Квантовая физика для чайников: суть простыми словами. Поймёт даже ребёнок

Представления в физике атомного ядра

Появление квантовой механики.

Квантовая механика – физическая теория, изучающая движение на микроуровне.

Еще в конце XIX века большинство ученых склонялись к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой. Предстоит уточнять лишь детали. Но впервые десятилетия XX века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы XIX столетия и первые десятилетия XX века.

В 1896 году французский физик Антуан Анри Беккерель (1852-1908) открыл явление самопроизвольного излучения урановой соли.

В его исследование включились французские физики, супруги Пьер Кюри (1859-1906) и Мария Склодовская-Кюри (1867-1934). В 1898 году были открыты новые элементы, также обладающие свойством испускать «беккерелевы лучи», - полоний и радий. Это свойство супруги Кюри назвали радиоактивностью.

А годом раньше, в 1897 году, в лаборатории Кавендиша в Кембридже при изучении электрического разряда в газах (катодных лучей) английский физик Джозеф Джон Томсон (1856-1940) открыл первую элементарную частицу - электрон.

В 1911 году знаменитый английский физик Эрнест Резерфорд (1871-1937) предложил свою модель атома, которая получила название планетарной.

Н. Бор, зная о модели Резерфорда и приняв ее в качестве исходной, разработал в 1913 году квантовую теорию строения атома.

Принципы квантовой механики

Принцип неопределенности Гейзенберга: «Невозможно одновременно с точностью определить координаты и скорость квантовой частицы»

В первой четверти ХХ века именно такова была реакция физиков, когда они стали исследовать поведение материи на атомном и субатомном уровнях.

Принцип Гейзенберга играет в квантовой механике ключевую роль хотя бы потому, что достаточно наглядно объясняет, как и почему микромир отличается от знакомого нам материального мира.

Чтобы отыскать, например, книгу, вы, войдя в комнату, окидываете ее взглядом, пока он не остановится на ней. На языке физики это означает, что вы провели визуальное измерение (нашли взглядом книгу) и получили результат - зафиксировали ее пространственные координаты (определили местоположение книги в комнате).



В начале 1920-х годов, когда произошел бурный всплеск творческой мысли, приведший к созданию квантовой механики, эту проблему первым осознал молодой немецкий физик-теоретик Вернер Гейзенберг. Им был сформулирован принцип неопределенности , названный теперь его именем:

Термин «неопределенность пространственной координаты» как раз и означает, что мы не знаем точного местоположения частицы. Например, если вы используете глобальную систему GPS, чтобы определить местоположение книги, система вычислит их с точностью до 2-3 метров. И тут мы подходим к самому принципиальному отличию микромира от нашего повседневного физического мира. В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно (иными словами, с нулевой неопределенностью). Допустим, что нужно зафиксировать пространственное местонахождение электрона. Нам по-прежнему нужен измерительный инструмент, который вступит во взаимодействие с электроном и возвратит детекторам сигнал с информацией о его местопребывании.

Если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится.

Принцип неопределенности не мешает нам с любой желаемой точностью измерить каждую из этих величин. Он утверждает лишь, что мы не в состоянии достоверно узнать и то, и другое одновременно.

Ключевым в соотношении Гейзенберга является взаимодействие между частицей-объектом измерения и инструментом измерения, влияющим на его результаты.

Принцип дополнительности Н. Бора: «Объекты микромира описываются и как частицы, и как волны, и одно описание дополняет другое».

В повседневной жизни имеется два способа переноса энергии в пространстве - посредством частиц или волн. Чтобы, скажем, скинуть со стола костяшку домино, балансирующую на его краю, можно придать ей необходимую энергию двумя способами. Во-первых, можно бросить в нее другую костяшку домино (то есть передать точечный импульс с помощью частицы). Во-вторых, можно построить в ряд стоящие костяшки домино, по цепочке ведущие к той, что стоит на краю стола, и уронить первую на вторую: в этом случае импульс передастся по цепочке - вторая костяшка завалит третью, третья четвертую и так далее. Это - волновой принцип передачи энергии. В обыденной жизни между двумя механизмами передачи энергии видимых противоречий не наблюдается. Так, баскетбольный мяч - это частица, а звук - это волна, и всё ясно.

Однако в квантовой механике всё обстоит отнюдь не так просто. Даже из простейших опытов с квантовыми объектами очень скоро становится понятно, что в микромире привычные нам принципы и законы макромира не действуют. Свет, который мы привыкли считать волной, порой ведет себя так, будто состоит из потока частиц (фотонов ), а элементарные частицы, такие как электрон или даже массивный протон, нередко проявляют свойства волны. Если «выстреливать» электроны по одному, каждый из них будет оставлять четкий след на экране - то есть вести себя как частица. Самое интересное, что, то же самое будет, если вместо пучка электронов вы возьмете пучок фотонов: в пучке они будут вести себя как волны, а по отдельности - как частицы

Иными словами, в микромире объекты, которые ведут себя как частицы, при этом как бы «помнят» о своей волновой природе, и наоборот. Это странное свойство объектов микромира получило название квантово-волнового дуализма .

Принцип дополнительности - простая констатация этого факта. Согласно этому принципу, если мы измеряем свойства квантового объекта как частицы, мы видим, что он ведет себя как частица. Если же мы измеряем его волновые свойства, для нас он ведет себя как волна. Оба представления отнюдь не противоречат друг другу - они именно дополняют одно другое, что и отражено в названии принципа.

Строение атома.

Планетарная модель строения атома была предложена в результате открытия ядра атома Резерфордом:
1.В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.
2.Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а. е. м.).
3.Вокруг ядра по замкнутым орбитам вращаются электроны. Их число равно заряду ядра.
Ядро атома

Ядро атома состоит из протонов и нейтронов (общее название - нуклоны). Оно характеризуется тремя параметрами: А - массовое число, Z - заряд ядра, равный числу протонов, и N - число нейтронов в ядре. Эти параметры связаны между собой соотношением:
А = Z + N.
Число протонов в ядре равно порядковому номеру элемента.
Заряд ядра обычно пишут внизу слева от символа элемента, а массовое число - вверху слева (заряд ядра часто опускают).
Пример 40 18 Ar: ядро этого атома содержит 18 протонов и 22 нейтрона.
Атомы, ядра которых содержат одинаковое число протонов и разное число нейтронов, называются изотопами, например: 12/6С и 13/6С. Изотопы водорда имеют специальные символы и названия: 1 Н - протий, 2 D - дейтерий, 3 Т - тритий. Химические свойства изотопов идентичны, некоторые физические свойства очень незначительно различаются..

Радиоактивность

Радиоактивность - это самопроизвольное, спонтанное превращение неустойчивых атомных ядер в ядра др. элементов, сопровождающееся испусканием частиц. Соответствующие элементы назвали радиоактивными или радионуклеидами.

В 1899 году Э. Резерфорд в результате экспериментов обнаружил, что радиоактивное излучение неоднородно и под действием сильного магнитного поля распадается на две составляющие, a - и b -лучи. Третью составляющую, g -лучи, обнаружил французский физик П. Вилард в 1900 году.

Гамма-лучи вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

Фотоэффект - энергия гамма-луча поглощается электроном оболочки атома, и электрон, совершая работу выхода, покидает атом (который становится ионизированным, т.е. превращается в ион).

Выбивание светом электронов с поверхности токопроводящих материалов - явление, широко используемое сегодня в повседневной жизни. Например, некоторые системы сигнализации работают за счет передачи видимых или инфракрасных световых лучей на фотоэлектрический элемент , из которого выбиваются электроны, обеспечивающие электропроводность цепи, в которую он включен. Если на пути светового луча появляется препятствие, свет на датчик поступать перестает, поток электронов прекращается, цепь разрывается - и срабатывает электронная сигнализация.

Облучение γ-лучами.в зависимости от дозы и продолжительности может вызвать хроническую и острую лучевые болезни. Эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и фактором.

Применение гамма- излучения:

Гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами.

Консервирование пищевых продуктов.

Стерилизация медицинских материалов и оборудования.

Лучевая терапия.

Уровнемеры

Гамма-высотометры, измерение расстояния до поверхности при приземлении спускаемых космических аппаратов.

Гамма-стерилизация специй, зерна, рыбы, мяса и других продуктов для увеличения срока хранения.

Виды радиоактивности

Деление атомного ядра бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер -экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения. Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии. Установлено, что радиоактивны все химические элементы СС порядковым номером, большим 82 (то есть начиная с висмута), и некоторые более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, например индия, калия или кальция, одни природные изотопы стабильны, другие же радиоактивны).

Весной 1913 года Содди сформулировал правило:

Испускание α-частиц уменьшает атомную массу на 4 и смещает его на 2 места влево по ПС.

Испускание β-частиц смещает элемент вправо на 1 место, почти не меняя его массы

Квантовая механика - фундаментальная физическая теория, что в описании микроскопических объектов расширяет, уточняет и объединяет результаты классической механики и классической электродинамики. Эта теория является базой для многих направлений физики и химии, включая физику твердого тела, квантовую химию и физику элементарных частиц. Термин «квантовая» (от лат. Quantum - «сколько») связан с дискретными порциями, которые теория присваивает определенным физическим величинам, например, энергии атома.

Механика - наука, описывающая движение тел и сопоставлены ему физические величины, такие как энергия или импульс. Она дает точные и достоверные результаты для многих явлений. Это касается как явлений микроскопического масштаба (здесь классическая механика не способна объяснить даже существование стабильного атома), так и некоторых макроскопических явлений, таких как сверхпроводимость, сверхтекучесть или излучения абсолютно черного тела. Уже на протяжении века существования квантовой механики ее предсказания никогда не были оспорены экспериментом. Квантовая механика объясняет крайней мере три типа явлений, которыx классическая механика и классическая электродинамика не может описать:

1) квантования некоторых физических величин;

2) корпускулярно-волнового дуализма;

3) существование смешанных квантовых состояний.

Квантовая механика может быть сформулирована как релятивистская или нерелявистська теория. Хотя релявистська квантовая механика является одной из самых фундаментальных теорий - нерелявистська квантовая механика также часто используется учитывая удобство.

Теоретическая база квантовой механики

Различные формулировки квантовой механики

Одно из первых формулировок квантовой механики - это «волновая механика», предложенная Эрвина Шредингера. В этой концепции состояние исследуемой системы определятся «волновой функцией», отражающую распределение вероятности всех измеряемых физических величин системы. Таких, как энергия, координаты, импульс или момент импульса. Волнового функция (с математической точки зрения) - это комплексная квадратично интегрируема функция координат и времени системы.

