Признаки мутации. Что такое мутация у человека

По причинам возникновения различают спонтанные и индуцированные мутации.

Спонтанные (самопроизвольные) мутации возникают без видимых причин. Эти мутации иногда рассматривают как ошибки трех Р : процессов репликации, репарации и рекомбинации ДНК . Это означает, что процесс возникновения новых мутаций находится под генетическим контролем организма. Например, известны мутации, которые повышают или понижают частоту других мутаций; следовательно, существуют гены-мутаторы и гены-антимутаторы.

В то же время, частота спонтанных мутаций зависит и от состояния клетки (организма). Например, в условиях стресса частота мутаций может повышаться.

Индуцированные мутации возникают под действием мутагенов .

Мутагены – это разнообразные факторы, которые повышают частоту мутаций .

Впервые индуцированные мутации были получены отечественными генетиками Г.А. Надсоном и Г.С. Филипповым в 1925 г. при облучении дрожжей излучением радия.

Различают несколько классов мутагенов:

Физические мутагены : ионизирующие излучения, тепловое излучение, ультрафиолетовое излучение.

Химические мутагены : аналоги азотистых оснований (например, 5-бромурацил), альдегиды, нитриты, метилирующие агенты, гидроксиламин, ионы тяжелых металлов, некоторые лекарственные препараты и средства защиты растений.

Биологические мутагены : чистая ДНК, вирусы, антивирусные вакцины.

Аутомутагены – промежуточные продукты обмена веществ (интермедиаты). Например, этиловый спирт сам по себе мутагеном не является. Однако в организме человека он окисляется до ацетальдегида, а это вещество уже является мутагеном.

Вопрос №21.

(Хромосомные мутации, их классификация: делеций и дубликаций, инверсий, транслокации. Причины и механизмы возникновения. Значение в развитии патологических состояний человека)

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай - объединение целых хромосом

В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности - разрывы, которые сопровождаются различными перестройками, называемыми хромосомными мутациями.

Разрывы хромосом происходят закономерно в ходе кроссинговера, когда они сопровождаются обменом соответствующими участками между гомологами. Нарушение кроссинговера, при котором хромосомы обмениваются неравноценным генетическим материалом, приводит к появлению новых групп сцепления, где отдельные участки выпадают - делении - или удваиваются - дупликации . При таких перестройках изменяется число генов в группе сцепления.

Разрывы хромосом могут возникать также под влиянием различных мутагенных факторов, главным образом физических (ионизирующего и других видов излучения), некоторых химических соединений, вирусов.

Нарушение целостности хромосомы может сопровождаться поворотом ее участка, находящегося между двумя разрывами, на 180° - инверсия. В зависимости от того, включает ли данный участок область центромеры или нет, различают перицентрические и парацентрические инверсии .

Фрагмент хромосомы, отделившийся от нее при разрыве, может быть утрачен клеткой при очередном митозе, если он не имеет центромеры. Чаще такой фрагмент прикрепляется к одной из хромосом - транслокация. Возможно присоединение фрагмента к своей же хромосоме, но в новом месте - транспозиция . Таким образом, различные виды инверсий и транслокаций характеризуются изменением локализации генов.

Таким образом, изменения хромосомной организации, чаще всего оказывающие неблагоприятное воздействие на жизнеспособность клетки и организма, с определенной вероятностью могут быть перспективными, наследоваться в ряду поколений клеток и организмов и создавать предпосылки для эволюции хромосомной организации наследственного материала.

Вопрос №22.

(Геномные мутации: классификация, причины, механизмы. Роль в возникновении хромосомных синдромов. Антимутационные механизмы).

Геномные: - полиплоидизация изменение числа хромосом, не кратное гаплоидному набору. В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома

К геномным мутациям относят гаплоидию, полиплоидию и анеуплоидию.

Анеуплоидией называют изменение количества отдельных хромосом- отсутствие (моносомия) или наличие дополнительных (трисомия, тетрасомия, в общем случае полисомия) хромосом,т.е. несбалансированный хромосомный набор. Клетки с измененным числом хромосом появляются вследствие нарушений в процессе митоза или мейоза, в связи с чем различают митотическую и мейотическую.

Причины мутаций

Мутации делятся на спонтанные и индуцированные. Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около - на нуклеотид за клеточную генерацию.

Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК, нарушения репарации ДНК и генетическая рекомбинация.

Связь мутаций с репликацией ДНК

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации. Например, из-за дезаминированияцитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер. Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой - делеция.

Связь мутаций с репарацией ДНК

Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах, кодирующих белки, ответственные за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов.

Классификации мутаций

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные.

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

геномные;

хромосомные;

Геномные: - полиплоидизацияизменение числа хромосом, не кратное гаплоидному набору. В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай - объединение целых хромосом.

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях

Антимутационные механизмы обеспечивают обнаружение, устранение или подавление активности онкогенов. Реализуются антимутационные механизмы при участии онкосупрессоров и систем репарации ДНК.

Вопрос №23.

(Человек как объект генетических исследований. Цитогенетический метод: его значение для диагностики хромосомных синдромов. Правила составления идиограмм здоровых людей. Идиограммы при хромосомных синдромах(аутосомных и гоносомных). Примеры)

Человек как объект генетических исследований. Антропогенетика, ее место в системе наук о человеке, основные генетические маркеры этногенетики. Наследственные болезни, как часть общей наследственной изменчивости человека.

Человек, как объект генетических исследований представляет сложность:

Нельзя принимать гибридологический метод.

Медленная смена поколения.

Малое кол-во детей.

Большое число хромосомю

Генетика человека – это особый раздел генетики, который изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения.

В настоящее время твердо установлено, что законы генетики носят всеобщий характер.

Однако, поскольку человек – это не только биологическое, но и социальное существо, генетика человека отличается от генетики большинства организмов рядом особенностей:

– для изучения наследования человека неприменим гибридологический анализ (метод скрещиваний); поэтому для генетического анализа используются специфические методы: генеалогический (метод анализа родословных), близнецовый, а также цитогенетические, биохимические, популяционные и некоторые другие методы;

– для человека характерны социальные признаки, которые не встречаются у других организмов, например, темперамент, сложные коммуникационные системы, основанные на речи, а также математические, изобразительные, музыкальные и иные способности;

– благодаря общественной поддержке возможно выживание и существование людей с явными отклонениями от нормы (в дикой природе такие организмы оказываются нежизнеспособными).

Генетика человека изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения. Известно несколько тысяч собственно генетических заболеваний, которые почти на 100% зависят от генотипа особи. К наиболее страшным из них относятся: кислотный фиброз поджелудочной железы, фенилкетонурия, галактоземия, различные формы кретинизма, гемоглобинопатии, а также синдромы Дауна, Тернера, Кляйнфельтера. Кроме того, существуют заболевания, которые зависят и от генотипа, и от среды: ишемическая болезнь, сахарный диабет, ревматоидные заболевания, язвенные болезни желудка и двенадцатиперстной кишки, многие онкологические заболевания, шизофрения и другие заболевания психики.

