рассматривать как единую гигантскую макромолекулу.

Формирование и рост клеточных оболочек

Даже молодые меристематические клетки снабжены первичной оболочкой. Новая оболочка формируется в процессе деления клетки в заключительной стадии митоза - телофазе. Заключительная в телофазе стадия - процесс деления цитоплазмы на дочерние клетки называется цитокинезом .

В ранней телофазе между двумя дочерними ядрами формируется бочкообразная система волокон, называемая фрагмопластом. Волокна фрагмопласта, так же как и волокна митотического веретена состоят из микротрубочек. В световом микроскопе видно, как в экваториальной плоскости фрагмопласта появляются мелкие капли, которые затем сливаются, образуя клеточную пластинку. Клеточная пластинка растёт центробежно до тех пор, пока не достигнет оболочки делящейся клетки. С помощью электронного микроскопа было установлено, что сливающиеся капельки - это пузырьки, отрывающиеся от аппарата Гольджи. Они в основном содержат пектиновые вещества, из которых формируется срединная пластинка, а мембраны пузырьков участвуют в построении плазматической мембраны по обеим сторонам пластинки. В это время из фрагментов трубчатого эндоплазматического ретикулума образуются плазмодесмы.

После образования срединной пластинки протопласт дочерних клеток откладывает на нее первичную оболочку.

Слой целлюлозы, который откладывается во время роста клетки, называется первичной клеточной оболочкой. Помимо целлюлозы, гемицеллюлоз и пектина первичные оболочки содержат и структурный белок - гликопротеин. Первичные оболочки могут и лигнифицироваться, хотя, как правило, лигнин им не свойственен.

Однако наиболее характерную часть первичной оболочки составляет пектиновый компонент. Он придаёт оболочке пластичность, позволяет ей растягиваться, по мере удлинения органов: корня, стебля, листа.

Пектиновые вещества способны сильно набухать, поэтому первичные оболочки содержат много воды (60-90%).

В целом, на долю гемицеллюлоз и пектиновых веществ, приходится 50-60 % сухого веса первичной оболочки, содержание целлюлозы не превышает 30 %, структурный белок занимает до 10%, лигнин, как правило, отсутствует.

Вторичное утолщение оболочек обычно начинается после прекращения роста клеток. При этом толщина оболочки увеличивается, а объём, запасаемый полостью клетки, сокращается.

Во многих случаях по завершении вторичного утолщения протопласты клеток отмирают, но клетки продолжают функционировать, выполняя главным образом механическую и опорную функцию.

В соответствие с механической функцией строение и химический состав вторичной оболочки сильно отличается от первичной. В ней значительно меньше воды и преобладают плотно сомкнутые микрофибриллы целлюлозы (40-50 %), в первичной оболочке - они расположены рыхло. Много во вторичных оболочках и лигнина - 25-30%, он придаёт оболочкам дополнительную жёсткость и прочность; гемицеллюлозы составлют 20-30% и практически нет пектиновых веществ.

Итак: лицо первичной оболочки составляют пектиновые вещества, в то время как вторичной - лигнин.

Вторичная оболочка далеко не всегда откладывается равномерно. У некоторых специализированных водопроводящих клеток она имеет вид колец или спиральных лент. Такие клетки сохраняют способность к продольному растяжению и после отмирания.

Плазмодесмы

Протопласты соседних клеток связаны между собой тонкими нитями цитоплазмы - плазмодесмами. Эти структуры присущи только растительным клеткам.

В нормальном состоянии плазмодесмы невидимы в световой микроскоп, однако, если стимулировать набухание оболочки плазмодесмы, становятся заметными, поэтому выявлены и описаны они были уже достаточно давно. Хотя детали строения плазмодесм изучены сравнительно недавно с помощью электронного микроскопа.

Под электронным микроскопом плазмодесмы выглядят как узкие каналы (диаметром от 30 до 60 нм), выстланные плазматической мембраной. По оси канала из одной клетки в другую тянется цилиндрическая трубочка меньшего размера - десмотрубочка, которая сообщается с эндоплазматическим ретикулом обеих смежных клеток.

Десмотрубка напоминает цитоплазматические микротрубочки или жгутики простейших. Она состоит из 11 спирально расположенных белковых субъедениц.

Вокруг десмотрубки локализируется цитоплазма, которая во многих типах плазмодесм непосредственно не соединяется с цитоплазмой клеток.

В плазмодесмах обнаружена АТФ - азная активность.

Наличие плазмодесм обеспечивает непрерывность цитоплазмы клеток, составляющих органы и ткани. Такая непрерывная система называется симпласт .

Кроме того, за счёт плазмодесм обеспечивается единство эндоплазматической сети, переходящей из клетки в клетку. Единая эндоплазматическая сеть получила название эндопласт.