В квантовой механике физическим величинам не сопоставляются какие конкретные числовые значения. Зато, делаются предположения о распределении вероятности величин измеряемого параметра. Как правило, эти вероятности будут зависеть от вида вектора состояния в момент проведения измерения. Хотя, если быть точнее, каждому определенному значению измеряемой величины соответствует определенный вектор состояния, известный как «собственное состояние» измеряемой величины.

Возьмем конкретный пример. Представим себе свободную частицу. Ее вектор состояния произвольный. Наша задача - определить координату частицы. Собственное состояние координаты частицы в пространстве - это вектор состояния, норма якго в определенной точке х достаточно велика, в то же время в любом другом месте пространства - нулевая. Если мы теперь сделаем измерения, то со стопроцентной вероятностью получим самое значение х.

Иногда система, нас интересует, не находится в собственном состоянии ни измеряемой нами физической величины. Тем не менее, если мы попробуем провести измерения, волновая функция мгновенно станет собственным состоянием измеряемой величины. Этот процесс называется коллапса волновой функции. Если мы знаем волновую функцию в момент перед измерением, то в состоянии вычислить вероятность коллапса в каждый из возможных собственных состояний. Например, свободная частица в нашем предыдущем примере к измерению будет иметь волновой функции, является волновым пакетом с центром в некоторой точке х0, не является собственным состоянием координаты. Когда мы начинаем измерение координаты частицы, то невозможно предсказать результат, который мы получим. Вероятно, но не точно, что он будет находиться близко от х0, где амплитуда волновой функции велика. После проведения измерения, когда мы получим какой-то результат х, волновая функция коллапсирует в позицию с собственным состоянием, сосредоточенным именно в х.

Векторы состояния являются функциями времени. ψ = ψ (t) Уравнение Шредингера определяет изменение вектора состояния со временем.

Некоторые векторы состояния приводят к распределений вероятности, которые являются постоянными во времени. Многие системы, которые считаются динамическими в классической механике, в действительности описываются такими «статическими» функциями. Например, электрон в невозбужденном атоме в классической физике изображается как частица, которая движется по круговой траектории вокруг ядра атома, тогда как в квантовой механике он статичен, сферически-симметричной вероятностной облачком вокруг ядра.

Эволюция вектора состояния во времени является детерминистской в том смысле, что, имея определенный вектор состояния в начальный момент времени, можно сделать точное предсказание того, какой он будет в любой другой момент. В процессе измерения изменение конфигурации вектора состояния является вероятностной, а не детерминистский. Вероятностная природа квантовой механики, таким образом, проявляется именно в процессе выполнения измерений.

Существует несколько интерпретаций квантовой механики, которые вкладывают новое понятие в сам акт измерения в квантовой механике. Основной интерпретацией квантовой механики, является общепринятая на сегодня, является вероятностная интерпретация.

Физические основы квантовой механики

Принцип неопределенности, который утверждает, что существуют фундаментальные препятствия для точного одновременного измерения двух или более параметров системы с произвольной погрешностью. В примере со свободной частицей, это означает, что принципиально невозможно найти такую волновую функцию, которая была бы собственным состоянием одновременно и импульса, и координаты. Из этого и вытекает, что координата и импульс не могут быть одновременно определены с произвольной погрешностью. С повышением точности измерения координаты, максимальная точность измерения импульса уменьшается и наоборот. Те параметры, для которых такое утверждение справедливо, называются канонически сопряженными в классической физике.

Экспериментальные база квантовой механики

Существуют такие эксперимента, которые невозможно объяснить без привлечения квантовой механики. Первая разновидность квантовых эффектов - квантования определенных физических величин. Если локализовать свободную частицу из рассмотренного выше примера в прямоугольной потенциальной яме - области протору размером L, ограниченной с обеих сторон бесконечно высоким потенциальным барьером, то окажется, что импульс частицы может иметь только определенные дискретные значения, Где h - постоянная Планка, а n - произвольное натуральное число. О параметрах, которые могут приобретать лишь дискретных значений говорят, что они квантуются. Примерами квантованных параметров является также момент импульса, полная энергия ограниченной в пространстве системы, а также энергия электромагнитного излучения определенной частоты.

Еще один квантовый эффект - это корпускулярно-волновой дуализм. Можно показать, что при определенных условиях проведения эксперимента, микроскопические объекты, такие как атомы или электроны, приобретают свойства частиц (то есть могут быть локализованы в определенной области пространства). При других условиях, те же объекты приобретают свойства волн и демонстрируют такие эффекты, как интерференция.

Следующий квантовый эффект - это эффект спутанных квантовых состояний. В некоторых случаях, вектор состояния системы из многих частиц не может быть представлена как сумма отдельных волновых функций, соответствующих каждой из частиц. В таком случае говорят, что состояния частиц спутаны. И тогда, измерения, которое было проведено лишь для одной частицы, будет иметь результатом коллапс общей волновой функции системы, т.е. такое измерение будет иметь мгновенный влияние на волнового функции других частиц системы, пусть даже некоторые из них находятся на значительном расстоянии. (Это не противоречит специальной теории относительности, поскольку передача информации на расстояние таким образом невозможна.)

Математический аппарат квантовой механики

В строгом математическом аппарате квантовой механики, который был разработан Полем Дираком и Джоном фон Нейманом, возможные состояния квантово-механической системы репрезентируются векторами состояний в комплексном сепарабельном гильбертовом пространстве. Эволюция квантового состояния описывается уравнением Шредингера, в котором оператор Гамильтона, или гамильтониан, соответствующий полной энергии системы, определяет ее эволюцию во времени.

Каждый вимирюваний параметр системы представляется эрмитовых операторов в пространстве состояний. Каждый собственное состояние измеряемого параметра соответствует собственному вектору оператора, а соответствующее собственное значение равно значению измеряемого параметра в данном собственном состоянии. В процессе измерения, вероятность перехода системы в один из собственных состояний определяется как квадрат скалярного произведения вектора собственного состояния и вектора состояния перед измерением. Возможные результаты измерения - это собственные значения оператора, объясняет выбор эрмитовых операторов, для которых все собственные значения являются действительными числами. Распределение вероятности измеряемого параметра может быть получен вычислением спектральной декомпозиции соответствующего оператора (здесь спектром оператора называется супупнисть всех возможных значений соответствующей физической величины). Принципа неопределенности Гейзенберга соответствует то, что операторы соответствующих Физический величин не коммутируют между собой. Детали математического аппарата изложены в специальной статье Математический аппарат квантовой механики.

Аналитическое решение уравнения Шредингера существует для небольшого количества гамильтониан, например для гармонического осциллятора, модели атома водорода. Даже атом гелия, который отличается от атома водорода на один электрон, не полностью аналитического решения уравнения Шредингера. Однако существуют определенные методы приближенного решения этих уравнений. Например, методы теории возмущений, где аналитический результат решения простой квантово-механической модели используется для получения решений для более сложных систем, добавлением определенного «возмущения» в виде, например, потенциальной энергии. Другой метод, «Квазиклассическое уравнения движения» прикладывается к системам, для которых квантовая механика производит лишь слабые отклонения от классической поведения. Такие отклонения могут быть вычислены методами классической физики. Этот подход важен в теории квантового хаоса, которая бурно развивается в последнее время.

Взаимодействие с другими теориями

Фундаментальные принципы квантовой механики достаточно абстрактные. Они утверждают, что пространство состояний системы является гильбертовом, а физические величины соответствуют эрмитовых операторов, действующих в этом пространстве, но не указывают конкретно, что это за гильбертово пространство и что это за операторы. Они должны быть выбраны соответствующим образом для получения количественного описания квантовой системы. Важный путеводитель здесь - это принцип соответствия, который утверждает, что квантовомеханическая эффекты перестают быть значительными, и система приобретает черты классической, с увеличением ее размеров. Такой лимит «большой системы» также называется классическим лимитом или лимитом соответствия. Кроме того, можно начать с рассмотрения классической модели системы, а затем пытаться понять, какая квантовая модель соответствует той классической, находящегося вне лимита соответствия.

Когда квантовая механика была впервые сформулирована, она применялась к моделям, которые отвечали классическим моделям нерелятивистской механики. Например, известная модель гармонического осциллятора использует откровенно нерелятивистских описание кинетической энергии осциллятора, как и соответствующая квантовая модель.

Первые попытки связать квантовую механику со специальной теорией относительности привели к замене уравнения Шредингера на уравнения Дирака. Эти теории были успешными в объяснении многих экспериментальных результатов, но игнорировали такие факты, как релятивистское создания и аннигиляция элементарный частиц. Полностью релятивистская квантовая теория требует разработки квантовой теории поля, которая будет применять понятие квантования в поле, а не к фиксированному списку частиц. Первая завершена квантовая теория поля, квантовая электродинамика, предоставляет полностью квантовый описание процессов электромагнитного взаимодействия.

Полный аппарат квантовой теории поля часто является чрезмерным для описания электромагнитных систем. Простой подход, взятый из квантовой механики, предлагает считать заряженные частицы квантовомеханических объектами в классическом электромагнитном поле. Например, элементарная квантовая модель атома водорода описывает электромагнитное поле атома с использованием классического потенциала Кулона (т.е. обратно пропорционального расстоянию). Такой «псевдоклассическим» подход не работает, если квантовые флуктуации электромагнитного поля, такие как эмиссия фотонов заряженными частицами, начинают играть весомую роль.

Квантовые теории поля для сильных и слабых ядерных взаимодействий также были разработаны. Квантовая теория поля для сильных взаимодействий называется квантовой хромодинамики и описывает взаимодействие субъядерных частиц - кварков и глюонов. Слабые ядерные и электромагнитные взаимодействия были объединены в их квантовой форме, в одну квантовую теорию поля, которая называется теорией электрослабых взаимодействий.

Построить квантовую модель гравитации, последней из фундаментальных сил, пока не удается. Псевдоклассическим приближения работают, и даже предусмотрели некоторые эффекты, такие как радиация Хоукинга. Но формулировка полной теории квантовой гравитации осложняется существующими противоречиями между общей теорией относительности, наиболее точной теорией гравитацией из известных сегодня, и некоторыми фундаментальными положениями квантовой теории. Пересечение этих противоречий - область активного научного поиска, и такие теории, как теория струн, являются возможными кандидатами на звание будущей теории квантовой гравитации.

Применение квантовой механики

Квантовая механика имела большой успех в объяснении многих феноменов из окружающей среды. Поведение микроскопических частиц, формирующих все формы материи электронов, протонов, нейтронов и т.д. - часто может быть удовлетворительно объяснена только методами квантовой механики.