Задачи медицинской генетики заключаются в своевременном выявлении носителей этих заболеваний среди родителей, выявлении больных детей и выработке рекомендаций по их лечению. Большую роль в профилактике генетически обусловленных заболеваний играют генетико-медицинские консультации и пренатальная диагностика (то есть выявление заболеваний на ранних стадиях развития организма).

Существуют специальные разделы прикладной генетики человека (экологическая генетика, фармакогенетика, генетическая токсикология), изучающие генетические основы здравоохранения. При разработке лекарственных препаратов, при изучении реакции организма на воздействие неблагоприятных факторов необходимо учитывать как индивидуальные особенности людей, так и особенности человеческих популяций.

Наследственные болезни - заболевания, вызываемые нарушениями в генетическом (наследственном) аппарате половых клеток. Наследственные болезни обусловлены мутациями (см. Изменчивость), возникающими в хромосомном аппарате половой клетки одного из родителей или у более отдаленных предков

Вопрос №24.

(Биохимический метод изучения генетики человека; его значение для диагностики наследственных болезней обмена веществ. Роль транскрипционных, посттранскрипционных и посттрансляционных модификаций в регуляции клеточного обмена. Примеры).

В отличие от цитогенетического метода, который позволяет изучать структуру хромосом и кариотипа в норме и диагностировать наследственные болезни, связанные с изменением их числа и нарушением организации, наследственные заболевания, обусловленные генными мутациями, а также полиморфизм по нормальным первичным продуктам генов изучают с помощью биохимических методов.

Дефекты ферментов устанавливают путем определения содержания в крови и моче продуктов метаболизма, являющихся результатом функционирования данного белка. Дефицит конечного продукта, сопровождающийся накоплением промежуточных и побочных продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме.

Биохимическую диагностику наследственных нарушений обмена проводят в два этапа.

На первом этапе отбирают предположительные случаи заболеваний, на втором -более точными и сложными методами уточняют диагноз заболевания. Применение биохимических исследований для диагностики заболеваний в пренатальном периоде или непосредственно после рождения позволяет своевременно выявить патологию и начать специфические медицинские мероприятия, как, например, в случае фенилкетонурии.

Для определения содержания в крови, моче или амниотической жидкости промежуточных, побочных и конечных продуктов обмена кроме качественных реакций со специфическими реактивами на определенные вещества используют хроматографические методы исследования аминокислот и других соединений.

Транскрипционые факторы - белки, взаимодействующие с определёнными регуляторными сайтами и ускоряющие или замедляющие процесс транскрипции. Соотношение информативной и неинформативной частей в транскриптонах эукариотов составляет в среднем 1:9 (у прокариотов 9:1).Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК. Разделение ДНК на множество транскриптонов позволяет осуществлять с разной активностью индивидуальное считывание (транскрипцию) разных генов.

В каждом транскриптоне транскрибируется только одна из двух цепей ДНК, которая называется матричной, вторая, комплементарная ей цепь, называется кодирующей. Синтез цепи РНК идёт от 5"- к З"-концу, при этом матричная цепь ДНК всегда антипараллельна синтезируемой нуклеиновой кислоте

Посттранскрипционные модификации первичного транскрипта тРНК (процессинг тРНК)

ПервичныйтранскрипттРНК содержит около 100 нуклеотидов, а после процессинга - 70-90 нуклеотидньгх остатков. Посттранскрипционные модификации первичныхтранскриптовтРНК происходят при участии РНК-аз (рибонуклеаз). Так, формирование 3"-конца тРНК катализирует РНК-аза, представляющая собой 3"-экзонуклеазу, "отрезающую" по одному нук-леотиду, пока не достигнет последовательности -ССА, одинаковой для всех тРНК. Для некоторых тРНК формирование последовательности -ССА на 3"-конце (акцепторный конец) происходит в результате последовательного присоединения этих трёх нуклеотидов. Пре-тРНК содержит всего один интрон, состоящий из 14-16 нуклеотидов. Удаление интрона и сплайсинг приводят к формированию структуры, называемой "антикодон", - триплета нуклеотидов, обеспечивающего взаимодействие тРНК с комплементарным кодоном мРНК в ходе синтеза белков

Посттранскрипционные модификации (процессинг) первичноготранскриптарРНК. Формирование рибосом

В клетках человека содержится около сотни копий гена рРНК, локализованных группами на пяти хромосомах. Гены рРНК транскрибируются РНК-полимеразой I с образованием идентичныхтранскриптов. Первичныетранскрипты имеют длину около 13 000 нуклеотид-ных остатков (45S рРНК). Прежде чем покинуть ядро в составе рибосомной частицы, молекула 45 S рРНК подвергается процессин-гу, в результате образуется 28S рРНК (около 5000 нуклеотидов), 18S рРНК (около 2000 нуклеотидов) и 5,88 рРНК (около 160 нуклеотидов), которые являются компонентами рибосом (рис. 4-35). Остальная часть транскрипта разрушается в ядре.

Вопрос №25.

(Генеалогический метод генетики человека. Основные правила составления и анализа родословных схем (на примере собственной семейной родословной схеме). Значение метода в изучении закономерностей наследования признаков).

В основе этого метода лежит составление и анализ родословных. Этот метод широко применяют с древних времен и до наших дней в коневодстве, селекции ценных линий крупного рогатого скота и свиней, при получении чистопородных собак, а также при выведении новых пород пушных животных. Родословные человека составлялись на протяжении многих столетий в отношении царствующих семейств в Европе и Азии.

При составлении родословных исходным является человек - пробанд, родословную которого изучают. Обычно это или больной, или носитель определенного признака, наследование которого необходимо изучить. При составлении родословных таблиц используют условные обозначения, предложенные Г. Юстом в 1931 г. (рис. 6.24). Поколения обозначают римскими цифрами, индивидов в данном поколении - ар

Условные обозначения при составлении родословных (по Г. Юсту)

С помощью генеалогического метода может быть установлена наследственная обусловленность изучаемого признака, а также тип его наследования (аутосомно-доминантный, аутосомно-рецессивный, X-сцепленный доминантный или рецессивный, Y-сцепленный). При анализе родословных по нескольким признакам может быть выявлен сцепленный характер их наследования, что используют при составлении хромосомных карт. Этот метод позволяет изучать интенсивность мутационного процесса, оценить экспрессивность и пенетрантность аллеля. Он широко используется в медико-генетическом консультировании для прогнозирования потомства. Однако необходимо отметить, что генеалогический анализ существенно осложняется при малодетности семей.

Родословные при аутосомно-доминантном наследовании. Для аутосомного типа наследования в целом характерна равная вероятность встречаемости данного признака как у мужчин, так и у женщин. Это обусловлено одинаковой двойной дозой генов, расположенных в аутосомах у всех представителей вида и получаемых от обоих родителей, и зависимостью развивающегося признака от характера взаимодействия аллельных генов.

Если анализируется признак, не влияющий на жизнеспособность организма, то носители доминантного признака могут быть как гомо-, так и гетерозиготами. В случае доминантного наследования какого-то патологического признака (заболевания) гомозиготы, как правило, нежизнеспособны, а носители этого признака - гетерозиготы.

