Биологические системы их основные свойства. Основные уровни организации живой природы: клеточный, организменный, популяционно-видовой, биогеоценотический, биосферный

Биологическая система - это совокупность элементов, которые связаны и зависят друг от друга, образуя единое целое, выполняют определенные функции, а также взаимодействуют с окружающей средой или другими элементами и системами.

Основные функциональные элементы имеют разный уровень организации и соответствующую классификацию. Среди них можно назвать как отдельные молекулы и клетки, ткани и органы, так и целые организмы, их популяции и даже целую экосистему. Все эти элементы, начиная с организменного уровня, способны существовать самостоятельно, образуя соответствующие уровни эволюции, высшим проявлением которого является биосферный ранг.

Надо сказать, что каждая биологическая система, несмотря на различные составляющие элементы, характеризуется следующими признаками:

  • выполняет соответствующие функции;
  • ей свойственна определенная целостность;
  • состоит из отдельных подсистем;
  • способна к адаптации, которая является соответствующими изменениями в ответ на различные воздействия окружающей среды;
  • кроме того, биологическая система характеризуется относительной устойчивостью и способностью к развитию, постоянной регенерации поврежденных составляющих, а также к полному или частичному обновлению и самовосстановлению.

Относительно гомогенной биологической системой является для которого характерен соответствующий тип взаимодействия элементов, а также пространственные и временные критерии процессов, которые происходят в нем.

Концепция о разных получила распространение в середине 20 века. Она включает дифференциацию всего живого на планете на отдельные дискретные и взаимосвязанные структурные группы.

Следует отметить, что биологическая система характеризуется принципом иерархичности - разные уровни организации образуют специфическую пирамиду, в которой за каждым структурным уровнем идет следующий, но более высокого ранга. При этом все уровни организации взаимодействуют и влияют друг на друга.

С давних времен начала развиваться биологическая систематика - дисциплина, целью которой является разработка отдельных принципов по классификации всех живых организмов, которые можно использовать при построении биологических систем.


На сегодняшний день и животных проводится по упомянутому выше принципу иерархичности: отдельные особи - виды, которые объединяются в роды, - семейство - порядок или отряд - классы, которые формируют соответствующие отделы, - типы, которые входят в состав царств. Так, конкретное растение или животное должно относиться к каждой из этих семи категорий классификации.

Новым понятием является термин «надцарство» или биологический домен. За ним каждая биологическая система классифицируется еще и на надцарства эукариот, бактерий или архей.

Стоит отметить, что биологическим системам присуща определенная особенность: связаны не только между собой, но и с окружающей средой, что проявляется в общем обмене энергией, веществами и информацией. Жизнь без такого взаимодействия невозможна.

Клеточный уровень

В настоящее время выделяют несколько основных уровней организации живой материи: кле­точный, организменный, популяционно-видовой, биогеоценотический и биосферный.

Хотя проявления некоторых свойств живого обусловлены уже взаимодействием биологических макромолекул (белков, нуклеиновых кислот, полисахаридов и др.), все же единицей строения, функций и развития живого является клетка, способная осуществлять и сопрягать процессы реа­лизации и передачи наследственной информации с обменом веществ и превращения энергии, обеспечивая тем самым функционирование более высоких уровней организации. Элементарной единицей клеточного уровня организации является клетка, а элементарным явлением - реакции клеточного метаболизма.

Организменный уровень

Организм - это целостная система, способная к самостоятельному существованию. По количеству клеток, входящих в состав организмов, их делят на одноклеточные и много­клеточные. Клеточный уровень организации у одноклеточных организмов (амебы обыкновенной, эвглены зеленой и др.) совпадает с организменным. В истории Земли был период, когда все организмы были представлены только одноклеточными формами, но они обеспечивали функци­онирование как биогеоценозов, так и биосферы в целом. Большинство многоклеточных организ­мов представлено совокупностью тканей и органов, в свою очередь также имеющих клеточное строение. Органы и ткани приспособлены для выполнения определенных функций. Элементарной единицей данного уровня является особь в ее индивидуальном развитии, или онтогенезе, поэтому организменный уровень также называют онтогенетическим. Элементарным явлением данного уровня являются изменения организма в его индивидуальном развитии.