Квантовая механика важна в понимании того, как индивидуальные атомы комбинируются между собой и формируют химические элементы и соединения. Применение квантовой механики к химическим процессам известно как квантовая химия. Квантовая механика может далее качественно нового понимания процессам формирования химических соединений, показывая, какие молекулы энергетически выгоднее других, и насколько. Большинство из проведенных вычислений, сделанных в вычислительной химии, основанные на квантовомеханических принципах.

Современные технологии уже достигли того масштаба, где квантовые эффекты становятся важными. Примерами являются лазеры, транзисторы, электронные микроскопы, магниторезонансная томография. Вивичення полупроводников привело к изобретению диода и транзистора, которые являются незаменимыми в современной электронике.

Исследователи сегодня находятся в поисках надежных методов прямого манипулирования квантовых состояний. Были сделаны успешные попытки создать основы квантовой криптографии, которая позволит гарантированно секретное передачи информации. Более отдаленная цель - разработка квантовых компьютеров, которые, как ожидается, смогут реализовывать определенные алгоритмы с гораздо большей эффективностью, чем классические компьютеры. Другая тема активных исследований - квантовая телепортация, которая имеет дело с технологиями передачи квантовых состояний на значительные расстояния.

Философский аспект квантовой механики

С самого момента создания квантовой механики, ее выводы, противоречили традиционной представлении о мироустройстве, имели следствием активную философскую дискуссию и возникновения многих интерпретаций. Даже такие фундаментальные положения, как сформулированы Максом Борном правила амплитуд вероятности и распределения вероятности, ждали десятилетия на восприятие научным сообществом.

Другая проблема квантовой механики состоит в том, что природа исследуемого ею объекта неизвестна. В том смысле, что координаты объекта, или пространственное распределение вероятности его присутствия, могут быть определены только при наличии у него определенных свойств (заряда, например) и окружающих условий (наличия электрического потенциала).

Копенгагенская интерпретация, благодаря прежде всего Нильсу Бору, является базовой интерпретацию квантовой механики с момента ее формулировки и до современности. Она утверждала, что вероятностная природа квантовомеханических предсказаний не могла быть объяснено в терминах иные детерминистических теорий и накладывает ограничения на наши знания об окружающей среде. Квантовая механика поэтому предоставляет лишь вероятностные результаты, сама природа Вселенной является вероятностной, хотя и детерминированной в новом квантовом смысле.

Альберт Эйнштейн, сам один из основателей квантовой теории, испытывал дискомфорт из того, что в этой теории происходит отход от классического детерминизма в определении значений физических величин объектов. Он считал что существующая теория незавершенная и должна была быть еще какая дополнительная теория. Поэтому он выдвинул серию замечаний к квантовой теории, наиболее известной из которых стал так называемый ЭПР-парадокс. Джон Белл показал, что этот парадокс может привести к появлению таких расхождений в квантовой теории, которые можно будет измерить. Но эксперименты показали, что квантовая механика является корректным. Однако некоторые «несоответствия» этих экспериментов оставляют вопросы, на которые до сих пор не дан ответ.

Интерпретация множественных миров Эверетта, сформулированная в 1956 году предлагает модель мира, в которой все возможности принятия физическими величинами тех или иных значений в квантовой теории, одновременно происходят на самом деле, в «мультивсесвити», собранном из преимущественно независимых параллельных вселенных. Мультивсесвит детерминистический, но мы получаем вероятностную поведение вселенной только потому, что не можем наблюдать за всеми вселенными одновременно.

История

Фундамент квантовой механики заложен в первой половине 20 века Максом Планком, Альбертом Эйнштейном, Вернером Гейзенбергом, Эрвина Шредингера, Максом Борном, Полем Дираком, Ричардом Фейнманом и другими. Некоторые фундаментальные аспекты теории все еще нуждаются в изучении. В 1900 г. Макс Планк предложил концепцию квантования энергии для того, чтобы получить правильную формулу для энергии излучения абсолютно черного тела. В 1905 Эйнштейн объяснил природу фотоэлектрического эффекта, постулируя, что энергия света поглощается не непрерывно, а порциями, которые он назвал квантами. В 1913 Бор объяснил конфигурацию спектральных линий атома водорода, опять же с помощью квантования. В 1924 Луи де Бройль предложил гипотезу корпоскулярно-волнового дуализма.

Эти теории, хотя и успешные, были слишком фрагментарными и вместе составляют так называемую старую квантовую теорию.

Современная квантовая механика родилась в 1925, когда Гейзенберг разработал матричную механику, а Шредингер предложил волновую механику и свое уравнение. Впоследствии Янош фон Нейман доказал, что оба подхода эквивалентны.

Следующий шаг произошел тогда, когда Гейзенберг сформулировал принцип неопределенности в 1927 году, и примерно тогда начала складываться вероятностная интерпретация. В 1927 году Поль Дирак объединил квантовую механику со специальной теорией относительности. Он также первым применил теорию операторов, включая популярную бра-кет нотацию. В 1932 Джон фон Нойман сформулировал математическое базис квантовой механики на основе теории операторов.

Эра квантовой химии была начата Вальтером Гайтлера и Фрицем Лондоном, которые опубликовали теорию образования ковалентных связей в молекуле водорода в 1927. В дальнейшем квантовая химия развивалась большой сообществом ученых во всем мире.

Начиная с 1927, начались попытки применения квантовой механики к багаточастинокових систем, следствием появление квантовой теории поля. Работы в этом направлении осуществлялись Дираком, Паули, Вайскопф, Жордану. Кульминацией этого направления исследований стала квантовая электродинамика, сформулированная Фейнманом, Дайсоном, Швингера и Томонагою течение 1940-х. Квантовая электродинамика - это квантовая теория электронов, позитронов и электромагнитного поля.

Теория квантовой хромодинамики была сформулирована в ранних 1960-х. Эта теория, такая какой ее мы знаем теперь, была предложена Полицтером, Гроссом и Вилчек в 1975. Опираясь на исследования Швингера, Хиггса, Голдстона и других, Глэшоу, Вайнберг и Салам независимо показали, что слабые ядерные взаимодействия и квантовая электродинамика могут быть объединены и рассматриваться как единая електрослаба сила.

Квантования

В квантовой механике срок квантования употребляется в нескольких близких, но разных значениях.

Квантованием называют дисктеризацию значений физической величины, что в классической физике является непрерывной. Например, электроны в атомах могут находиться только на определенных орбиталях с определенными значениями энергии. Другой пример - орбитальный момент квантовомеханической частицы может иметь только вполне определенные значения. Дискретизация энергетических уровней физической системы при уменьшении размеров называется размерным квантованием.
Квантованием называют также переход от классического описания физической системы к квантового. В частности, процедура разложения классических полей (например, электромагнитного поля) на нормальные моды и представления их в виде квантов поля (для электромагнитного поля - это фотоны) называется вторичным квантованием.

Квантовая механика - это механика микромира. Явления, которые она изучает, в основном лежат за пределами нашего чувственного восприятия, поэтому не следует удивляться кажущейся парадоксальности законов, управляющих этими явлениями.

Основные законы квантовой механики не удается сформулировать как логическое следствие результатов некоторой совокупности фундаментальных физических экспериментов. Иными словами, до сих пор неизвестна формулировка квантовой механики, основанная на системе проверенных на опыте аксиом. Более того, некоторые из основных положений квантовой механики принципиально не допускают опытной проверки. Наша уверенность в справедливости квантовой механики основана на том, что все физические результаты теории согласуются с экспериментом. Таким образом, на опыте проверяются только следствия из основных положений квантовой механики, а не ее основные законы. С этими обстоятельствами связаны, по-видимому, главные трудности, возникающие при первоначальном изучении квантовой механики.

Такого же характера, но, очевидно, гораздо большие трудности стояли перед создателями квантовой механики. Эксперименты со всей определенностью указывали на существование особых квантовых закономерностей в микромире, но ни в коей мере не подсказывали форму квантовой теории. Этим можно объяснить поистине драматическую историю создания квантовой механики и, в частности, тот факт, что первоначальные формулировки квантовой механики носили чисто рецептурный характер. Они содержали некоторые правила, позволяющие вычислять измеряемые на опыте величины, а физическое истолкование теории появилось после того, как в основном был создан ее математический формализм.

При построении квантовой механики в настоящем курсе мы не будем следовать историческому пути. Мы очень коротко опишем ряд физических явлений, попытки объяснить которые на основе законов классической физики приводили к непреодолимым трудностям. Далее мы попытаемся выяснить, какие черты описанной в предыдущих параграфах схемы классической механики должны сохраниться в механике микромира и от чего можно и нужно отказаться. Мы увидим, что отказ только от одного утверждения классической механики, а именно от утверждения, что наблюдаемые есть функции на фазовом пространстве, позволит построить схему механики, описывающую системы с поведением, существенно отличным от классического. Наконец, в последующих параграфах мы убедимся, что построенная теория является более общей, чем классическая механика, и содержит последнюю как предельный случай.

Исторически первая квантовая гипотеза была выдвинута Планком в 1900 г. в связи с теорией равновесного излучения. Планку удалось получить согласующуюся с опытом формулу для спектрального распределения энергии теплового излучения, выдвинув предположение о том, что электромагнитное излучение испускается и поглощается дискретными порциями - квантами, энергия которых пропорциональна частоте излучения

где - частота колебаний в световой волне, - постоянная Планка.

Гипотеза Планка о световых квантах позволила Эйнштейну дать чрезвычайно простое объяснение закономерностей фотоэффекта (1905 г.). Явление фотоэффекта состоит в том, что под действием светового потока из металла выбиваются электроны. Основная задача теории фотоэффекта - найти зависимость энергии выбиваемых электронов от характеристик светового потока. Пусть V - работа, которую нужно затратить на выбивание электрона из металла (работа выхода). Тогда закон сохранения энергии приводит к соотношению

где Т - кинетическая энергия выбитого электрона. Мы видим, что эта энергия линейно зависит от частоты и не зависит от интенсивности светового потока. Кроме того, при частоте (красная граница фотоэффекта) явление фотоэффекта становится невозможным, так как . Эти выводы, основанные на гипотезе о световых квантах, полностью согласуются с опытом. В то же время по классической теории энергия вырванных электронов должна зависеть от интенсивности световых волн, что противоречит результатам экспериментов.

Эйнштейн дополнил представление о световых квантах, введя импульс светового кванта по формуле

Здесь k - так называемый волновой вектор, имеющий направление распространения световых волн; длина этого вектора k связана с длиной волны , частотой и скоростью света с соотношениями

Для световых квантов справедлива формула

являющаяся частным случаем формулы теории относительности

для частицы с массой покоя .