Таким образом, при аутосомно-доминантном наследовании признак может встречаться в равной мере у мужчин и у женщин и прослеживается при достаточном по численности потомстве в каждом поколении по вертикали. Первое описание родословной с аутосомно-доминантным типом наследования аномалии у человека было дано в 1905 г. В ней прослеживается передача в ряду поколений брахидактилии (короткопалости).

Родословные при аутосомно-рецессивном наследовании. Рецессивные признаки проявляются фенотипически лишь у гомозигот по рецессивным аллелям. Эти признаки, как правило, обнаруживаются у потомков фенотипически нормальных родителей - носителей рецессивных аллелей. Вероятность появления рецессивного потомства в этом случае равна 25%. Если один из родителей имеет рецессивный признак, то вероятность проявления его в потомстве будет зависеть от генотипа другого родителя. У рецессивных родителей все потомство унаследует соответствующий рецессивный признак.

Для родословных при аутосомно-рецессивном типе наследования характерно, что признак проявляется далеко не в каждом поколении. Чаще всего рецессивное потомство появляется у родителей с доминантным признаком, причем вероятность появления такого потомства возрастает в близкородственных браках, где оба родителя могут являться носителями одного и того же рецессивного аллеля, полученного от общего предка. Примером аутосомно-рецессивного наследования является родословная семьи с псевдогипертрофической прогрессивной миопатией, в которой часты близкородственные браки.

Родословные при доминантном Х-сцепленном наследовании признака. Гены, расположенные в Х-хромосоме и не имеющие аллелей в Y-хромосоме, представлены в генотипах мужчин и женщин в разных дозах. Женщина получает две свои Х-хромосомы и соответствующие гены как от отца, так и от матери, а мужчина наследует свою единственную Х-хромосому только от матери. Развитие соответствующего признака у мужчин определяется единственным аллелем, присутствующим в его генотипе, а у женщин он является результатом взаимодействия двух аллельных генов. В связи с этим признаки, наследуемые по Х-сцепленному типу, встречаются в популяции с разной вероятностью у мужского и женского пола.

При доминантном Х-сцепленном наследовании признак чаще встречается у женщин в связи с большей возможностью получения ими соответствующего аллеля либо от отца, либо от матери. Мужчины могут наследовать этот признак только от матери. Женщины с доминантным признаком передают его в равной степени дочерям и сыновьям, а мужчины - только дочерям. Сыновья никогда не наследуют от отцов доминантного Х-сцепленного признака.

Примером такого типа наследования служит описанная в 1925 г. родословная с фолликулярным кератозом -кожным заболеванием, сопровождающимся потерей ресниц, бровей, волос на голове.

Родословные при рецессивном Х-сцепленном наследовании признаков. Характерной особенностью родословных при данном типе наследования является преимущественное проявление признака у гемизиготных мужчин, которые наследуют его от матерей с доминантным фенотипом, являющихся носительницами рецессивного аллеля. Как правило, признак наследуется мужчинами через поколение от деда по материнской линии к внуку. У женщин он проявляется лишь в гомозиготном состоянии, вероятность чего возрастает при близкородственных браках.

Наиболее известным примером рецессивного Х-сцепленного наследования является гемофилия.Другим примером наследования по данному типу является дальтонизм - определенная форма нарушения цветоощущения.

Родословные при Y-сцепленном наследовании. Наличие Y-хромосомы только у представителей мужского пола объясняет особенности Y-сцепленного, или голандрического, наследования признака, который обнаруживается лишь у мужчин и передается по мужской линии из поколения в поколение от отца к сыну.

Одним из признаков, Y-сцепленное наследование которого у человека все еще обсуждается, является гипертрихоз ушной раковины, или наличие волос на внешнем крае ушной раковины.

Вопрос №26.

(Методы генетики человека: популяционно–статистический; дерматоглифический (на примере анализа собственного дерматоглифа), генетики соматических клеток, изучения ДНК; их роль в изучении наследственной патологии человека).

С помощью популяционно-статистического метода изучают наследственные признаки в больших группах населения, в одном или нескольких поколениях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Этим методом можно рассчитать частоту встречаемости в популяции различных аллелей гена и разных генотипов по этим аллелям, выяснить распространение в ней различных наследственных признаков, в том числе заболеваний. Он позволяет изучать мутационный процесс, роль наследственности и среды в формировании фенотипического полиморфизма человека по нормальным признакам, а также в возникновении болезней, особенно с наследственной предрасположенностью. Этот метод используют и для выяснения значения генетических факторов в антропогенезе, в частности в расообразовании.

При статистической обработке материала, получаемого при обследовании группы населения по интересующему исследователя признаку, основой для выяснения генетической структуры популяции является закон генетического равновесия Харди - Вайнберга. Он отражает закономерность, в соответствии с которой при определенных условиях соотношение аллелей генов и генотипов в генофонде популяции сохраняется неизменным в ряду поколений этой популяции. На основании этого закона, имея данные о частоте встречаемости в популяции рецессивного фенотипа, обладающего гомозиготным генотипом (аа), можно рассчитать частоту встречаемости указанного аллеля (а) в генофонде данного поколения. Распространив эти сведения на ближайшие поколения, можно предсказать частоту появления в них людей с рецессивным признаком, а также гетерозиготных носителей рецессивного аллеля.

Математическим выражением закона Харди - Вайнберга служит формула (рА. + qa)2, где р и q - частоты встречаемости аллелей А и а соответствующего гена. Раскрытие этой формулы дает возможность рассчитать частоту встречаемости людей с разным генотипом и в первую очередь гетерозигот - носителей скрытого рецессивного аллеля: p2AA + 2pqAa + q2аа. Например, альбинизм обусловлен отсутствием фермента, участвующего в образовании пигмента меланина и является наследственным рецессивным признаком. Частота встречаемости в популяции альбиносов (аа) равна 1:20 000. Следовательно, q2 = 1/20 000, тогда q = 1/141, up = 140/141. В соответствии с формулой закона Харди - Вайнберга частота встречаемости гетерозигот = 2pq, т.е. соответствует 2 х (1/141) х (140/141) = 280/20000 = 1/70. Это означает, что в данной популяции гетерозиготные носители аллеля альбинизма встречаются с частотой один на 70 человек.

Анализ частот встречаемости разных признаков в популяции в случае их соответствия закону Харди - Вайнберга позволяет утверждать, что признаки обусловлены разными аллелями одного гена.В том случае, если ген в генофонде популяции представлен несколькими аллелями, например ген группы крови системы АВО, соотношение различных генотипов выражается формулой (pIA + qIB + rI0) 2.

В настоящее время установлена наследственная обусловленность кожных узоров, хотя характер наследования окончательно не выяснен. Вероятно, этот признак наследуется по полигенному типу. На характер пальцевого и ладонного узоров организма большое влияние оказывает мать через механизм цитоплазматической наследственности.