Таким образом, выделяется три непрерывных компартмента в растительных тканях - это:

Размещаются плазмодесмы в стенке либо группами, либо равномерно разбросаны по всей стенке.

Поры

Внутренне утолщение клеточной стенки не бывает вполне равномерным. Сформировавшаяся оболочка имеет более толстые и менее утолщенные участки.

Даже в тех случаях, когда стенки, в общем, имеют равномерную толщину, в них, при детальном рассмотрении обнаруживаются небольшие углубления. Эти места, в которых оболочка очень тонка, и называются порами.

Таким образом, поры у растений - это не сквозные многочисленные отверстия, как это понимается в общеупотребительном смысле. У растений порой называют любое неутолщенное место оболочки.

Для обозначения сквозных отверстий у растений используется другое название - перфорации.

Поры в 2-х сосединх клетках располагаются одна против другой, образуя так называемую пару пор.

У клеток с мощной вторичной оболочкой поры в разрезе имеют вид радиальных каналов. На поперечном срезе эти каналы могут иметь разную форму: чаще округлую, реже щелевидную (эллиптическую или крестообразную). Округлые поры обычно формируются в паренхимных клетках, щелевидные - в прозенхимных.

По форме порового канала обычно различают поры 2-х типов: простые и окаймлённые.

Окаймлённые поры характерны для водопроводящих элементов древесины. Эти элементы имеют вид длинных труб разного диаметра. По этим трубкам, как по капиллярам, поднимается вода. Понятно, что давление воды в смежных клетках неодинаково. В этом случае торус смещается и прижимается к выступам вторичной оболочки клеток с меньшим давлением.

Обычно к порам приурочены и плазмодесменные канальцы. Нередко через одну пору проходят десятки плазмодесм.

В любом случае, поры, как и плазмодесмы, облегчают диффузию веществ, растворённых в воде, из одной клетки в другую.

Сквозные отверстия клеточных стенок - перфорации особенно характерны для водопроводящих поперечных перегородок водопроводящих члеников сосудов. Как правило, в этих перегородках образуются одна, две или несколько крупных перфораций.

Многочисленные мелкие перфорации имеются в так называемых ситовидных трубках, по этим трубкам также передвигается вода с органическими веществами, но сверху вниз, от листьев к корням.

Функции и эволюция клеточной стенки

Являясь продуктом метаболической деятельности протопласта клеточная стенка выполняет ряд функций:

Она защищает клеточное содержимое от повреждений и инфекций (защитная функция);

Клеточная стенка поддерживает форму и определяет размер клетки; стенка играет скелетную (опорную) роль, которая особенно возрастает у наземных растений;

Она имеет большое значение в росте и дифференцировании клетки;

Стенка участвует в ионном обмене и поглощении клеткой веществ;

Единый апопласт способствует перемещению веществ из клетки в клетку внеклеточным путём (проводящая функция);

Структура клеточных стенок предохраняет клетки от избыточной потери воды (покровная функция).

Примитивные клетки были окружены слизистым чехлом, состоявшим из пектиновых веществ, как и фрагмопласт, возникающий при митотическом делении в клетках современных растений.

Совершенствование защитной функции клеточной оболочки привело к появлению в её составе гемицеллюлозных компонентов. Форма клетки могла поддерживаться кремниевым и карбонатным наружным чехлом, сохранившимся, как вы знаете из предыдущего курса, у некоторых водорослей. По предположению Фрей-Висслинга первичный слизистый углеводный чехол мог быть предшественником матрикса клеточной стенки.

С возникновением автотрофного способа питания в оболочках клеток в качестве структурного компонента появилась целлюлоза. Выход растений на сушу поставил клеточную стенку перед необходимостью выполнять функцию опоры тела в воздухе. Именно целлюлоза оказалась наиболее оптимальным материалом (в меру прочным и в то же время эластичным) в динамичной и переменчивой среде, где подземным органам растений пришлось испытывать более сильные нагрузки.

Выход на сушу и увеличение размеров растительных организмов привели также к необходимости снабжения клеток водой. Именно с развитием у наземных растений сосудов, проводящих воду, связывают появление в клеточных стенках лигнина. Лигнин не обнаружен у ископаемых океанских и современных водных растений.

МЕЖКЛЕТОЧНЫЙ ПЕРЕНОС ВОДЫ И ИОНОВ ПО ПЛАЗМОДЕСМАМ В РАСТИТЕЛЬНЫХ ТКАНЯХ. РЕАКЦИЯ НА ДИНИТРОФЕНОЛ И НИСТАТИН

Великанов Г.А., Ценцевицкий А.Н.