Заметим, что исторически первые квантовые гипотезы относились к законам излучения и поглощения световых волн, т. е. к электродинамике, а не к механике. Однако вскоре стало ясно, что не только для электромагнитного излучения, но и для атомных систем характерна дискретность значений ряда физических величин. Опыты Франка и Герца (1913 г.) показали, что при столкновениях электронов с атомами энергия электронов изменяется дискретными порциями. Результаты этих опытов можно объяснить тем, что энергия атомов может иметь только определенные дискретные значения. Позднее, в 1922 г. опыты Штерна и Герлаха показали, что аналогичным свойством обладает проекция момента количества движения атомных систем на некоторое направление. В настоящее время хорошо известно, что дискретность значений ряда наблюдаемых хотя и характерная, но не обязательная черта систем микромира. Так, например, энергия электрона в атоме водорода имеет дискретные значения, а энергия свободно движущегося электрона может принимать любые положительные значения. Математический аппарат квантовой механики должен быть приспособлен к описанию наблюдаемых, принимающих как дискретные, так и непрерывные значения.

В 1911 г. Резерфордом было открыто атомное ядро и предложена планетарная модель атома (опыты Резерфорда по рассеянию а-частиц на образцах из различных элементов показали, что атом имеет положительно заряженное ядро, заряд которого равен - номер элемента в таблице Менделеева, а - заряд электрона, размеры ядра не превышают сами атомы имеют линейные размеры порядка см). Планетарная модель атома противоречит основным положениям классической электродинамики. Действительно, двигаясь вокруг ядра по классическим орбитам, электроны, как всякие ускоренно движущиеся заряды, должны излучать электромагнитные волны. При этом электроны должны терять свою энергию и в конце концов упасть на ядро. Поэтому такой атом не может быть устойчивым, что, конечно, не соответствует действительности. Одна из основных задач квантовой механики - объяснить устойчивость и описать структуру атомов и молекул как систем, состоящих из положительно заряженных ядер и электронов.

Совершенно удивительным с точки зрения классической механики представляется явление дифракции микрочастиц. Это явление было предсказано де Бройлем в 1924 г., который предположил, что свободно движущейся частице с импульсом р

и энергией Е в каком-то смысле соответствует волна с волновым вектором k и частотой , причем

т. е. соотношения (1) и (2) справедливы не только для световых квантов, но и для частиц. Физическое истолкование волн де Бройля было дано позднее Борном, и мы его пока обсуждать не будем. Если движущейся частице соответствует волна, то независимо от того, какой точный смысл вкладывается в эти слова, естественно ожидать, что это проявится в существовании дифракционных явлений для частиц. Впервые дифракция электронов наблюдалась в опытах Девиссона и Джермера в 1927 г. Впоследствии явления дифракции наблюдались и для других частиц.

Покажем, что дифракционные явления несовместимы с классическими представлениями о движении частиц по траекториям. Рассуждение удобнее всего провести на примере мысленного эксперимента по дифракции пучка электронов на двух щелях, схема которого изображена на рис. 1. Пусть электроны от источника А двигаются к экрану Б и, проходя через щели и в нем, попадают на экран В.

Нас интересует распределение электронов по координате у, попадающих на экран В. Явления дифракции на одной и двух щелях хорошо изучены, и мы можем утверждать, что распределение электронов имеет вид а, изображенный на рис. 2, если открыта только первая щель, вид (рис. 2), - если открыта вторая и вид в, - если открыты обе щели. Если предположить, что каждый электрон двигался по определенной классической траектории, то все электроны, попавшие на экран В, можно разбить на две группы в зависимости от того, через какую щель они прошли. Для электронов первой группы совершенно безразлично, открыта ли вторая щель, и поэтому их

распределение на экране должно изображаться кривой а; аналогично электроны второй группы должны иметь распределение . Поэтому в случае, когда открыты обе щели, на экране должно получиться распределение, являющееся суммой распределений а и б. Такая сумма распределений не имеет ничего общего с интерференционной картиной в. Это противоречие показывает, что разделение электронов на группы по тому признаку, через какую щель они прошли, в условиях описанного эксперимента невозможно, а значит, мы вынуждены отказаться от понятия траектории.

Сразу же возникает вопрос, а можно ли так поставить эксперимент, чтобы выяснить, через какую щель проходил электрон. Разумеется, такая постановка эксперимента возможна, для этого достаточно поместить источник света между экранами и Б и наблюдать рассеяние световых квантов на электронах. Для того чтобы добиться достаточного разрешения, мы должны использовать кванты с длиной волны, по порядку не превосходящей расстояния между щелями, т. е. с достаточно большой энергией и импульсом. Наблюдая кванты, рассеянные на электронах, мы действительно сможем определить, через какую щель прошел электрон. Однако взаимодействие квантов с электронами вызовет неконтролируемое изменение их импульсов, а следовательно, распределение электронов, попавших на экран, должно измениться. Таким образом, мы приходим к выводу, что ответить на вопрос, через какую щель прошел электрон, можно только за счет изменения как условий, так и окончательного результата эксперимента.

На этом примере мы сталкиваемся со следующей общей особенностью поведения квантовых систем. Экспериментатор не имеет возможности следить за ходом эксперимента, так как это приводит к изменению его окончательного результата. Эта особенность квантового поведения тесно связана с особенностями измерений в микромире. Всякое измерение возможно только при взаимодействии системы с измерительным прибором. Это взаимодействие приводит к возмущению движения системы. В классической физике всегда предполагается, что

это возмущение может быть сделано сколь угодно малым, так же как и длительность процесса измерения. Поэтому всегда возможно одновременное измерение любого числа наблюдаемых.

Детальный анализ процесса измерения некоторых наблюдаемых для микросистем, который можно найти во многих учебниках по квантовой механике, показывает, что с увеличением точности измерения наблюдаемых воздействие на систему увеличивается и измерение вносит неконтролируемые изменения в численные значения некоторых других наблюдаемых. Это приводит к тому, что одновременное точное измерение некоторых наблюдаемых становится принципиально невозможным. Например, если для измерения координаты частицы использовать рассеяние световых квантов, то погрешность такого измерения имеет порядок длины волны света . Повысить точность измерения можно, выбирая кванты с меньшей длиной волны, а следовательно, с большим импульсом . При этом в численные значения импульса частицы вносится неконтролируемое изменение порядка импульса кванта. Поэтому погрешности измерения координаты и импульса связаны соотношением

Более точное рассуждение показывает, что это соотношение связывает только одноименные координату и проекцию импульса. Соотношения, связывающие принципиально возможную точность одновременного измерения двух наблюдаемых, называются соотношениями неопределенности Гейзенберга. В точной формулировке они будут получены в следующих параграфах. Наблюдаемые, на которые соотношения неопределенности не накладывают никаких ограничений, являются одновременно измеримыми. Мы увидим в дальнейшем, что одновременно измеримыми являются декартовы координаты частицы или проекции импульса, а неизмеримыми одновременно - одноименные координаты и проекция импульса или две декартовы проекции момента количества движения. При построении квантовой механики мы должны помнить о возможности существования неизмеримых одновременно величин.

Теперь после небольшого физического вступления попытаемся ответить на уже поставленный вопрос: какие особенности классической механики следует сохранить и от чего естественно отказаться при построении механики микромира. Основными понятиями классической механики были понятия наблюдаемой и состояния. Задача физической теории-предсказание результатов экспериментов, а эксперимент всегда есть измерение некоторой характеристики системы или наблюдаемой при определенных условиях, которые определяют состояние системы. Поэтому понятия наблюдаемой и состояния должны появиться

в любой физической теории. С точки зрения экспериментатора определить наблюдаемую - значит задать способ ее измерения. Наблюдаемые мы будем обозначать символами а, b, с,... и пока не будем делать никаких предположений об их математической природе (напомним, что в классической механике наблюдаемые есть функции на фазовом пространстве). Множество наблюдаемых, как и прежде, мы будем обозначать через .

Разумно предположить, что условия эксперимента определяют по крайней мере вероятностные распределения результатов измерения всех наблюдаемых, поэтому определение состояния, данное в § 2, разумно сохранить. Состояния по-прежнему мы будем обозначать через соответствующую наблюдаемой а вероятностную меру на действительной оси через функцию распределения наблюдаемой а в состоянии через и, наконец, среднее значение наблюдаемой а в состоянии через .

Теория должна содержать определение функции от наблюдаемой. Для экспериментатора утверждение, что наблюдаемая b есть функция от наблюдаемой а означает, что для измерения b достаточно измерить а, и, если в результате измерения наблюдаемой а получится число , то численное значение наблюдаемой b есть . Для соответствующих а и вероятностных мер справедливо равенство

для любых состояний .

Заметим, что всевозможные функции от одной наблюдаемой а измеримы одновременно, так как для измерения этих наблюдаемых достаточно измерить наблюдаемую а. В дальнейшем мы увидим, что в квантовой механике этим примером исчерпываются случаи одновременной измеримости наблюдаемых, т. е. если наблюдаемые измеримы одновременно, то найдется такая наблюдаемая а и такие функции , что .

Среди множества функций наблюдаемой а, очевидно, определены , где - вещественное число. Существование первой из этих функций показывает, что наблюдаемые можно умножать на вещественные числа. Утверждение, что наблюдаемая есть константа подразумевает, что ее численное значение в любом состоянии совпадает с этой константой.

Попытаемся теперь выяснить, какой смысл можно придать сумме и произведению наблюдаемых. Эти операции были бы определены, если бы у нас было определение функции от двух наблюдаемых Здесь, однако, возникают принципиальные трудности, связанные с возможностью существования неизмеримых одновременно наблюдаемых. Если а и b

измеримы одновременно, то определение совершенно аналогично определению . Для измерения наблюдаемой достаточно измерить наблюдаемые а и b, и такое измерение приведет к численному значению , где - численные значения наблюдаемых а и b соответственно. Для случая неизмеримых одновременно наблюдаемых а и b не существует никакого разумного определения функции . Это обстоятельство заставляет нас отказаться от предположения, что наблюдаемые есть функции на фазовом пространстве , так как у нас есть физические основания считать q и р неизмеримыми одновременно и искать наблюдаемые среди математических объектов иной природы.

Мы видим, что определить сумму и произведение используя понятие функции от двух наблюдаемых, можно только в том случае, если они одновременно измеримы. Однако возможен другой подход, позволяющий ввести сумму в общем случае. Мы знаем, что вся информация о состояниях и наблюдаемых получается в результате измерений, поэтому разумно предположить, что состояний достаточно много, чтобы по ним можно было различать наблюдаемые, и аналогично наблюдаемых достаточно много, чтобы по ним можно было различать состояния.

Более точно мы предполагаем, что из равенства

справедливого для любого состояния а, следует, что наблюдаемые а и b совпадают а из равенства

справедливого для любой наблюдаемой а, следует, что совпадают СОСТОЯНИЯ и .