Дерматоглифические исследования важны при идентификации зиготности близнецов. Считают, что если из 10 пар гомологичных пальцев не менее 7 имеют сходные узоры, это указывает на однояйцевость. Сходство узоров лишь 4-5 пальцев свидетельствует в пользу разнояйцевости близнецов.

Изучение людей с хромосомными болезнями выявило у них специфические изменения не только рисунков пальцев и ладоней, но и характера основных сгибательных борозд на коже ладоней. Характерные изменения этих показателей наблюдаются при болезни Дауна, при синдромах Клайнфельтера, Шерешевского - Тернера, что позволяет использовать методы дерматоглифики и пальмоскопии в диагностике этих заболеваний. Определяются специфические Дерматоглифические изменения и при некоторых хромосомных аберрациях, например при синдроме «кошачьего крика». Менее изучены Дерматоглифические изменения при генных болезнях. Однако описаны специфические отклонения этих показателей при шизофрении, миастении, лимфоид-ной лейкемии.

Применяют эти методы и с целью установления отцовства. Подробнее они описаны в специальной литературе.

Вопрос №27.

(Понятие наследственных болезней: моногенные, хромосомные и мультифакторные болезни человека, механизм их возникновения и проявления. Примеры).

Моногенным называется такой тип наследования, когда наследственный признак контролируется одним геном.

Моногенные заболевания подразделяются по типу наследования :
аутосомно-доминантные (то есть, если хоть один из родителей болен, то и ребенок будет болеть), например
-синдром Марфана, нейрофиброма-тоз, ахондроплазия
– аутосомно-рецессивные (ребенок может заболеть, если оба родителя носители этого заболевания, или один родитель болен, а второй – носитель мутаций гена, вызывающих это
заболевание)
– муковисцидоз, спинальная миоатрофия.
Пристальное внимание к этой группе болезней обусловлено и тем, что, как оказалось, число их значительно выше, чем думали раньше. У всех болезней совершенно различная распространенность, которая может колебаться в зависимости и от географии и от национальности, например, хорея Хангтингтона встречается у 1 на 20 000 европейцев и почти не встречается в Японии, болезнь Тея-Сакса характерна для евреев-ашкенази и крайне редка у других народов.
В России наиболее распространнеными моногенно наследуемыми заболеваниями являются муковисцидоз (1/12000 новорожденных), группа миоатрофий (1/10000 новорожденных), гемофилия А (1/5000 новорожденных мальчиков).
Конечно, многие моногенные заболевания выявлены уже давно и хорошо известны медицинским генетикам.

К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3-5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.

Все хромосомные болезни принято делить на две группы: аномалии числа хромосом и нарушения структуры хромосом.

Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом

синдром Дауна - трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики;

синдром Патау - трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто - полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года;

синдром Эдвардса - трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца.

Болезни, связанные с нарушением числа половых хромосом

Синдром Шерешевского - Тёрнера - отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.);

полисомия по Х-хромосоме - включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения;

полисомия по Y-хромосоме - как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;

Синдром Клайнфельтера - полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

Болезни, причиной которых является полиплоидия

триплоидии, тетраплоидии и т. д.; причина - нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин - 69, XXX); почти всегда летальны до рождения

Мультифакториальные заболевания , или болезни с наследственным предрасположенность

Группа болезней отличается от генных болезней тем, что для своего проявления нуждается в действии факторов внешней среды. Среди них также различают моногенные, при которых наследственная предрасположенность обусловлена одним патологически измененным геном, и полигенные. Последние определяются многими генами, которые в нормальном состоянии, но при определенном взаимодействии между собой и с факторами среды создают предрасположение к появлению заболевания. Они называются мультифакториальными заболеваниями (МФЗ).

Заболевания моногенные с наследственным предрасположением относительно немногочисленны. К ним применим метод менделевского генетического анализа. Учитывая важную роль среды в их проявлении, они рассматриваются как наследственно обусловленные патологические реакции на действие различных внешних факторов (лекарственных препаратов, пищевых добавок, физических и биологических агентов), в основе которых лежит наследственная недостаточность некоторых ферментов.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11

Мутации - это изменения в ДНК клетки. Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора.


Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины - нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.


Хромосомные мутации - изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины - нарушения при кроссинговере. Пример: синдром кошачьего крика.


Геномные мутации - изменение количества хромосом. Причины - нарушения при расхождении хромосом.

  • Полиплоидия - кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
  • Анеуплоидия - изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом - 47).

Цитоплазматические мутации - изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений - пестролистность.


Соматические - мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры).

Приведённые ниже понятия, кроме двух, используются для описания последствий нарушения расположения нуклеотидов в участке ДНК, контролирующем синтез белка. Определите эти два понятия, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) нарушение первичной структуры полипептида
2) расхождение хромосом
3) изменение функций белка
4) генная мутация
5) кроссинговер

Ответ


Выберите один, наиболее правильный вариант. Полиплоидные организмы возникают в результате
1) геномных мутаций

3) генных мутаций
4) комбинативной изменчивости

Ответ


Установите соответствие между характеристикой изменчивости и ее видом: 1) цитоплазматическая, 2) комбинативная
А) происходит при независимом расхождении хромосом в мейозе
Б) происходит в результате мутаций в ДНК митохондрий
В) возникает в результате перекреста хромосом
Г) проявляется в результате мутаций в ДНК пластид
Д) возникает при случайной встрече гамет

Ответ


Выберите один, наиболее правильный вариант. Синдром Дауна является результатом мутации
1) геномной
2) цитоплазматической
3) хромосомной
4) рецессивной

Ответ


1. Установите соответствие между характеристикой мутации и ее видом: 1) генная, 2) хромосомная, 3) геномная
А) изменение последовательности нуклеотидов в молекуле ДНК
Б) изменение строения хромосом
В) изменение числа хромосом в ядре
Г) полиплоидия
Д) изменение последовательности расположения генов

Ответ


2. Установите соответствие между характеристиками и типами мутаций: 1) генные, 2) геномные, 3) хромосомные. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) делеция участка хромосомы
Б) изменение последовательности нуклеотидов в молекуле ДНК
В) кратное увеличение гаплоидного набора хромосом
Г) анеуплоидия
Д) изменение последовательности генов в хромосоме
Е) выпадение одного нуклеотида

Ответ


Выберите три варианта. Чем характеризуется геномная мутация?
1) изменением нуклеотидной последовательности ДНК
2) утратой одной хромосомы в диплоидном наборе
3) кратным увеличением числа хромосом
4) изменением структуры синтезируемых белков
5) удвоением участка хромосомы
6) изменением числа хромосом в кариотипе

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик геномной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) ограничена нормой реакции признака
2) число хромосом увеличено и кратно гаплоидному
3) появляется добавочная Х-хромосома
4) имеет групповой характер
5) наблюдается потеря Y-хромосомы

Ответ


2. Все приведённые ниже характеристики, кроме двух, используют для описания геномных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) нарушение расхождения гомологичных хромосом при делении клетки
2) разрушение веретена деления
3) конъюгация гомологичных хромосом
4) изменение числа хромосом
5) увеличение числа нуклеотидов в генах