Популяционно-видовой уровень

Популяция - это совокупность особей одного вида, свободно скрещивающихся между собой и проживающих обособленно от других таких же групп особей.

В популяциях происходит свободный обмен наследственной информацией и ее передача по­томкам. Популяция является элементарной единицей популяционно-видового уровня, а элемен­тарным явлением в данном случае являются эволюционные преобразования, например мутации и естественный отбор.

Биогеоценотический уровень

Биогеоценоз представляет собой исторически сложившееся сообщество популяций разных ви­дов, взаимосвязанных между собой и окружающей средой обменом веществ и энергии.

Биогеоценозы являются элементарными системами, в которых осуществляется вещественно- энергетический круговорот, обусловленный жизнедеятельностью организмов. Сами биогеоцено­зы - это элементарные единицы данного уровня, тогда как элементарные явления - это потоки энергии и круговороты веществ в них. Биогеоценозы составляют биосферу и обусловливают все процессы, протекающие в ней.

Биосферный уровень

Биосфера - оболочка Земли, населенная живыми организмами и преобразуемая ими.

Биосфера является самым высоким уровнем организации жизни на планете. Эта оболочка ох­ватывает нижнюю часть атмосферы, гидросферу и верхний слой литосферы. Биосфера, как и все другие биологические системы, динамична и активно преобразуется живыми существами. Она сама является элементарной единицей биосферного уровня, а в качестве элементарного явления рассматривают процессы круговорота веществ и энергии, происходящие при участии живых ор­ганизмов.

Как уже было сказано выше, каждый из уровней организации живой материи вносит свою лепту в единый эволюционный процесс: в клетке не только воспроизводится заложенная наслед­ственная информация, но и происходит ее изменение, что приводит к возникновению новых со­четаний признаков и свойств организма, в свою очередь подвергающихся действию естественного отбора на популяционно-видовом уровне и т. д.

Биологические системы

Биологические объекты различной степени сложности (клетки, организмы, популяции и ви­ды, биогеоценозы и саму биосферу) рассматривают в настоящее время в качестве биологических систем.

Система - это единство структурных компонентов, взаимодействие которых порождает новые свойства по сравнению с их механической совокупностью. Так, организмы состоят из органов, органы образованы тканями, а ткани формируют клетки.

Характерными чертами биологических систем являются их целостность, уровневый принцип организации, о чем говорилось выше, и открытость. Целостность биологических систем в значи­тельной степени достигается за счет саморегуляции, функционирующей по принципу обратной связи.

К открытым системам относят системы, между которыми и окружающей средой происходит обмен веществ, энергии и информации, например, растения в процессе фотосинтеза улавливают солнечный свет и поглощают воду и углекислый газ, выделяя кислород.

Общие признаки биологических систем: клеточное строение, особенности химического состава, обмен веществ и превращения энергии, гомеостаз, раздражимость, движение, рост и развитие, воспроизведение, эволюция

Биологические системы отличаются от тел неживой природы совокупностью признаков и свойств, среди которых основными являются клеточное строение, особенности химического состава, обмен веществ и превращения энергии, гомеостаз, раздражимость, движение, рост и раз­витие, воспроизведение и эволюция.

Элементарной структурно-функциональной единицей живого является клетка. Даже вирусы, относящиеся к неклеточным формам жизни, неспособны к самовоспроизведению вне клеток.

Различают два типа строения клеток: прокариотические и эукариотические. Прокариотические клетки не имеют сформированного ядра, их генетическая информация сосредоточена в ци­топлазме. К прокариотам относят прежде всего бактерии. Генетическая информация в эукариоти- ческих клетках хранится в особой структуре - ядре. Эукариотами являются растения, животные и грибы. Если в одноклеточных организмах клетке присущи все проявления живого, то у много­клеточных происходит специализация клеток.