Первое из сделанных предположений дает возможность определить сумму наблюдаемых как такую наблюдаемую, для которой справедливо равенство

при любом состоянии а. Сразу заметим, что это равенство является выражением известной теоремы теории вероятностей о среднем значении суммы только в случае, когда наблюдаемые а и b имеют общую функцию распределения. Такая общая функция распределения может существовать (и в квантовой механике действительно существует) только для одновременно измеримых величин. В этом случае определение суммы по формуле (5) совпадает со сделанным прежде. Аналогичное определение произведения невозможно, так как среднее от произведения

не равно произведению средних даже для одновременно измеримых наблюдаемых.

Определение суммы (5) не содержит никакого указания на способ измерения наблюдаемой по известным способам измерения наблюдаемых а и b и в этом смысле является неявным.

Чтобы дать представление о том, насколько понятие суммы наблюдаемых может отличаться от обычного понятия суммы случайных величин, мы приведем пример наблюдаемой, которая будет подробно изучена в дальнейшем. Пусть

Наблюдаемая Н (энергия одномерного гармонического осциллятора) есть сумма двух наблюдаемых, пропорциональных квадратам импульса и координаты. Мы увидим, что эти последние наблюдаемые могут принимать любые неотрицательные численные значения, в то время как значения наблюдаемой Н должны совпадать с числами где , т. е. наблюдаемая Н с дискретными численными значениями является суммой наблюдаемых с непрерывными значениями.

Фактически все наши предположения сводятся к тому, что при построении квантовой механики разумно сохранить структуру алгебры наблюдаемых классической механики, но следует отказаться от реализации этой алгебры функциями на фазовом пространстве, так как мы допускаем существование неизмеримых одновременно наблюдаемых.

Наша ближайшая задача - убедиться в том, что существует реализация алгебры наблюдаемых, отличная от реализации классической механики. В следующем параграфе мы приведем пример такой реализации, построив конечномерную модель квантовой механики. В этой модели алгебра наблюдаемых есть алгебра самосопряженных операторов в -мерном комплексном пространстве . Изучая эту упрощенную модель, мы сумеем проследить за основными особенностями квантовой теории. В то же время, дав физическое толкование построенной модели, мы увидим, что она слишком бедна, чтобы соответствовать действительности. Поэтому конечномерную модель нельзя рассматривать как окончательный вариант квантовой механики. Однако усовершенствование этой модели - замена на комплексное гильбертово пространство будет представляться весьма естественным.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

А.А. БЕРЗИН, В.Г. МОРОЗОВ

ОСНОВЫ КВАНТОВОЙ МЕХАНИКИ

Учебное пособие

Москва – 2004

Введение

Квантовая механика появилась сто лет назад и оформилась в стройную физическую теорию примерно к 1930 году. В настоящее время она считается фундаментом наших знаний об окружающем мире. Довольно долго применение квантовой механики к прикладным задачам ограничивалось ядерной энергетикой (по большей части военной). Однако после того, как в 1948 году был изобретен транзистор

Один из основных элементов полупроводниковой электроники, а в конце 1950-х годов был создан лазер - квантовый генератор света, стало ясно, что открытия в квантовой физике имеют огромный практический потенциал и серьезное знакомство с этой наукой необходимо не только для профессиональных физиков, но и для представителей других специальностей - химиков, инженеров и даже биологов.

Поскольку квантовая механика все больше стала приобретать черты не только фундаментальной, но и прикладной науки, возникла проблема обучения ее основам студентов нефизических специальностей. С некоторыми квантовыми идеями студент впервые знакомится в курсе общей физики, но, как правило, это знакомство ограничивается не более чем случайными фактами и их сильно упрощенными объяснениями. С другой стороны, полный курс квантовой механики, читаемый на физических факультетах университетов, явно избыточен для тех, кто хотел бы приложить свои знания не к раскрытию тайн природы, а к решению технических и других практических задач. Трудность “адаптации” курса квантовой механики к потребностям обучения студентов прикладных специальностей была замечена давно и до сих пор полностью не преодолена, несмотря на многочисленные попытки создания “переходных” курсов, ориентированных на практические применения квантовых законов. Связано это со спецификой самой квантовой механики. Вопервых, для понимания квантовой механики от студента требуется основательное знание классической физики: механики Ньютона, классической теории электромагнетизма, специальной теории относительности, оптики и т.д. Во-вторых, в квантовой механике для правильного описания явлений в микромире приходится жертвовать наглядностью. Классическая физика оперирует более или менее наглядными понятиями; их связь с экспериментом относительно проста. Иное положение в квантовой механике. Как отметил Л.Д. Ландау, внесший значительный вклад в создание квантовой механики, “необходимо понять то, что мы уже не можем себе вообразить”. Обычно трудности при изучении квантовой механики принято объяснять ее довольно абстрактным математическим аппаратом, применение которого неизбежно из-за потери наглядности понятий и законов. Действительно, чтобы научиться решать квантовомеханические задачи, надо знать дифференциальные уравнения, достаточно свободно обращаться с комплексными числами, а также уметь делать многое другое. Все это, впрочем, не выходит за рамки математической подготовки студента современного технического вуза. Настоящая трудность квантовой механики связана не только и даже не столько с математикой. Дело в том, что выводы квантовой механики, как и любой физической теории, должны предсказывать и объяснятьреальные эксперименты , поэтому нужно научиться связывать абстрактные математические конструкции с измеряемыми физическими величинами и наблюдаемыми явлениями. Вырабатывается это умение каждым человеком индивидуально, в основном, путем самостоятельного решения задач и осмысления результатов. Еще Ньютон заметил: “при изучении наук примеры часто важнее правил”. В отношении квантовой механики эти слова содержат большую долю истины.

Предлагаемое читателю пособие основано на многолетней практике чтения в МИРЭА курса “Физика 4”, посвященного основам квантовой механики, студентам всех специальностей факультетов электроники и РТС и студентам тех специальностей факультета кибернетики, где физика относится к основным учебным дисциплинам. Содержание пособия и изложение материала обусловлены рядом объективных и субъективных обстоятельств. Прежде всего необходимо было учесть, что курс “Физика 4” рассчитан на один семестр. Поэтому из всех разделов современной квантовой механики отобраны те, которые непосредственно связаны с электроникой и квантовой оптикой - наиболее перспективными областями применения квантовой механики. Однако, в отличие от курсов общей физики и прикладных технических дисциплин, мы стремились изложить эти разделы в рамках единого и достаточно современного подхода с учетом возможностей студентов для его усвоения. Объем пособия превышает содержание лекций и практических занятий, так как в курсе “Физика 4” предусмотрено выполнение студентами курсовых работ или индивидуальных заданий, которые требуют самостоятельного изучения вопросов, не включенных в план лекций. Изложение этих вопросов в учебниках по квантовой механике, ориентированных на студентов физических факультетов университетов, часто превышает уровень подготовки студента технического вуза. Таким образом, настоящее пособие может быть использовано как источник материала для курсовых работ и индивидуальных заданий.

Важной частью пособия являются упражнения. Некоторые из них приводятся непосредственно в тексте, остальные помещены в конце каждого параграфа. Многие упражнения снабжены указаниями для читателя. В связи с отмеченной выше “необычностью” понятий и методов квантовой механики выполнение упражнений следует рассматривать как совершенно необходимый элемент изучения курса.

1. Физические истоки квантовой теории

1.1. Явления, противоречащие классической физике

Начнем с краткого обзора явлений, которые не смогла объяснить классическая физика и которые привели, в конце концов, к возникновению квантовой теории.

Спектр равновесного излучения черного тела. Напомним, что в физике

черным телом (часто говорят - “абсолютно черным телом”) называется тело, которое полностью поглощает падающее на него электромагнитное излучение любой частоты.

Абсолютно черное тело является, конечно, идеализированной моделью, однако ее можно реализовать с высокой точностью с помощью простого устройства

Замкнутой полости с малым отверстием, внутренние стенки которой покрыты веществом, хорошо поглощающим электромагнитное излучение, например, сажей (см. Рис. 1.1.). Если температура стенок T поддерживается постоянной, то в конце концов установится тепловое равновесие между веществом стенок

Рис. 1.1. и электромагнитным излучением в полости. Одной из проблем, которую активно обсуждали физики в конце XIX века, была такая: как распределена энергия равновесного излучения по

Рис. 1.2.

частотам? Количественно это распределение описывается спектральной плотностью энергии излучения u ω . Произведениеu ω dω есть энергия электромагнитных волн в единице объема с частотами в интервале отω доω +dω . Спектральную плотность энергии можно измерить, анализируя спектр излучения из отверстия полости, изображенной на Рис. 1.1. Экспериментальная зависимостьu ω для двух значений температуры приведена на Рис. 1.2. С ростом температуры максимум кривой смещается в сторону высоких частот и при достаточно высокой температуре частотаω m может достигнуть области видимого глазом излучения. Тело начнет светиться, причем с дальнейшим ростом температуры цвет тела будет меняться от красного к фиолетовому.

Пока мы говорили об экспериментальных данных. Интерес к спектру излучения черного тела был вызван тем, что функция u ω может бытьточно вычислена методами классической статистической физики и электромагнитной теории Максвелла. Согласно классической статистической физике, в тепловом равновесии энергия любой системы распределяется равномерно по всем степеням свободы (теорема Больцмана). Каждая независимая степень свободы поля излучения - электромагнитная волна с определенной поляризацией и частотой. По теореме Больцмана средняя энергия такой волны в тепловом равновесии при температуреT равнаk B T , гдеk B = 1, 38· 10− 23 Дж/ K - постоянная Больцмана. Поэтому

где c - скорость света. Итак, классическое выражение для равновесной спектральной плотности излучения имеет вид

u ω=

k B T ω2

π2 c3

Эта формула есть знаменитая формула Рэлея-Джинса. В классической физике она являетсяточной и, в то же время, абсурдной. В самом деле, согласно ей, в тепловом равновесии при любой температуре имеются электромагнитные волны сколь угодно высоких частот (т. е. ультрафиолетовое излучение, рентгеновское излучение и даже смертельное для человека гамма-излучение), причем, чем выше частота излучения, тем больше энергии на него приходится. Очевидное противоречие между классической теорией равновесного излучения и экспериментом получило в физической литературе эмоциональное название -ультрафиолетовая

катастрофа . Отметим, что известный английский физик лорд Кельвин, подводя итоги развития физики в XIX веке, назвал задачу о равновесном тепловом излучении одной из главных нерешенных проблем.