Ответ


3. Все приведённые ниже характеристики, кроме двух, используют для описания геномных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) изменение последовательности нуклеотидов в молекуле ДНК
2) кратное увеличение хромосомного набора
3) уменьшение числа хромосом
4) удвоение участка хромосомы
5) нерасхождение гомологичных хромосом

Ответ


Выберите один, наиболее правильный вариант. Рецессивные генные мутации изменяют
1) последовательность этапов индивидуального развития
2) состав триплетов в участке ДНК
3) набор хромосом в соматических клетках
4) строение аутосом

Ответ


Выберите один, наиболее правильный вариант. Цитоплазматическая изменчивость связана с тем, что
1) нарушается мейотическое деление
2) ДНК митохондрий способна мутировать
3) появляются новые аллели в аутосомах
4) образуются гаметы, неспособные к оплодотворению

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик хромосомной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) потеря участка хромосомы
2) поворот участка хромосомы на 180 градусов
3) уменьшение числа хромосом в кариотипе
4) появление добавочной Х-хромосомы
5) перенос участка хромосомы на негомологичную хромосому

Ответ


2. Все приведённые ниже признаки, кроме двух, используются для описания хромосомной мутации. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) число хромосом увеличилось на 1-2
2) один нуклеотид в ДНК заменяется на другой
3) участок одной хромосомы перенесен на другую
4) произошло выпадение участка хромосомы
5) участок хромосомы перевернут на 180°

Ответ


3. Все приведенные ниже характеристики, кроме двух, используются для описания хромосомной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) умножение участка хромосомы в несколько раз
2) появление дополнительной аутосомы
3) изменение последовательности нуклеотидов
4) потеря концевого участка хромосомы
5) поворот гена в хромосоме на 180 градусов

Ответ


ФОРМИРУЕМ
1) удвоение одного и того же участка хромосомы
2) уменьшение числа хромосом в половых клетках
3) увеличение числа хромосом в соматических клетках

Выберите один, наиболее правильный вариант. К какому виду мутаций относят изменение структуры ДНК в митохондриях
1) геномной
2) хромосомной
3) цитоплазматической
4) комбинативной

Ответ


Выберите один, наиболее правильный вариант. Пестролистность у ночной красавицы и львиного зева определяется изменчивостью
1) комбинативной
2) хромосомной
3) цитоплазматической
4) генетической

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик генной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) обусловлена сочетанием гамет при оплодотворении
2) обусловлена изменением последовательности нуклеотидов в триплете
3) формируется при рекомбинации генов при кроссинговере
4) характеризуется изменениями внутри гена
5) формируется при изменении нуклеотидной последовательности

Ответ


2. Все приведенные ниже характеристики, кроме двух, служат причинами генной мутации. Определите эти два понятия, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) конъюгация гомологичных хромосом и обмен генами между ними
2) замена одного нуклеотида в ДНК на другой
3) изменение последовательности соединения нуклеотидов
4) появление в генотипе лишней хромосомы
5) выпадение одного триплета в участке ДНК, кодирующей первичную структуру белка

Ответ


3. Все приведённые ниже характеристики, кроме двух, используют для описания генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) замена пары нуклеотидов
2) возникновение стоп-кодона внутри гена
3) удвоение числа отдельных нуклеотидов в ДНК
4) увеличение числа хромосом
5) потеря участка хромосомы

Ответ


4. Все приведённые ниже характеристики, кроме двух, используют для описания генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) добавление одного триплета в ДНК
2) увеличение числа аутосом
3) изменение последовательности нуклеотидов в ДНК
4) потеря отдельных нуклеотидов в ДНК
5) кратное увеличение числа хромосом

Ответ


5. Все приведённые ниже характеристики, кроме двух, типичны для генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) возникновение полиплоидных форм
2) случайное удвоение нуклеотидов в гене
3) потеря одного триплета в процессе репликации
4) образование новых аллелей одного гена
5) нарушение расхождения гомологичных хромосом в мейозе

Ответ


ФОРМИРУЕМ 6:
1) осуществляется перенос участка одной хромосомы на другую
2) возникает в процессе репликации ДНК
3) происходит выпадение участка хромосомы

Выберите один, наиболее правильный вариант. Полиплоидные сорта пшеницы - это результат изменчивости
1) хромосомной
2) модификационной
3) генной
4) геномной

Ответ


Выберите один, наиболее правильный вариант. Получение селекционерами сортов полиплоидной пшеницы возможно благодаря мутации
1) цитоплазматической
2) генной
3) хромосомной
4) геномной

Ответ


Установите соответствие между характеристиками и мутациями: 1) геномная, 2) хромосомная. Запишите цифры 1 и 2 в правильном порядке.
А) кратное увеличение числа хромосом
Б) поворот участка хромосомы на 180 градусов
В) обмен участками негомологичных хромосом
Г) выпадение центрального участка хромосомы
Д) удвоение участка хромосомы
Е) некратное изменение числа хромосом

Ответ


Выберите один, наиболее правильный вариант. Появление разных аллелей одного гена происходит в результате
1) непрямого деления клетки
2) модификационной изменчивости
3) мутационного процесса
4) комбинативной изменчивости

Ответ


Все перечисленные ниже термины, кроме двух, используются при классификации мутаций по изменению генетического материала. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) геномные
2) генеративные
3) хромосомные
4) спонтанные
5) генные

Ответ


Установите соответствие между типами мутаций и их характеристиками и примерами: 1) геномные, 2) хромосомные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) утеря или появление лишних хромосом в результате нарушения мейоза
Б) приводят к нарушению функционирования гена
В) примером является полиплоидия у простейших и растений
Г) удвоение или потеря участка хромосомы
Д) ярким примером является синдром Дауна

Ответ


Установите соответствие между категориями наследственных болезней и их примерами: 1) генные, 2) хромосомные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) гемофилия
Б) альбинизм
В) дальтонизм
Г) синдром «кошачьего крика»
Д) фенилкетонурия

Ответ


Найдите три ошибки в приведённом тексте и укажите номера предложений с ошибками. (1) Мутации – это случайно возникшие стойкие изменения генотипа. (2) Генные мутации – это результат «ошибок», возникающих в процессе удвоения молекул ДНК. (3) Геномными называют мутации, которые ведут к изменению структуры хромосом. (4) Многие культурные растения являются полиплоидами. (5) Полиплоидные клетки содержат одну–три лишние хромосомы. (6) Полиплоидные растения характеризуются более мощным ростом и крупными размерами. (7) Полиплоидию широко используют как в селекции растений, так и в селекции животных.

Ответ


Проанализируйте таблицу «Виды изменчивости». Для каждой ячейки, обозначенной буквой, выберите соответствующее понятие или соответствующий пример из предложенного списка.
1) соматические
2) генные
3) замена одного нуклеотида на другой
4) удвоение гена в участке хромосомы
5) добавление или выпадение нуклеотидов
6) гемофилия
7) дальтонизм
8) трисомия в хромосомном наборе

Ответ

© Д.В.Поздняков, 2009-2019

Виды генных мутаций:

Генные мутации возникаю чаще, чем хромосомные и геномные, но менее значительно меняют структуру ДНК, в основном касаются только химической структуры отдельно взятого гена. Представляют собой замену, удаление или вставку нуклеотида, иногда нескольких. Также к генным мутациям относятся транслокации (перенос), дупликации (повторение), инверсии (переворот на 180°) участков гена, но не хромосомы.