В живых организмах не встречается ни одного химического элемента, которого бы не было в неживой природе, однако их концентрации существенно различаются в первом и во втором слу­чаях. Преобладают в живой природе такие элементы, как углерод, водород и кислород, которые входят в состав органических соединений, тогда как для неживой природы в основном характер­ны неорганические вещества. Важнейшими органическими соединениями являются нуклеиновые кислоты и белки, которые обеспечивают функции самовоспроизведения и самоподдержания, но ни одно из этих веществ не является носителем жизни, поскольку ни по отдельности, ни в группе они не способны к самовоспроизведению - для этого необходим целостный комплекс молекул и структур, которым и является клетка.

Все живые системы, в том числе клетки и организмы, являются открытыми системами. Од­нако, в отличие от неживой природы, где в основном происходит перенос веществ с одного места в другое или изменение их агрегатного состояния, живые существа способны к химическому превращению потребляемых веществ и использованию энергии. Обмен веществ и превращения энергии связаны с такими процессами, как питание, дыхание и выделение.

Под питанием обычно понимают поступление в организм, переваривание и усвоение им ве­ществ, необходимых для пополнения энергетических запасов и построения тела организма. По способу питания все организмы делят на автотрофов и гетеротрофов.

Автотрофы - это организмы, которые способны сами синтезировать органические вещества из неорганических.

Гетеротрофы - это организмы, которые потребляют в пищу готовые органические вещества.

Автотрофы делятся на фотоавтотрофов и хемоавтотрофов. Фотоавтотрофы используют для синтеза органических веществ энергию солнечного света. Процесс преобразования энергии света в энергию химических связей органических соединений называется фотосинтезом. К фотоавтотрофам относится подавляющее большинство растений и некоторые бактерии (например, циано- бактерии). В целом фотосинтез не слишком продуктивный процесс, вследствие чего большинство растений вынуждено вести прикрепленный образ жизни. Хемоавтотрофы извлекают энергию для синтеза органических соединений из неорганических соединений. Этот процесс называется хемосинтезом. Типичными хемоавтотрофами являются некоторые бактерии, в том числе серобак­терии и железобактерии.

Остальные организмы - животные, грибы и подавляющее большинство бактерий - относятся к гетеротрофам.

Дыханием называют процесс расщепления органических веществ до более простых, при кото­ром выделяется энергия, необходимая для поддержания жизнедеятельности организмов.

Различают аэробное дыхание, требующее кислорода, и анаэробное, протекающее без участия кислорода. Большинство организмов является аэробами, хотя среди бактерий, грибов и животных встречаются и анаэробы. При кислородном дыхании сложные органические вещества могут рас­щепляться до воды и углекислого газа.

Под выделением обычно понимают выведение из организма конечных продуктов метаболизма и избытка различных веществ (воды, солей и др.), поступивших с пищей или образовавшихся в нем. Особенно интенсивно процессы выделения протекают у животных, тогда как растения чрезвычайно экономны.

Благодаря обмену веществ и энергии обеспечивается взаимосвязь организма с окружающей средой и поддерживается гомеостаз.

Гомеостаз - это способность биологических систем противостоять изменениям и поддержи­вать относительное постоянство химического состава, строения и свойств, а также обеспечивать постоянство функционирования в изменяющихся условиях окружающей среды. Приспособление же к изменяющимся условиям среды называется адаптацией.

Раздражимость - это универсальное свойство живого реагировать на внешние и внутренние воздействия, которое лежит в основе приспособления организма к условиям окружающей среды и их выживания. Реакция растений на изменения внешних условий заключается, например, в по­вороте листовых пластинок к свету, а у большинства животных она имеет более сложные формы, имеющие рефлекторный характер.