Фотоэффект . Другим “слабым местом” классической физики оказался фотоэффект - выбивание электронов из вещества под действием света. Совершенно непонятным было то, что кинетическая энергия электронов не зависит от интенсивности света, которая пропорциональна квадрату амплитуды электрического поля

в световой волне и равна среднему потоку энергии, падающему на вещество. С другой стороны, энергия вылетающих электронов существенно зависит от частоты света и линейно растет с ростом частоты. Это также невозможно объяснить

в рамках классической электродинамики, поскольку поток энергии электромагнитной волны, согласно теории Максвелла, не зависит от ее частоты и полностью определяется амплитудой. Наконец, эксперимент показывал, что для каждого вещества существует так называемая красная граница фотоэффекта, т. е. минималь-

ная частота ω min , при которой начинается выбивание электронов. Еслиω < ω min , то свет с частотойω не выбьет ни одного электрона, независимо от интенсивности.

Эффект Комптона . Еще одно явление, которое не могла объяснить классическая физика, было открыто в 1923 году американским физиком А. Комптоном. Он обнаружил, что при рассеянии электромагнитного излучения (в рентгеновском диапазоне частот) на свободных электронах частота рассеянного излучения оказывается меньше, чем частота падающего излучения. Этот экспериментальный факт противоречит классической электродинамике, согласно которой частоты падающего и рассеянного излучения должны быть в точности равны. Чтобы убедиться в сказанном, не нужна сложная математика. Достаточно вспомнить классический механизм рассеяния электромагнитной волны заряженными частицами. Схема

рассуждений примерно такова. Переменное электрическое поле E (t ) =E 0 sinωt

падающей волны действует на каждый электрон силой F (t ) =−eE (t ), где−e -

(m e

заряд электрона

Электрон приобретает ускорение a (t ) =F (t )/m e

электрона), которое изменяется со временем с той же частотой ω , что и поле в падающей волне. Согласно классической электродинамике, заряд, движущийся с ускорением, излучает электромагнитные волны. Это и есть рассеянное излучение. Если ускорение изменяется со временем по гармоническому закону с частотойω , то излучаются волны с той же частотой. Появление рассеянных волн с частотами меньшими, чем частота падающего излучения, явно противоречит классической электродинамике.

Устойчивость атомов . В 1912 году произошло очень важное для всего дальнейшего развития естественных наук событие - была выяснена структура атома. Английский физик Э. Резерфорд, проводя эксперименты по рассеянию α -частиц в веществе, установил, что положительный заряд и практически вся масса атома сосредоточены в ядре с размерами порядка 10− 12 - 10− 13 см. Размеры ядра оказались ничтожно малы по сравнению с размерами самого атома (примерно 10− 8 см.). Для объяснения результатов своих экспериментов Резерфорд выдвинул гипотезу, что атом устроен аналогично солнечной системе: легкие электроны движутся по орбитам вокруг массивного ядра подобно тому, как планеты движутся вокруг Солнца. Силой, удерживающей электроны на орбитах, является сила кулоновского притяжения ядра. На первый взгляд такая “планетарная модель” кажется весьма

1 Символомe везде обозначаетсяположительный элементарный зарядe = 1, 602· 10− 19 Кл.

привлекательной: она наглядна, проста и вполне согласуется с экспериментальными результатами Резерфорда. Более того, на основе этой модели легко оценить энергию ионизации атома водорода, содержащего всего один электрон. Оценка дает неплохое согласие с экспериментальным значением энергии ионизации. К сожалению, понимаемая буквально, планетарная модель атома имеет неприятный недостаток. Дело в том, что с точки зрения классической электродинамики такой атом просто не может существовать; он нестабилен . Причина этого довольно проста: электрон движется по орбите с ускорением. Даже если величина скорости электрона не меняется, все равно есть ускорение, направленное к ядру (нормальное или “центростремительное” ускорение). Но, как уже отмечалось выше, заряд, движущийся с ускорением, должен излучать электромагнитные волны. Эти волны уносят энергию, поэтому энергия электрона убывает. Радиус его орбиты уменьшается и в конце концов электрон должен упасть на ядро. Простые вычисления, которые мы не будем приводить, показывают, что характерное “время жизни” электрона на орбите составляет примерно 10− 8 секунд. Таким образом, классическая физика не способна объяснить устойчивость атомов.

Приведенные примеры не исчерпывают всех трудностей, с которыми встретилась классическая физика на рубеже XIX и XX веков. Другие явления, где ее выводы противоречит эксперименту, мы рассмотрим позже, когда будет развит аппарат квантовой механики и мы сможем сразу же дать правильное объяснение. Постепенно накапливаясь, противоречия между теорией и экспериментальными данными привели к осознанию того, что с классической физикой “не все в порядке” и необходимы совершенно новые идеи.

1.2. Гипотеза Планка о квантовании энергии осциллятора

В декабре 2000 года исполнилось сто лет квантовой теории. Эту дату связывают с работой Макса Планка, в которой он предложил решение проблемы равновесного теплового излучения. Для простоты Планк выбрал в качестве модели вещества стенок полости (см. Рис. 1.1.) систему заряженных осцилляторов, т. е. частиц, способных совершать гармонические колебания около положения равновесия. Если ω - собственная частота колебаний осциллятора, то он способен излучать и поглощать электромагнитные волны той же частоты. Пусть стенки полости на Рис. 1.1. содержат осцилляторы со всевозможными собственными частотами. Тогда, после установления теплового равновесия, средняя энергия, приходящаяся на электромагнитную волну с частотойω , должна быть равна средней энергии осциллятораE ω с той же собственной частотой колебаний. Вспоминая рассуждения, приведенные на стр. 5, запишем равновесную спектральная плотность излучения в таком виде:

1 На латыни слово “quantum” буквально означает “порция” или “кусок”.

В свою очередь, квант энергии пропорционален частоте осциллятора:

Некоторые люди предпочитают использовать вместо циклической частоты ω так называемую линейную частотуν =ω/ 2π , которая равна числу колебаний за секунду. Тогда выражение (1.6) для кванта энергии можно записать в виде

ε = h ν.

Величина h = 2π 6, 626176· 10− 34 Дж· с также называется постоянной Планка1 .

Исходя из предположения о квантовании энергии осциллятора, Планк получил для спектральной плотности равновесного излучения следующее выражение2 :

π2 c3

e ω/kB T

− 1

В области низких частот (ω k B T ) формула Планка практически совпадает с формулой Релея-Джинса (1.3), а на высоких частотах (ω k B T ) спектральная плотность излучения, в соответствии с экспериментом, быстро стремится к нулю.

1.3. Гипотеза Эйнштейна о квантах электромагнитного поля

Хотя гипотеза Планка о квантовании энергии осциллятора “не вписывается” в классическую механику, ее можно было трактовать в том смысле, что, по-видимому, механизм взаимодействия света с веществом таков, что энергия излучения поглощается и испускается только порциями, величина которых дается формулой (1.5). В 1900 году о строении атомов практически ничего не было известно, поэтому сама по себе гипотеза Планка еще не означала полный отказ от классических законов. Более радикальную гипотезу высказал в 1905 году Альберт Эйнштейн. Анализируя закономерности фотоэффекта, он показал, что все они естественным образом объясняются, если принять, что свет определенной частотыω состоит из отдельных частиц (фотонов), обладающих энергией

1 Иногда, чтобы подчеркнуть, какая именно постоянная Планка имеется в виду, называют “перечеркнутой постоянной Планка”.

2 Теперь это выражение называется формулой Планка.

где A вых - работа выхода, т. е. энергия, необходимая для преодоления сил, удерживающих электрон в веществе1 . Зависимость энергии фотоэлектронов от частоты света, описываемая формулой (1.11), прекрасно согласовывалась с экспериментальной зависимостью, причем величина в этой формуле оказалась очень близка к значению (1.7). Отметим, что, приняв гипотезу фотонов, можно было объяснить и закономерности равновесного теплового излучения. Действительно, поглощение и излучение веществом энергии электромагнитного поля происходит квантамиω потому, что поглощаются и испускаются отдельные фотоны, имеющие именно такую энергию.

1.4. Импульс фотона

Введение представления о фотонах в какой-то степени возрождало корпускулярную теорию света. То, что фотон - “настоящая” частица, подтверждает анализ эффекта Комптона. С точки зрения фотонной теории рассеяние рентгеновских лучей можно представить как индивидуальные акты столкновений фотонов с электронами (см. Рис. 1.3.), в которых должны выполняться законы сохранения энергии и импульса.

Закон сохранения энергии в этом процессе имеет вид

соизмеримыми со скоростью света, поэтому

выражение для энергии электрона нужно

брать в релятивистском виде, т. е.

Eэл = me c2 ,

E эл=

m e 2c 4+ p 2c 2

где p - величина импульса электрона после столкновения с фотоном, аm

электрона. Закон сохранения энергии в эффекте Комптона выглядит так:

ω + me c2 = ω+

m e 2c 4+ p 2c 2

Между прочим, отсюда сразу видно, что ω < ω ; это наблюдается и в эксперименте. Чтобы записать закон сохранения импульса в эффекте Комптона, необходимо найти выражение для импульса фотона. Это можно сделать на основе следующих простых рассуждений. Фотон всегда движется со скоростью светаc , но, как известно из теории относительности, частица, движущаяся со скоростью света, должна

иметь нулевую массу. Так им образом, из общего выражения для релятивистской

энергии E =m 2 c 4 +p 2 c 2 следует, что энергия и импульс фотона связаны соотношениемE =pc . Вспоминая формулу (1.10), получаем

Теперь закон сохранения импульса в эффекте Комптона можно записать в виде

Решение системы уравнений (1.12) и (1.18), которое мы оставляем читателю (см. упражнение 1.2.), приводит к следующей формуле для изменения длины волны рассеянного излучения ∆λ =λ − λ :

называется комптоновской длиной волны частицы (массы m ), на которой происходит рассеяние излучения. Еслиm =m e = 0, 911· 10− 30 кг - масса электрона, тоλ C = 0, 0243· 10− 10 м. Результаты измерений ∆λ , проведенных Комптоном, а затем многими другими экспериментаторами, полностью согласуются с предсказаниями формулы (1.19), причем значение постоянной Планка, которая входит в выражение (1.20), совпадает со значениями, полученными из экспериментов по равновесному тепловому излучению и фотоэффекту.