Генные мутации происходят при репликации ДНК, кроссинговере, возможны в остальные периоды клеточного цикла. Механизмы репарации не всегда устраняют мутации и повреждения ДНК. Кроме того сами могут служить источником генных мутаций. Например, при объединении концов разорванной хромосомы часто теряется несколько нуклеотидных пар.

Если системы репарации перестают нормально функционировать, то происходит быстрое накопление мутаций. Если мутации возникают в генах, кодирующих ферменты репарации, то может нарушится работа одного или нескольких его механизмов, в результате чего количество мутаций сильно возрастет. Однако иногда бывает обратный эффект, когда мутация генов ферментов репарации приводит к снижению частоты мутаций других генов.

Помимо первичных мутаций в клетках могут происходить и обратные, восстанавливающие исходный ген.

Большинство генных изменений, как и мутаций двух других видов, вредны. Появление мутаций, обусловливающих полезные признаки для определенных условий среды, происходит редко. Однако именно они делают возможным процесс эволюции.

Генные мутации затрагивают не генотип, а отдельные участки гена, что, в свою очередь, обуславливает появление нового варианта признака, т. е. аллели, а не нового признака как такового. Мутон - это элементарная единица мутационного процесса, способная приводить к появлению нового варианта признака. Зачастую, для этого достаточно изменить одну пару нуклеотидов. С этой точки зрения мутон соответствует одной паре комплементарных нуклеотидов. С другой стороны, не все генные мутации являются мутонами с точки зрения последствий. Если изменение нуклеотидной последовательности не влечет за собой изменения признака, то с функциональной точки зрения мутации не произошло.

Одной паре нуклеотидов соответствует и рекон - элементарная единица рекомбинации. При кроссинговере в случае нарушения рекомбинации происходит неравный обмен участками между конъюгирующими хромосомами. В результате происходит вставка и выпадение нуклеотидных пар, что влечет сдвиг рамки считывания, в дальнейшем нарушение синтеза пептида с необходимыми свойствами. Таким образом для искажения генетической информации достаточно одной лишней или потерянной пары нуклеотидов.

Частота спонтанных генных мутаций находится в пределах от 10 -12 до 10 -9 на каждый нуклеотид ДНК на каждое деление клетки. Для проведения исследований ученые подвергают клетки воздействию химических, физических и биологических мутагенов. Вызванные таким образом мутации, называются индуцированными , их частота выше.

Замена азотистых оснований

Если происходит изменение только одного нуклеотида в ДНК, то такая мутация называется точечной . В случае мутаций по типу замены азотистых оснований одна комплементарная нуклеотидная пара молекулы ДНК заменяется в ряду циклов репликации на другую. Частота подобных происшествий составляет около 20% от общей массы всех генных мутаций.

Примером подобного является дезаминирование цитозина, в результате чего образуется урацил.

В ДНК образуется нуклеотидная пара Г-У, вместо Г-Ц. Если ошибка не будет репарирована ферментом ДНК-гликолазой, то при репликации произойдет следующее. Цепи разойдутся, напротив гуанина будет установлен цитозин, а напротив урацила - аденин. Таким образом, одна из дочерних молекул ДНК будет содержать аномальную пару У-А. При ее последующей репликации в одной из молекул напротив аденина будет установлен тимин. Т. е. в гене произойдет замена пары Г-Ц на А-Т.

Другим примером является дезаминирование метилированного цитозина, в результате которого образуется тимин. В последствии может возникнуть ген с парой Т-А вместо Ц-Г.

Могут быть и обратные замены: пара А-Т при определенных химических реакциях может заменяться на Ц-Г. Например, в процессе репликации к аденину может присоединиться бромурацил, который при следующей репликации присоединяет к себе гуанин. В следующем цикле гуанин свяжется с цитозином. Таким образом в гене пара А-Т заменится на Ц-Г.

Замена одного пиримидина на другой пиримидин или одного пурина на другой пурин называется транзицией . Пиримидинами являются цитозин, тимин, урацил. Пуринами - аденин и гуанин. Замена пурина на пиримидин или пиримидина на пурин называется трансверсией .

Точечная мутация может не привести ни к каким последствиям из-за вырожденности генетического кода, когда несколько кодонов-триплетов кодируют одну и ту же аминокислоту. Т. е. в результате замены одного нуклеотида может образоваться другой кодон, но кодирующий ту же аминокислоту, что и старый. Такая замена нуклеотидов называется синонимической . Их частота около 25% от всех замен нуклеотидов. Если же смысл кодона меняется, он начинает кодировать другую аминокислоту, то замена называется мисенс-мутацией . Их частота около 70%.

В случае мисенс-мутации при трансляции в пептид будет включена не та аминокислота, в результате чего его свойства изменятся. От степени изменения свойств белка зависит степень изменения более сложных признаков организма. Например, при серповидно-клеточной анемии в белке заменена лишь одна аминокислота - глутамин на валин. Если же глутамин заменяется на лизин, то свойства белка меняются не сильно, т. е. обе аминокислоты гидрофильны.

Точечная мутация может быть такой, что на месте кодирующего аминокислоту кодона возникает стоп-кодон (УАГ, УАА, УГА), прерывающий (терминирующий) трансляцию. Это нонсенс-мутации . Иногда бывают и обратные замены, когда на месте стоп-кодона возникает смысловой. При любой подобной генной мутации функциональный белок уже не может быть синтезирован.

Сдвиг рамки считывания

К генным относятся мутации обусловленные сдвигом рамки считывания, когда происходит изменение количества нуклеотидных пар в составе гена. Это может быть как выпадение, так и вставка одной или нескольких нуклеотидных пар в ДНК. Генных мутаций по типу сдвига рамки считывания больше всего. Наиболее часто они возникают в повторяющихся нуклеотидных последовательностях.

Вставка или выпадение нуклеотидных пар может произойти в следствие воздействия определенных химических веществ, которые деформируют двойную спираль ДНК.

Рентгеновское облучение может приводить к выпадению, т. е. делеции, участка с большим количеством пар нуклеотидов.

Вставки нередки при включении в нуклеотидную последовательность так называемых подвижных генетических элементов , которые могут менять свое положение.

К генным мутациям приводит неравный кроссинговер. Чаще всего он происходит в тех участках хромосом, где локализуются несколько копий одного и того же гена. При этом кроссинговер происходит так, что в одной хромосоме возникает делеция участка. Этот участок переносится на гомологичную хромосому, в которой возникает дупликация участка гена.


Если происходит делеция или вставка числа нуклеотидов не кратного трем, то рамка считывания сдвигается, и трансляция генетического кода зачастую обессмысливается. Кроме того, может возникнуть нонсенс-триплет.