Движение - неотъемлемое свойство биологических систем. Оно проявляется не только в виде перемещения тел и их частей в пространстве, например, в ответ на раздражение, но и в процессе роста и развития.

Новые организмы, появляющиеся в результате репродукции, получают от родителей не го­товые признаки, а определенные генетические программы, возможность развития тех или иных признаков. Эта наследственная информация реализуется во время индивидуального развития. Индивидуальное развитие выражается, как правило, в количественных и качественных измене­ниях организма. Количественные изменения организма называются ростом. Они проявляются, например, в виде увеличения массы и линейных размеров организма, что основано на воспроиз­ведении молекул, клеток и других биологических структур.

Развитие организма - это появление качественных различий в структуре, усложнение функ­ций и т. д., что базируется на дифференцировании клеток.

Рост организмов может продолжаться всю жизнь или заканчиваться на каком-то определен­ном ее этапе. В первом случае говорят о неограниченном, или открытом росте. Он характерен для растений и грибов. Во втором случае мы имеем дело с ограниченным, или закрытым ростом, присущим животным и бактериям.

Продолжительность существования отдельной клетки, организма, вида и других биологи­ческих систем ограничена во времени в основном из-за воздействия факторов окружающей среды, поэтому требуется постоянное воспроизведение этих систем. В основе воспроизведения клеток и организмов лежит процесс самоудвоения молекул ДНК. Размножение организмов обеспечивает существование вида, а размножение всех видов, населяющих Землю, обеспечивает существование биосферы.

Наследственностью называют передачу признаков родительских форм в ряду поколений.

Однако, если бы при воспроизведении признаки сохранялись, приспособление к меняющимся условиям окружающей среды было бы невозможным. В связи с этим появилось противоположное наследственности свойство - изменчивость.

Изменчивость - это возможность приобретения в течение жизни новых признаков и свойств, которое обеспечивает эволюцию и выживание наиболее приспособленных видов.

Эволюция - это необратимый процесс исторического развития живого.

Она базируется на прогрессивном размножении, наследственной изменчивости, борьбе за существование и естественном отборе. Действие этих факторов привело к огромному разно­образию форм жизни, приспособленных к различным условиям среды обитания. Прогрессивная эволюция прошла ряд ступеней: доклеточных форм, одноклеточных организмов, все усложняю­щихся многоклеточных вплоть до человека.

Возникновение жизни на Земле, появление одноклеточных организмов было связано с формированием и непрестанным поддержанием в клетке в течение всей ее жизни специфических физико-химических условий, отличающихся от условий окружающей среды. Способность биологических систем противостоять изменениям и сохранять динамически относительное постоянство состава и свойств называется гомеостазом; Явления гомеостаза наблюдаются на всех уровнях биологической организации.[ ...]

Гомеостаз - это механизм, направленный на поддержание устойчивого функционирования биологических объектов. Он включает в себя понятие саморегуляции, способности биологических систем автоматически устанавливать и поддерживать на определенном, относительно постоянном уровне те или иные биологические показатели (физико-химические, физиологические, генетические и т.д.). При саморегуляции управляющие факторы не воздействуют на регулирующую систему извне, а формируются в ней самой. Процесс саморегуляции может носить циклический характер. Отклонение какого-либо жизненного фактора от состояния гомеостаза (например, повышение температуры тела человека во время жары) служит толчком к мобилизации механизмов, восстанавливающих его (усиливается потоотделение и температура тела снижается до нормы).[ ...]

Механизмы саморегуляции весьма разнообразны, однако основаны на общих принципах. Очень широко в биологических системах используется принцип обратной связи. Примером сложной гомеостатической системы, включающей различные способы регуляции, может служить система обеспечения оптимального уровня артериального давления крови у человека и животных. Изменение давления крови воспринимается барорецепторами (нервными окончаниями, ощущающими изменения давления) сосудов, сигнал по нервным волокнам передается в сосудистые центры, изменение состояния которых ведет к изменениям в работе сердца и сердечной деятельности. В результате многих процессов кровяное давление возвращается к норме.[ ...]