Казанский институт биохимии и биофизики КНЦ РАН, 420503 Казань

Объектом исследования-были корни 6-дневных проростков пшеницы Московская-35. Эффективный коэффициент самодиффузии (КСД) молекул воды в направлении по радиусу корня определяли методам ЯМР с импульсным градиентом магнитного поля путем снятия зависимости относительной амплитуды стимулированного эха от времени наблюдения (Д) при Д>300 мсек, когда релаксационное затухание намагниченности становится одноэкспоненциальным. Об изменениях водопроницаемости плазмодесм под влиянием динитрофенола (ДНФ) или нистатина судили по изменению КСД в присутствии в апопласте корня не проникающих в клетку парамагнитных ионов марганца. В такой ситуации "наблюдаемый" диффузионный пробег молекул воды локализуется в пределах симпласта, а регистрируемый КСД оказывается зависимым от водопроницаемости плазмодесм. В параллельных опытах одноэлектродным методом фиксации тока при цитоплазматической локализации кончика микроэлектрода регистрировали мембранный потенциал (МП) и входное электрическое сопротивление (R вх) эпидермальных клеток корня. Последнее складывается из параллельно включенных сопротивления мембраны (R м) и входного сопротивления симпласта, т.е. сопротивления растеканию тока через плазмодесмы. КСД регистрировали как в присутствии, так и в отсутствие парамагнетика в апопласте корня. Сделано заключение, что ДНФ увеличивает сопротивление межклеточному переносу воды и ионов по плазмодесмам за счет уменьшения их апертуры. Обсуждается роль энергетического обеспечения актомиозинового сфинктера в таком уменьшении апертуры транспортных каналов в плазмодесмах. Нистатин (10 -4 М) увеличивает R вx при одновременном уменьшении R m , что свидетельствует о доминирующем увеличении электрического сопротивления плазмодесм в результате действия этого антибиотика. Водопроницаемость плазмодесм при этом не изменялась. Предполагается, что нистатин оказывает влияние на состояние двойного электрического слоя в каналах плазмодесм (за счет воздействия на ионный гомеостаз клеток), не изменяя их апертуру. Это подтверждают наши опыты по прямому определению КСД воды внутри вакуолярного и цитоплазматического симпластов, осуществленному путем анализа неэкспоненциальной формы диффузионного затухания эха. В этом случае остаются фиксированными временные интервалы между радиочастотными импульсами и выявляется "гетерогенность" КСД. Два КСД, получившиеся в результате разложения диффузионного затухания на экспоненты, несут информацию о водопроницаемости двух транспортных каналов в плазмодесмах. Разницы с контрольным (без нистатина) вариантом опыта не было выявлено.


Представлены клеточ-ной стенкой, специфика организации которой служит основой для подразделения их на две нетаксономические группы (грамположительные и грамотрицательные формы) и коррелирует с очень большим числом морфофункциональных, метаболических и генетических признаков. Клеточная стенка прокариот явля-ется по существу полифункциональным органоидом, выведен-ным за пределы протопласта и несущим значительную долю метаболической нагрузки клетки.

Строение клеточной стенки

У грамположительных бактерий (рис. 12, А) клеточная стенка устроена в целом более просто. Наружные слои клеточной стенки образованы белком в комплексе с липидами. У некоторых видов бактерий сравнительно недавно обнаружен слой поверхностных белковых глобул, форма, размер и характер расположения которых спе-цифичны для вида. Внутри клеточной стенки, а также непо-средственно на ее поверхности помещаются ферменты, расщеп-ляющие субстраты до низкомолекулярных компонентов, кото-рые в дальнейшем транспортируются через цитоплазматиче-скую мембрану внутрь клетки. Здесь же находятся ферменты, синтезирующие внеклеточные полимеры, например капсульные полисахариды.

Полисахаридная капсула

Полисахаридная капсула, снаружи обволаки-вающая клеточную стенку ряда бактерий, имеет в основном частноприспособительное значение, и ее присутствие не обяза-тельно для сохранения жизнедеятельности клетки. Так, она обеспечивает прикрепление клеток к поверхности плотных суб-стратов, аккумулирует некоторые минеральные вещества и у патогенных форм препятствует их фагоцитированию.

Муреин

Как у грамположительных, так и у грамотрицательных форм клеточная стенка играет роль молекулярного сита, изби-рательно осуществляя пассивный транспорт ионов, субстратов и метаболитов. У бактерий, обладающих способностью к актив-ному движению за счет жгутиков, клеточная стенка является компонентом локомоторного механизма. Наконец, отдельные участки клеточной стенки тесно ассоциированы с цитоплазма-тической мембраной в зоне прикрепления нуклеоида и играют важную роль в его репликации и сегрегации.