Если количество вставленных или выпавших нуклеотидов кратно трем, то, можно сказать, сдвиг рамки считывания не происходит. Однако при трансляции таких генов в пептидную цепь будут включены лишние или утрачены значащие аминокислоты.

Инверсия в пределах гена

Если инверсия участка ДНК происходит внутри одного гена, то такую мутацию относят к генным. Инверсии более крупных участков относятся к хромосомным мутациям.

Инверсия происходит вследствие поворота участка ДНК на 180° . Часто это происходит при образовании петли в молекуле ДНК. При репликации в петле репликация идет в обратном направлении. Далее этот кусок сшивается с остальной нитью ДНК, но оказывается перевернутым наоборот.

Если инверсия случается в смысловом гене, то при синтезе пептида часть его аминокислот будет иметь обратную последовательность, что скажется на свойствах белка.


Мутационная изменчивость возникает в случае появления мутаций - стойких изменений генотипа (т.е. молекул днк), которые могут затрагивать целые хромосомы, их части или отдельные гены.

Мутации могут быть полезными, вредными или нейтральными. Согласно современной классификации мутации принято делить на следующие группы.

1. Геномные мутации - связанные с изменением числа хромосом. Особый интерес представляет ПОЛИПЛОИДИЯ - кратное увеличение числа хромосом, т.е. вместо 2n хромосомного набора возникает набор 3n,4n,5n и более. Возникновение полиплоидии связанно с нарушением механизма деления клеток. В частности, нерасхождение гомологичных хромосом во время первого деления мейоза приводит к появлению гамет с 2n набором хромосом.

Полиплоидия широко распространена у растений и значительно реже у животных (аскарид, шелкопряда, некоторых земноводных). Полиплоидные организмы, как правило, характеризуются более крупными размерами, усиленным синтезом органических веществ, что делает их особенно ценными для селекционных работ.

Изменение числа хромосом, связанное с добавлением или потерей отдельных хромосом, называется анеуплоидией. Мутацию анеуплоидии можно записать как 2n-1, 2n+1, 2n-2 и т.д. Анеуплоидия свойственна всем животным и растениям. У человека ряд заболеваний связан именно с анеуплоидией. Например, болезнь Дауна связана с наличием лишней хромосомы в 21-й паре.

2. Хромосомные мутации - это перестройки хромосом, изменение их строения. Отдельные участки хромосом могут теряться, удваиваться, менять свое положение.

Схематично это можно показать следующим образом:

ABCDE нормальный порядок генов

ABBCDE удвоение участка хромосомы

ABDE потеря одного участка

ABEDC поворот участка на 180 градусов

ABCFG обмен участками с негомологичной хромосомой

Как и геномные мутации, хромосомные мутации играют огромную роль в эволюционных процессах.

3. Генные мутации связаны с изменением состава или последовательности нуклеотидов ДНК в пределах гена. Генные мутации наиболее важны среди всех категорий мутаций.

Синтез белка основан на соответствии расположения нуклеотидов в гене и порядком аминокислот в молекуле белка. Возникновение генных мутаций (изменение состава и последовательности нуклеотидов) изменяет состав соответствующих белков-ферментов и в итоге к фенотипическим изменениям. Мутации могут затрагивать все особенности морфологии, физиологии и биохимии организмов. Многие наследственные болезни человека также обусловлены мутациями генов.

Мутации в естественных условиях случаются редко - одна мутация определенного гена на 1000-100000 клеток. Но мутационный процесс идет постоянно, идет постоянное накопление мутаций в генотипах. А если учесть, что число генов в организме велико, то можно сказать, что в генотипах всех живых организмов имеется значительное число генных мутаций.

Мутации - это крупнейший биологический фактор, обуславливающий огромную наследственную изменчивость организмов, что дает материал для эволюции.

Причинами мутаций могут быть естественные нарушения в метаболизме клеток (спонтанные мутации), так и действие различных факторов внешней среды (индуцированные мутации). Факторы, вызывающие мутации называют мутагенами. Мутагенами могут быть физические факторы - радиация, температура.... К биологическим мутагена относят вирусы, способные осуществлять перенос генов между организмами не только близких, но далеких систематических групп.

Хозяйственная деятельность человека принесла в биосферу огромное количество мутагенов.

Большинство мутаций неблагоприятны для жизни особи, но иногда возникают такие мутации, которые могут представлять интерес для ученых-селекционеров. В настоящее время созданы методы направленного мутагенеза.

1. По характеру изменения фенотипа мутации могут быть биохимическими, физиологическими, анатомо-морфологическими.

2. По степени приспособительности мутации делятся на полезные и вредные. Вредные - могут быть летальными и вызывать гибель организма еще в эмбриональном развитии.

Чаще мутации вредны, так как признаки в норме являются результатом отбора и адаптируют организм к среде обитания. Мутация всегда изменяет адаптацию. Степень ее полезности или бесполезности определяется временем. Если мутация дает возможность организму лучше приспособиться, дает новый шанс выжить, то она "подхватывается" отбором и закрепляется в популяции.

3. Мутации бывают прямые и обратные. Последние встречаются гораздо реже. Обычно прямая мутация связана с дефектом функции гена. Вероятность вторичной мутации в обратную сторону в той же точке очень мала, чаще мутируют другие гены.

Мутации чаще рецессивные, так как доминантные проявляются сразу же и легко "отбрасываются" отбором.

4. По характеру изменения генотипа мутации делятся на генные, хромосомные и геномные.

Генные, или точковые, мутации - изменение нуклеотида в одном гене в молекуле ДНК, приводящее к образованию аномального гена, а следовательно, аномальной структуры белка и развитию аномального признака. Генная мутация - это результат "ошибки" при репликации ДНК.

Результатом генной мутации у человека являются такие заболевания, как серповиднокле-точная анемия, фенилкетонурия, дальтонизм, гемофилия. Вследствие генной мутации возникают новые аллели генов, что имеет значение для эволюционного процесса.

Хромосомные мутации - изменения структуры хромосом, хромосомные перестройки. Можно выделить основные типы хромосомных мутаций:

а) делеция - потеря участка хромосомы;

б) транслокация - перенос части хромосом на другую негомологичную хромосому, как результат - изменение группы сцепления генов;

в) инверсия - поворот участка хромосомы на 180°;

г) дупликация - удвоение генов в определенном участке хромосомы.

Хромосомные мутации приводят к изменению функционирования генов и имеют значение в эволюции вида.

Геномные мутации - изменения числа хромосом в клетке, появление лишней или потеря хромосомы как результат нарушения в мейозе. Кратное увеличение числа хромосом называется полиплоидией (Зп, 4/г и т. д.). Этот вид мутации часто встречается у растений. Многие культурные растения полиплоидны по отношению к диким предкам. Увеличение хромосом на одну-две у животных приводит к аномалиям развития или гибели организма. Пример: синдром Дауна у человека - трисомия по 21-й паре, всего в клетке 47 хромосом. Мутации могут быть получены искусственно с помощью радиации, рентгеновских лучей, ультрафиолета, химическими агентами, тепловым воздействием.