Примером саморегуляции на молекулярном уровне могут служить те ферментные реакции, в которых конечный продукт, концентрация которого поддерживается автоматически, влияет на активность фермента.[ ...]

Примером такого рода саморегулирующихся реакций на клеточном уровне организации является самосборка клеточных органоидов из биологических макромолекул, поддержание электрического потенциала мембран у клеток, отвечающих за передачу возбуждения от раздражителей.[ ...]

На многоклеточном уровне появляется внутренняя среда, в которой находятся клетки различных органов и тканей, и это приводит к совершенствованию и развитию механизмов гомеостаза, в первую очередь нервных и гормональных. У большинства животных устанавливаются и поддерживаются на определенном уровне такие показатели внутренней среды, как температура тела и отдельных его частей, кровяное и осмотическое давление, объем, ионный состав и pH жидкостей внутренней среды и т.п.[ ...]

Гомеостаз достигается системой физиологических регуляторных механизмов. У высокоорганизованных животных наиболее важную, интегрирующую функцию выполняет центральная нервная система и особенно кора головного мозга. Большое значение имеет также гормональная система организма. Нарушения механизмов, лежащих в основе гомеостатических процессов, рассматриваются как “болезни гомеостаза”. Например, функциональные нарушения и ухудшения самочувствия, связанные с вынужденной перестройкой биологических ритмов (поездка в регионы с другим климатом).[ ...]

Разнообразны проявления и механизмы саморегуляции на-дорганизменных систем - популяций и биоценозов. На этом уровне поддерживаются стабильность структуры популяций, составляющих биоценозы, их численность, регулируется динамика всех компонентов экосистем в изменяющихся условиях среды. Сама биосфера является примером поддержания гомеостатического состояния и проявлений саморегуляции живых систем.[ ...]

Всем организмам присуще свойство воспроизведения себе подобных, обеспечивающее непрерывность и преемственность жизни. Благодаря размножению виды сохраняют свои признаки в ряду поколений.[ ...]

На первый взгляд может показаться, что процессы размножения у живых существ очень разнообразны, однако все их можно свести к трем формам: бесполому, вегетативному и половому.

3 Эукариотическая клетка - форма организации живой материи. Основыные структурные компоненты эукариот]клетки. Современные представления о строении и функциях биологических мембран, Принципы компартментации. Транспорт в-в через плазмолемму.

Эукариоты - домен (надцарство) живых организмов, клетки которых содержат ядра (ядерные). К ним относятся все высшие животные и растения, а также одноклеточные и многоклеточные водоросли, грибы и простейшие.Они могут быть одноклеточными и многоклеточными , но все имеют общий план строения клеток.В цитозоле любой (не только растительной) современной эукариотической клетки находятся следующие органеллы: ядро, ЭПС, аппарат Гольджи, цитоскелет, центриоль, митохондрии, лизосомы; растительная клетка наряду с этими органеллами обязательно содержит: пластиды, вакуоли.

1) Ядро - э то один из структурных компонентов HYPERLINK "http://ru.wikipedia.org/wiki/Эукариоты"эукариотической HYPERLINK "http://ru.wikipedia.org/wiki/Клетка"клетки , содержащий генетическую информацию (молекулы ДНК ), осуществляющий основные функции: хранение, передача и реализация наследственной информации с обеспечением синтеза белка . Ядро состоит из хромати́на , я́дрышка , кариопла́змы (или нуклеоплазмы ) и ядерной оболочки . (подробно в билете №4)