После появления фотонной теории света и ее успехов в объяснении ряда явлений возникла странная ситуация. В самом деле, попробуем ответить на вопрос: что же такое свет? С одной стороны, в фотоэффекте и эффекте Комптона он ведет себя как поток частиц - фотонов, но, с другой стороны, явления интерференции и дифракции столь же упорно показывают, что свет - электромагнитныеволны . На основе “макроскопического” опыта мы знаем, что частица - это объект, имеющий конечные размеры и движущийся по определенной траектории, а волна заполняет область пространства, т. е. является непрерывным объектом. Как совместить эти две взаимно исключающие точки зрения на одну и ту же физическую реальность - электромагнитное излучение? Парадокс “волна–частица” (или, как предпочитают говорить философы, корпускулярно-волновой дуализм) для света был объяснен лишь в квантовой механике. Мы вернемся к нему после того, как познакомимся с основами этой науки.

1 Напомним, что модуль волнового вектора называется волновым числом.

Упражнения

1.1. Используя формулу Эйнштейна (1.11), объяснить существование красной границы вещества. ω min для фотоэффекта. Выразить ω min через работу выхода электрона из

1.2. Вывести выражение (1.19) для изменения длины волны излучения в эффекте Комптона.

Указание: Разделив равенство (1.14) наc и используя соотношение между волновым числом и частотой (k =ω/c ), запишем

p2 + m2 e c2 = (k − k) + me c.

После возведения в квадрат обеих частей, получим

где ϑ - угол рассеяния, показанный на Рис. 1.3. Приравняв правые части (1.21) и (1.22), приходим к равенству

me c(k − k) = kk(1 −cos ϑ) .

Остается умножить это равенство на 2π , разделить наm e ckk и перейти от волновых чисел к длинам волн (2π/k =λ ).

2. Квантование энергии атома. Волновые свойства микрочастиц

2.1. Теория атома Бора

Прежде чем перейти непосредственно к изучению квантовой механики в ее современном виде, мы кратко обсудим первую попытку применить идею Планка о квантовании к проблеме строения атома. Речь пойдет о теории атома, предложенной в 1913 году Нильсом Бором. Основная цель, которую ставил перед собой Бор, состояла в том, чтобы объяснить удивительно простую закономерность в спектре излучения атома водорода, которую сформулировал Ритц в 1908 году в виде так называемого комбинационного принципа. Согласно этому принципу, частоты всех линий в спектре водорода можно представить как разности некоторых величинT (n ) (“термов”), последовательность которых выражается через целые числа.

А. ШИШЛОВА. по материалам журналов "Успехи физических наук" и "Scientific american".

Квантово-механическое описание физических явлений микромира считается единственно верным и наиболее полно отвечающим реальности. Объекты макромира подчиняются законам другой, классической механики. Граница между макро- и микромиром размыта, а это вызывает целый ряд парадоксов и противоречий. Попытки их ликвидировать приводят к появлению других взглядов на квантовую механику и физику микромира. Видимо, наилучшим образом выразить их удалось американскому теоретику Дэвиду Джозефу Бому (1917-1992).

1. Мысленный эксперимент по измерению компонент спина (собственного количества движения) электрона с помощью некоего устройства - "черного ящика".

2. Последовательное измерение двух компонент спина. Измеряется "горизонтальный" спин электрона (слева), потом "вертикальный" спин (справа), потом снова "горизонтальный" (внизу).

3А. Электроны с "правым" спином после прохождения через "вертикальный" ящик движутся в двух направлениях: вверх и вниз.

3Б. В том же эксперименте на пути одного из двух пучков поставим некую поглощающую поверхность. Далее в измерениях участвует лишь половина электронов, и на выходе половина их имеет "левый" спин, а половина - "правый".

4. Состояние любого объекта микромира описывает так называемая волновая функция.

5. Мысленный эксперимент Эрвина Шредингера.

6. Эксперимент, предложенный Д. Бомом и Я. Аароновым в 1959 году, должен был показать, что магнитное поле, недоступное для частицы, влияет на ее состояние.

Чтобы понять, какие трудности испытывает современная квантовая механика, нужно вспомнить, чем она отличается от классической, ньютоновской механики. Ньютон создал общую картину мира, в которой механика выступала как универсальный закон движения материальных точек или частиц - маленьких комочков материи. Из этих частиц можно было построить любые объекты. Казалось, что механика Ньютона способна теоретически объяснить все природные явления. Однако в конце прошлого века выяснилось, что классическая механика неспособна объяснить законы теплового излучения нагретых тел. Этот, казалось бы, частный вопрос привел к необходимости пересмотреть физические теории и потребовал новых идей.

В 1900 году появилась работа немецкого физика Макса Планка, в которой эти новые идеи и появились. Планк предположил, что излучение происходит порциями, квантами. Такое представление противоречило классическим воззрениям, но прекрасно объясняло результаты экспериментов (в 1918 году эта работа была удостоена Нобелевской премии по физике). Спустя пять лет Альберт Эйнштейн показал, что не только излучение, но и поглощение энергии должно происходить дискретно, порциями, и сумел объяснить особенности фотоэффекта (Нобелевская премия 1921 года). Световой квант - фотон, по Эйнштейну, имея волновые свойства, одновременно во многом напоминает частицу (корпускулу). В отличие от волны, например, он либо поглощается целиком, либо не поглощается вовсе. Так возник принцип корпускулярно-волнового дуализма электромагнитного излучения.

В 1924 году французский физик Луи де Бройль выдвинул достаточно "безумную" идею, предположив, что все без исключения частицы - электроны, протоны и целые атомы обладают волновыми свойствами. Год спустя Эйнштейн отозвался об этой работе: "Хотя кажется, что ее писал сумасшедший, написана она солидно", а в 1929 году де Бройль получил за нее Нобелевскую премию...

На первый взгляд, повседневный опыт гипотезу де Бройля отвергает: в окружающих нас предметах ничего "волнового" как будто нет. Расчеты, однако, показывают, что длина дебройлевской волны электрона, ускоренно го до энергии 100 электрон-вольт, равна 10 -8 сантиметра. Эту волну нетрудно обнаружить экспериментально, пропустив поток электронов сквозь кристалл. На кристаллической решетке произойдет дифракция их волн и возникнет характерная полосатая картинка. А у пылинки массой 0,001 грамма при той же скорости длина волны де Бройля будет в 10 24 раз меньше, и обнаружить ее никакими средствами нельзя.

Волны де Бройля непохожи на механические волны - распространяющиеся в пространстве колебания материи. Они характеризуют вероятность обнаружить частицу в данной точке пространства. Любая частица оказывается как бы "размазанной" в пространстве, и существует отличная от нуля вероятность обнаружить ее где угодно. Классическим примером вероятностного описания объектов микромира служит опыт по дифракции электронов на двух щелях. Прошедший через щель электрон регистрируется на фотопластинке или на экране в виде пятнышка. Каждый электрон может пройти либо через правую щель, либо через левую совершенно случайным образом. Когда пятнышек становится очень много, на экране возникает дифракционная картина. Почернение экрана оказывается пропорциональным вероятности появления электрона в данном месте.

Идеи де Бройля углубил и развил австрийский физик Эрвин Шредингер. В 1926 году он вывел систему уравнений - волновых функций, описывающих поведение квантовых объектов во времени в зависимости от их энергии (Нобелевская премия 1933 года). Из уравнений следует, что любое воздействие на частицу меняет ее состояние. А поскольку процесс измерения параметров частицы неизбежно связан с воздействием, возникает вопрос: что же регистрирует измерительный прибор, вносящий непредсказуемые возмущения в состояние измеряемого объекта?

Таким образом, исследование элементарных частиц позволило установить, по крайней мере, три чрезвычайно удивительных факта, касающихся общей физической картины мира.

Во-первых, оказалось, что процессами, происходящими в природе, управляет чистый случай. Во-вторых, далеко не всегда существует принципиальная возможность указать точное положение материального объекта в пространстве. И, в-третьих, что, пожалуй, наиболее странно, поведение таких физических объектов, как "измерительный прибор", или "наблюдатель", не описывается фундаментальными законами, справедливыми для прочих физических систем.

Впервые к таким выводам пришли сами основоположники квантовой теории - Нильс Бор, Вернер Гейзенберг, Вольфганг Паули. Позднее данная точка зрения, получившая название Копенгагенской интерпретации квантовой механики, была принята в теоретической физике в качестве официальной, что и нашло свое отражение во всех стандартных учебниках.

Вполне возможно, однако, что подобные заключения были сделаны слишком поспешно. В 1952 году американский физик-теоретик Дэвид Д. Бом создал глубоко проработанную квантовую теорию, отличную от общепринятой, которая так же хорошо объясняет все известные ныне особенности поведения субатомных частиц. Она представляет собой единый набор физических законов, позволяющий избежать какой-либо случайности в описании поведения физических объектов, а также неопределенности их положения в пространстве. Несмотря на это, бомовская теория до самого последнего времени почти полностью игнорировалась.

Чтобы лучше представить себе всю сложность описания квантовых явлений, проведем несколько мысленных экспериментов по измерению спина (собственного момента количества движения) электрона. Мысленных потому, что создать измерительный прибор, позволяющий точно измерять обе компоненты спина, пока что не удалось никому. Столь же безуспешными оказываются попытки предсказать, какие именно электроны поменяют свой спин в ходе описанного эксперимента, а какие нет.

Эти эксперименты включают в себя измерение двух компонент спина, которые условно будем называть "вертикальным" и "горизонтальным" спинами. Каждая из компонент в свою очередь может принимать одно из значений, которые мы также условно назовем "верхним" и "нижним", "правым" и "левым" спинами соответственно. Измерение основано на пространственном разделении частиц с разными спинами. Приборы, осуществляющие разделение, можно представить себе как некие "черные ящики" двух типов - "горизонтальный" и "вертикальный" (рис. 1). Известно, что разные компоненты спина свободной частицы совершенно независимы (физики говорят - не коррелируют между собой). Однако в ходе измерения одной компоненты значение другой может измениться, причем совершенно неконтролируемым образом (2).

Пытаясь объяснить полученные результаты, традиционная квантовая теория пришла к выводу, что необходимо полностью отказаться от детерминистского, то есть полностью определяющего состояние

объекта, описания явлений микромира. Поведение электронов подчиняется принципу неопределенности, согласно которому компоненты спина не могут быть точно измерены одновременно.

Продолжим наши мысленные эксперименты. Будем теперь не только расщеплять пучки электронов, но и заставим их отражаться от неких поверхностей, пересекаться и снова соединяться в один пучок в специальном "черном ящике" (3).