Характерной особенностью растительной клетки является наличие жесткой (твердой) клеточной стенки. Клеточная оболочка определяет форму клетки, придает клеткам и тканям растений механическую прочность и опору, защищает цитоплазматическую мембрану от разрушения под влиянием гидростатического давления, развиваемого внутри клетки. Однако такую оболочку нельзя рассматривать только как механический каркас. Клеточная оболочка обладает такими свойствами, которые позволяют противостоять давлению воды внутри клетки, и в то же время обладает растяжимостью и способностью к росту. Она является противоинфекционным барьером, принимает участие в поглощении минеральных веществ, являясь своеобразным ионообменником.

Для молодых растущих клеток характерна первичная клеточная оболочка. По мере их старения образуется вторичная структура. Первичная клеточная оболочка, как правило, малоспециализирована, имеет более простое строение и меньшую толщину, чем вторичная. В состав клеточной оболочки входят целлюлоза, гемицеллюлозы, пектиновые вещества, липиды и небольшое количество белка. Компоненты клеточной оболочки являются продуктами жизнедеятельности клетки. Они выделяются из цитоплазмы и претерпевают превращения на поверхности плазмалеммы.

Остов клеточной оболочки составляют переплетенные микро- и макрофибриллы целлюлозы. Микрофибриллы – эластичный строительный элемент клеточной оболочки (стенки). Отдельная микрофибрилла состоит из нескольких сотен молекул целлюлозы. Микрофибриллы, располагаясь параллельно своей оси, удерживаются вместе водородными связями и у высших растений цементируются гемицеллюлозой.

Молекулы целлюлозы объединены в мицеллу, мицеллы объединены в микрофибриллу, микрофибриллы объединены в макрофибриллу. Макрофибриллы, мицеллы и микрофибриллы соединены в пучки водородными связями.

Микро- и макрофибриллы целлюлозы в клеточной оболочке погружены в аморфную желеобразную массу - матрикс. Матрикс состоит из гемицеллюлоз, пектиновых веществ и белка. Гемицеллюлозы, или полуклетчатки,- это производные пентоз и гексоз. Из гемицеллюлоз наибольшее значение имеют ксило-глюканы, которые входят в состав матрикса первичной клеточной стенки. Гемицеллюлозы способны связываться с целлюлозой, поэтому они формируют вокруг микрофибрилл целлюлозы оболочку, скрепляя их в сложную цепь.

Клеточная оболочка способна к утолщению и видоизменению. В результате этого образуется ее вторичная структура. Утолщение оболочки происходит путем наложения новых слоев на первичную оболочку. По мере того как число слоев фибрилл целлюлозы становится больше, и толщина стенки увеличивается, она теряет эластичность и способность к росту. Во вторичной клеточной стенке содержание целлюлозы значительно возрастает (в некоторых случаях до 60% и более). По мере дальнейшего старения клеток матрикс оболочки может заполняться различными веществами - лигнином, суберином. Лигнин - это полимер, образующийся путем конденсации ароматических спиртов. Включение лигнина сопровождается одревеснением, увеличением прочности и уменьшением растяжимости. На поверхности клеточной стенки могут откладываться кутин и воск.

Клеточная стенка растительной клетки пронизана плазмодесмами. В клеточной стенке они могут располагаться равномерно или группами.

Строение и функции АГ

Аппарат Гольджи – это мембранная структура, присущая любой эукариотической клетке. Он представляет собой стопку уплощенных мембранных мешочков, так называемых цистерн, окружённых мембраной. Кроме цистерн имеется ряд сферических пузырьков диаметром до 60 нм, связанные с цистернами – везикулы.

Белки связывают цистерны, образуя диктиосомы, которые распределены в растительной клетке по всей цитоплазме.

У аппарата Гольджи выделяют две разные стороны: формирующую (проксимальную, cis-полюс), обращенную к ЭПС, поскольку именно оттуда поступают небольшие пузырьки, несущие в аппарат Гольджи белки и липиды и зрелую (дистальную, trans-полюс), от которой постоянно отпочковываются пузырьки, несущие белки и липиды в разные компартменты клетки или за ее пределы. Комплекс Гольджи обеспечивает транспорт белков в три компартмента: к лизосомам (а также центральной вакуоли растительной клетки), к клеточной мембране и в межклеточное пространство.

Функции комплекса Гольджи: накопление белков, липидов, углеводов; модификация и упаковка в мембранные пузырьки (везикулы) поступивших органических веществ; секреция белков, липидов, углеводов; место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

ЭТЦ митохондрий

В процессе окисления пировиноградной кислоты в цикле Кребса образовались пары водорода 2Н, которые мы можем рассматривать как 2Н+ + 2е. Именно в таком виде они, акцептированные НАД и ФАД, передаются по цепи переносчиков. В процессе переноса протонов и электронов важную роль играют ферменты, относящиеся к классу оксидоредуктаз. Оксидоредуктазы, участвующие в дыхательной цепи, делятся на следующие основные группы. Пиридиновые дегидрогеназы, у которых коферментом служит НАД или НАДФ; флавиновые дегидрогеназы; цитохромы.