2) Эндоплазматический ретикулум (ЭПР) или эндоплазматическая сеть (ЭПС) - внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев. Мембраны ЭПС обеспечиваютактивный транспорт ряда элементов против градиента концентрации .Выделяют два вида ЭПР: гранулярный эндоплазматический ретикулум; агранулярный (гладкий) эндоплазматический ретикулум. На поверхности гранулярного эндоплазматического ретикулума находится большое количество рибосом , которые отсутствуют на поверхности агранулярного ЭПР. Гранулярный и агранулярный эндоплазматический ретикулум выполняют различные функции в клетке. При участии эндоплазматического ретикулума происходит трансляция и транспорт белков, синтез и транспорт липидов истероидов . Для ЭПС характерно также накопление продуктов синтеза. Эндоплазматический ретикулум принимает участие в том числе и в создании новой ядерной оболочки (например после митоза ). Эндоплазматический ретикулум содержит внутриклеточный запас кальция , который является, в частности, медиатором сокращения мышечной клетки .

3) Аппарат (комплекс) Гольджи - мембранная структура эукариотической клетки , представляет собой стопку плоских мембранных цистерн, несколько расширенных ближе к краям. В цистернах аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом .В Комплексе Гольджи выделяют 3 отдела цистерн, окружённых мембранными пузырьками:Цис-отдел (ближний к ядру); Медиальный отдел; Транс-отдел (самый отдалённый от ядра). Функции: сортировка, накопление и выведение секреторных продуктов; завершение посттрансляционной модификации белков ; накопление молекул липидов и образование липопротеидов ; образование лизосом ; формирование клеточной пластинки после деления ядра в растительных клетках; участие в формировании акросомы ; формирование сократимых вакуолейпростейших.

4) Лизосома - небольшое тельце, ограниченное от цитоплазмы одинарной мембраной. В ней находятся литические ферменты , способные расщепить все биополимеры. Основная функция - автолиз - то есть расщепление отдельных органоидов, участков цитоплазмы клетки. Лизосомы формируются из пузырьков (везикул), отделяющихся от аппарата Гольджи , и пузырьков (эндосом), в которые попадают вещества при эндоцитозе . В образовании аутолизосом (аутофагосом) принимают участие мембраны эндоплазматического ретикулума. Все белки лизосом синтезируются на «сидячих» рибосомах на внешней стороне мембран эндоплазматического ретикулума и затем проходят через его полость и через аппарат Гольджи.

5) Митохондрии - двумембранная гранулярная или нитевидная органелла толщиной около 0,5 мкм. Основная функция - окисление органических соединений и использование освобождающейся при их распаде энергии в синтезе молекул АТФ , который происходит за счёт движения электрона поэлектронно-транспортной цепи белков внутренней мембраны. М. отсутствуют лишь у бактерий, синезелёных водорослей и других прокариотов , где их функцию выполняет клеточная мембрана. М. окружено двойной мембраной: наружной - гладкой, и внутренней, - образующей впячивания,называется кристами . Дыхание (поглощение кислорода и выделениеуглекислого газа ) происходит также за счёт энзиматических систем митохондрий. Митохондрии имеют свой собственный ДНК -геном и прокариотические рибосомы , что, безусловно, указывает на симбиотическое происхождение этих органелл.

6)Вакуоль - одномембранный органоид , содержащийся в некоторых эукариотических HYPERLINK " http :// ru . wikipedia . org / wiki /Клетка" клетках и выполняющий различные функции (секреция , экскреция и хранение запасных веществ, аутофагия , автолиз и др.). Вакуоли и их содержимое рассматриваются как обособленный от цитоплазмы HYPERLINK " http :// ru . wikipedia . org / wiki /Компартмент" компартмент . Различают пищеварительные и сократительные (пульсирующие) вакуоли, регулирующие осмотическое давление и служащие для выведения из организма продуктов распада. Вакуоли особенно хорошо заметны в клетках растений : во многих зрелых клетках растений они составляют более половины объёма клетки. Одна из важных функций растительных вакуолей - накопление ионов и поддержание тургора (тургорного давления ). Вакуоль - это место запаса воды. Вакуоли развиваются из цистерн эндоплазматической сети.Мембрана, в которую заключена вакуоль, называется тонопласт. В вакуолях содержатся органические кислоты, углеводы, дубильные вещества, неорганические вещества (нитраты, фосфаты, хлориды и др.), белки и др.