Результаты этих экспериментов противоречат обычной логике. Действительно, рассмотрим поведение какого-либо электрона в случае, когда поглощающая стенка отсутствует (3 А). Куда он будет двигаться? Допустим, что вниз. Тогда, если первоначально электрон имел "правый" спин, он так и останется правым до конца эксперимента. Однако, применив к этому электрону результаты другого эксперимента (3 Б), мы увидим, что его "горизонтальный" спин на выходе должен быть в половине случаев "правым", а в половине - "левым". Явное противоречие. Мог ли электрон пойти вверх? Нет, по той же самой причине. Быть может, он двигался не вниз, не вверх, а как-то по-другому? Но, перекрыв верхний и нижний маршруты поглощающими стенками, мы на выходе не получим вообще ничего. Остается предположить, что электрон может двигаться сразу по двум направлениям. Тогда, имея возможность фиксировать его положение в разные моменты времени, в половине случаев мы находили бы его на пути вверх, а в половине - на пути вниз. Ситуация достаточно парадоксальная: материальная частица не может ни раздваиваться, ни "прыгать" с одной траектории на другую.

Что говорит в данном случае традиционная квантовая теория? Она просто объявляет все рассмотренные ситуации невозможными, а саму постановку вопроса об определенном направлении движения электрона (и соответственно о направлении его спина) - некорректной. Проявление квантовой природы электрона в том и заключается, что ответа на данный вопрос в принципе не существует. Состояние электрона представляет собой суперпозицию, то есть сумму двух состояний, каждое из которых имеет определенное значение "вертикального" спина. Понятие о суперпозиции - один из основополагающих принципов квантовой механики, с помощью которого вот уже более семидесяти лет удается успешно объяснять и предсказывать поведение всех известных квантовых систем.

Для математического описания состояний квантовых объектов используется волновая функция, которая в случае одной частицы просто определяет ее координаты. Квадрат волновой функции равен вероятности обнаружить частицу в данной точке пространства. Таким образом, если частица находится в некой области А, ее волновая функция равна нулю всюду, за исключением этой области. Аналогично частица, локализованная в области Б, имеет волновую функцию, отличную от нуля только в Б. Если же состояние частицы оказывается суперпозицией пребывания ее в А и Б, то волновая функция, описывающая такое состояние, отлична от нуля в обеих областях пространства и равна нулю всюду вне их. Однако, если мы поставим эксперимент по определению положения такой частицы, каждое измерение будет давать нам только одно значение: в половине случаев мы обнаружим частицу в области А, а в половине - в Б (4). Это означает, что при взаимодействии частицы с окружением, когда фиксируется только одно из состояний частицы, ее волновая функция как бы коллапсирует, "схлопывается" в точку.

Одно из основных утверждений квантовой механики заключается в том, что физические объекты полностью описываются их волновыми функциями. Таким образом, весь смысл законов физики сводится к предсказанию изменений волновых функций во времени. Эти законы делятся на две категории в зависимости от того, предоставлена ли система самой себе или же она находится под непосредственным наблюдением и в ней производятся измерения.

В первом случае мы имеем дело с линейными дифференциальными "уравнениями движения", уравнениями детерминистскими, которые полностью описывают состояние микрочастиц. Следовательно, зная волновую функцию частицы в какой-то момент времени, можно точно предсказать поведение частицы в любой последующий момент. Однако при попытке предсказать результаты измерений каких-либо свойств той же частицы нам придется иметь дело уже с совершенно другими законами - чисто вероятностными.

Возникает естественный вопрос: как отличить условия применимости той или другой группы законов? Создатели квантовой механики указывают на необходимость четкого разделения всех физических процессов на "измерения" и "собственно физические процессы", то есть на "наблюдателей" и "наблюдаемых", или, по философской терминологии, на субъект и объект. Однако отличие между этими категориями носит не принципиальный, а чисто относительный характер. Тем самым, по мнению многих физиков и философов, квантовая теория в такой интерпретации становится неоднозначной, теряет свою объективность и фундаментальность. "Проблема измерения" стала основным камнем преткновения в квантовой механике. Ситуация несколько напоминает знаменитую апорию Зенона "Куча". Одно зерно - явно не куча, а тысяча (или, если угодно, миллион) - куча. Два зерна - тоже не куча, а 999 (или 999999) - куча. Эта цепочка рассуждений приводит к некоему количеству зерен, при котором понятия "куча - не куча" станут неопределенными. Они будут зависеть от субъективной оценки наблюдателя, то есть от способа измерений, хотя бы и на глаз.

Все окружающие нас макроскопические тела предполагаются точечными (или протяженными) объектами с фиксированными координатами, которые подчиняются законам классической механики. Но это означает, что классическое описание можно продолжить вплоть до самых малых частиц. С другой стороны, идя со стороны микромира, следует включать в волновое описание объекты все большего размера вплоть до Вселенной в целом. Граница между макро- и микромиром не определена, и попытки ее обозначить приводят к парадоксу. Наиболее четко указывает на него так называемая "задача о кошке Шредингера" - мысленный эксперимент, предложенный Эрвином Шредингером в 1935 году (5).

В закрытом ящике сидит кошка. Там же находятся флакон с ядом, источник излучения и счетчик заряженных частиц, подсоединенный к устройству, разбивающему флакон в момент регистрации частицы. Если яд разольется, кошка погибнет. Зарегистрировал счетчик частицу или нет, мы не можем знать в принципе: законы квантовой механики подчиняются законам вероятности. И с этой точки зрения, пока счетчик не произвел измерения, он находится в суперпозиции двух состояний - "регистрация - нерегистрация". Но тогда в этот момент и кошка оказывается в суперпозиции состояний жизни и смерти.

В действительности, конечно, реального парадокса здесь быть не может. Регистрация частицы - процесс необратимый. Он сопровождается коллапсом волновой функции, вслед за чем срабатывает механизм, разбивающий флакон. Однако ортодоксальная квантовая механика не рассматривает необратимых явлений. Парадокс, возникающий в полном согласии с ее законами, наглядно показывает, что между квантовым микромиром и классическим макромиром имеется некая промежуточная область, в которой квантовая механика не работает.

Итак, несмотря на несомненные успехи квантовой механики в объяснении экспериментальных фактов, в настоящий момент она едва ли может претендовать на полноту и универсальность описания физических явлений. Одной из наиболее смелых альтернатив квантовой механики и стала теория, предложенная Дэвидом Бомом.

Задавшись целью построить теорию, свободную от принципа неопределенности, Бом предложил считать микрочастицу материальной точкой, способной занимать точное положение в пространстве. Ее волновая функция получает статус не характеристики вероятности, а вполне реального физического объекта, некоего квантовомеханического поля, оказывающего мгновенное силовое воздействие. В свете этой интерпретации, например, "парадокс Эйнштейна-Подольского-Розена" (см. "Наука и жизнь" № 5, 1998 г.) перестает быть парадоксом. Все законы, управляющие физическими процессами, становятся строго детерминистскими и имеют вид линейных дифференциальных уравнений. Одна группа уравнений описывает изменение волновых функций во времени, другая - их воздействие на соответствующие частицы. Законы применимы ко всем физическим объектам без исключения - и к "наблюдателям", и к "наблюдаемым".

Таким образом, если в какой-то момент известны положение всех частиц во Вселенной и полная волновая функция каждой, то в принципе можно точно рассчитать положение частиц и их волновые функции в любой последующий момент времени. Следовательно, ни о какой случайности в физических процессах не может быть и речи. Другое дело, что мы никогда не сможем обладать всей информацией, необходимой для точных вычислений, да и сами расчеты оказываются непреодолимо сложными. Принципиальное незнание многих параметров системы приводит к тому, что на практике мы всегда оперируем некими усредненными величинами. Именно это "незнание", по мнению Бома, заставляет нас прибегать к вероятностным законам при описании явлений в микромире (подобная ситуация возникает и в классической статистической механике, например в термодинамике, которая имеет дело с огромным количеством молекул). Теория Бома предусматривает определенные правила усреднения неизвестных параметров и вычисления вероятностей.

Вернемся к экспериментам с электронами, изображенным на рис. 3 А и Б. Теория Бома дает им следующее объяснение. Направление движения электрона на выходе из "вертикального ящика" полностью определяется исходными условиями - начальным положением электрона и его волновой функцией. В то время как электрон движется либо вверх, либо вниз, его волновая функция, как это следует из дифференциальных уравнений движения, расщепится и станет распространяться сразу в двух направлениях. Таким образом, одна часть волновой функции окажется "пустой", то есть будет распространяться отдельно от электрона. Отразившись от стенок, обе части волновой функции воссоединятся в "черном ящике", и при этом электрон получит информацию о том участке пути, где его не было. Содержание этой информации, например о препятствии на пути "пустой" волновой функции, может оказать существенное воздействие на свойства электрона. Это и снимает логическое противоречие между результатами экспериментов, изображенных на рисунке. Необходимо отметить одно любопытное свойство "пустых" волновых функций: будучи реальными, они тем не менее никак не влияют на посторонние объекты и не могут быть зарегистрированы измерительными приборами. А на "свой" электрон "пустая" волновая функция оказывает силовое воздействие независимо от расстояния, причем воздействие это передается мгновенно.

Попытки "исправить" квантовую механику или объяснить возникающие в ней противоречия предпринимали многие исследователи. Построить детерминистскую теорию микромира, например, пытался де Бройль, который был согласен с Эйнштейном, что "Бог не играет в кости". А видный отечественный теоретик Д. И. Блохинцев считал, что особенности квантовой механики проистекают из-за невозможности изолировать частицу от окружающего мира. При любой температуре выше абсолютного нуля тела излучают и поглощают электромаг нитные волны. С позиций квантовой механики это означает, что их положение непрерывно "измеряется", вызывая коллапс волновых функций. "С этой точки зрения никаких изолированных, предоставленных самим себе "свободных" частиц не существует, - писал Блохинцев. - Возможно, что в этой связи частиц и cреды и скрывается природа той невозможности изолировать частицу, которая проявляется в аппарате квантовой механики".

И все-таки - почему же интепретация квантовой механики, предложенная Бомом, до сих пор не получила должного признания в научном мире? И как объяснить почти повсеместное господство традиционной теории, несмотря на все ее парадоксы и "темные места"?

Долгое время новую теорию не хотели рассматривать всерьез на основании того, что в предсказании исхода конкретных экспериментов она полностью совпадает с квантовой механикой, не приводя к существен но новым результатам. Вернер Гейзенберг, например, считал, что "для любого опыта его (Бома) результаты совпадают с копенгагенской интерпретацией. Отсюда первое следствие: интерпретацию Бома нельзя опровергнуть экспериментом..." Некоторые считают теорию ошибочной, так как в ней преимущественная роль отводится положению частицы в пространстве. По их мнению, это противоречит физической реальности, ибо явления в квантовом мире принципиально не могут быть описаны детерминистскими законами. Существует немало и других, не менее спорных аргументов против теории Бома, которые сами требуют серьезных доказательств. Во всяком случае, ее пока что действительно никому не удалось полностью опровергнуть. Более того - работу над ее совершенствованием продолжают многие, в том числе отечественные, исследователи.