7) Пластиды - внутриклеточные органеллы цитоплазмы автотрофных растений, содержащие пигменты и осуществляющие синтез органических веществ. У высших растений различают 3 типа П.: зелёные хлоропласты (ХП), бесцветные лейкопласты (ЛП) и различно окрашенные хромопласты (ХР). Совокупность всех типов носит название пластом или пластидом.Есть лишь в растительных клетках. Они встречаются у всех растений, за исключением некоторых бактерий, водорослей, миксомицетов и грибов. У водорослей функции пластид выполняет хроматофор. Для этих органелл характерно наличие пигмента (хлорофилл и каротиноиды), а также способность синтезировать и накапливать запасные вещества (крахмал, жиры и белки)&

Биологическая мембрана - отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндр-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи, образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или иных специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно.Клеточная мембрана представляет собой двойной слой (бислой ) молекул класса липидов , большинство из которых представляет собой так называемые сложные липиды -фосфолипиды . Молекулы липидов имеют гидрофильную «головка») и идрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные - наружу.

Принцип компартментации. Высокая упорядоченность внутреннего содержимого эукариотической клетки достигается путем компартментации ее объема - подразделения на «ячейки», отличающиеся деталями химического (ферментного) состава. Компартментация способствует пространственному разделению веществ и процессов в клетке. Отдельный компартмент представлен органеллой (лизосома) или ее частью (пространство, отграниченное внутренней мембраной митохондрии).В настоящее время принята точка зрения, согласно которой мембрана составлена из бимолекулярного слоя липидов. Гидрофобные участки их молекул повернуты друг к другу, а гидрофильные -находятся на поверхности слоя. Разнообразные белковые молекулы встроены в этот слой или размещены на его поверхностях. Благодаря компартментации клеточного объема в эукариотической клетке наблюдается разделение функций между разными структурами. Одновременно различные структуры закономерно взаимодействуют друг с другом.

Трансмембранный перенос (транспорт в-в через плазмолемму)

Следует разделять способы помолекулярного (поионного) и мультимолекулярного трансмембранного переноса. В первом случае мол-лы (ионы) в-ва проходят через мембрану относительно независимо др от друга. Во втором - за один акт переноса перемещается сразу огромное число молекул. Способы помолекулярного переноса: (данные способы транспорта используются только для низкомолекулярных в-в)

Простая диффузия - самостоятельное проникновение в-в через мембрану по градиенту концентрации.Так проходят небольшие нейтральные мол-лы (Н2О, СО2, О2) и низкомолекулярные гидрофобные орг в-ва (жирные к-ты, мочевина)

Облегченная диффузия - проходит через мембрану также по градиенту концентрации, но помощью спец белка - транслоказы, которые образуют в мембране транспортные каналы. Примерами таких каналов являются ионные каналы - в частности К+ - каналы, Na+ - каналы, анионные канали и т. д.

Активный транспорт - в-ва переносятся с помощью спец транспортной сис-мы (насоса) против градиента концентрации. Для этого требуется энергия (АТФ). Пример подобных сис-м: Na+, K+ - насос (или Na+, K+ - АТФаза) .

Способы мультимолекулярного переноса:

1) Эндоцитоз - различают 2 разновидности эндоцитоза

Пиноцитоз - захват и поглощение клеткой рас-ров в-в

Фагоцитоз - перенос в клетку тв частиц

2) экзоцитоз - здесь тоже существует 2 варианта, в зависимости от растворимости выделяемых из клетки в-в: - секреция - мультимолекулярное выделение из клетки растворенных в-в - экскреция - выведение из клетки тв части.

Существует еще одно понятие - трансцитоз (или рекреция), это перенос в-в через клетку; здесь сочетаются эндо- и экзоцитоз