Закон гомологических рядов Н.И. Вавилова. Русский ученый-биолог Н.И. Вавилов установил характер возникновения мутаций у близкородственных видов: "Роды и виды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов".

Открытие закона облегчило поиски наследственных отклонений. Зная изменчивость и мутации у одного вида, можно предвидеть возможность их появления и у родственных видов, что имеет значение в селекции.



Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена а на т. Причины - нарушения при удвоении (репликации) ДНК

Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка. Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию. Именно генные мутации обусловливают развитие большинства наследственных форм патологии.

Наиболее частыми моногенными заболеваниями являются у человека являются: муковисцидоз, гемохроматоз, адрено-генитальный синдром, фенилкетонурия, нейрофиброматоз, миопатии Дюшенна-Беккера и ряд других заболеваний. Клинически они проявляются признаками нарушений обмена веществ (метаболизма) в организме. Мутация может заключаться:

1) в замене основания в кодоне, это так называемая миссенсмутация (от англ, mis - ложный, неправильный + лат. sensus - смысл) - замена нуклеотида в кодирующей части гена, приводящая к замене аминокислоты в полипептиде;

2) в таком изменении кодонов, которое приведет к остановке считывания информации, это так называемая нонсенсмутация (от лат. non - нет + sensus - смысл) — замена нуклеотида в кодирующей части гена, приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции;

3) нарушении считывания информации, сдвиге рамки считывания, называемом фреймшифтом (от англ. frame - рамка + shift: - сдвиг, перемещение), когда молекулярные изменения ДНК приводят к изменению триплетов в процессе трансляции полипептидной цепи.

Известны и другие типы генных мутаций. По типу молекулярных изменений выделяют:

делении (от лат. deletio - уничтожение), когда происходит утрата сегмента ДНК размером от одного нуклеотида до гена;

дупликации (от лат. duplicatio - удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

инверсии (от лат. inversio - перевертывание), т.е. поворот на 180° сегмента ДНК размерами от двух нукпеотидов до фрагмента, включающего несколько генов;

инсерции (от лат. insertio - прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Молекулярные изменения, затрагивающие от одного до нескольких нуклеотидов, рассматривают как точечную мутацию.

Принципиальным и отличительным для генной мутации является то, что она 1) приводит к изменению генетической информации, 2) может передаваться от поколения к поколению.

Определенная часть генных мутаций может быть отнесена к нейтральным мутациям, поскольку они не приводят к каким-либо изменениям фенотипа. Например, за счет вырожденности генетического кода одну и ту же аминокислоту могут кодировать два триплета, различающихся только по одному основанию. С другой стороны, один и тот же ген может изменяться (мутировать) в несколько различающихся состояний.

Например, ген, контролирующий группу крови системы АВ0. имеет три аллеля: 0, А и В, сочетания которых определяют 4 группы крови. Группа крови системы АВ0 является классическим примером генетической изменчивости нормальных признаков человека.

Именно генные мутации обусловливают развитие большинства Ласледственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными, или моногенными, болезнями, Т. е. заболеваниями, развитие которых детерминируется мутацией одного гена.

Геномные и хромосомные мутации

Геномные и хромосомные мутации являются причинами возникновения хромосомных болезней. К геномным мутациям относятся анеуплоидии и изменение плоидности структурно неизмененных хромосом. Выявляются цитогенетическими методами.

Анеуплоидия — изменение (уменьшение — моносомия, увеличение — трисомия) числа хромосом в диплоидном наборе, некратное гаплоидному (2n + 1, 2n - 1 и т.д.).

Полиплоидия — увеличение числа наборов хромосом, кратное гаплоидному (3n, 4n, 5n и т.д.).

У человека полиплоидия, а также большинство анеуплоидии являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

трисомия — наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре, при синдроме Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, ХХY, ХYY);

моносомия - наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная моносомия у человека, совместимая с жизнью, - моносомия по Х-хромосоме - приводит (к синдрому Шерешевского-Тернера (45, Х0).

Причиной, приводящей к анеуплоидии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от всех других негомологичных хромосом. Термин «нерасхождение» означает отсутствие разделения хромосом или хроматид в мейозе или митозе. Утрата хромосом может приводить к мозаицизму, при котором имеется одна эуплоидная (нормальная) клеточная линия, а другая — моносомная .

Нерасхождение хромосом наиболее часто наблюдается во время мейоза. Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки. Таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т. е. в клетке присутствует три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией. Если моносомая зигота образуется по какой-либо аутосомной (не половой) хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

Хромосомные мутации - это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то что хромосомные аберрации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные.

Внутрихромосомные мутации — это аберрации в пределах одной хромосомы. К ним относятся:

делеции (от лат. deletio — уничтожение) - утрата одного из участков хромосомы, внутреннего или терминального. Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, деления в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития). Этот симптомокомплекс известен как синдром «кошачьего крика», поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье;

инверсии (от лат. inversio — перевертывание). В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180°. В результате нарушается только порядок расположения генов;

дупликации (от лат duplicatio — удвоение) — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по одному из коротких плеч 9-й хромосомы обуслошшвает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Схемы наиболее частых хромосомных аберраций:
Делении: 1 - концевая; 2 - интерстициальная. Инверсии: 1 - перицентрическая (с захватом центромеры); 2 - парацентрическая (в пределах одного плеча хромосомы)

Межхромосомные мутации, или мутации перестройки — обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от лат. tгаns — за, через + locus — место). Это:

Реципрокная транслокация, когда две хромосомы обмениваются своими фрагментами;

Нереципрокная транслокация, когда фрагмент одной хромосомы транспортируется на другую;

- «центрическое» слияние (робертсоновская транслокация) - соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч.

При поперечном разрыве хроматид через центромеры «сестринские» хроматиды становятся «зеркальными» плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называют изохромосомами. Как внутрихромосомные (делеции, инверсии и дупликации), так и межхромосомные (транслокации) аберрации и изохромосомы связаны с физическими изменениями структуры хромосом, в том числе с механическими разломами.

Наследственная патология как результат наследственной изменчивости

Наличие общих видовых признаков позволяет объединять всех людей на земле в единый вид Homo sapiens. Тем не менее мы без труда, одним взглядом выделяем лицо знакомого нам человека в толпе незнакомых людей. Чрезвычайное разнообразие людей — как внутри групповое (например, разнообразие в пределах этноса), так и межгрупповое — обусловлено генетическим их отличием. В настоящее время считается, что вся внутривидовая изменчивость обусловлена различными генотипами, возникающими и поддерживаемыми естественным отбором.

Известно, что гаплоидный геном человека содержит 3,3х10 9 пар нуклеотидных остатков, что теоретически позволяет иметь до 6-10 млн генов. Вместе с тем данные современных исследований свидетельствуют, что в геноме человека содержится примерно 30-40 тыс. генов. Около трети всех генов имеют более чем один аллель, т. е. являются полиморфными.

Концепция наследственного полиморфизма была сформулирована Э. Фордом в 1940 г. для объяснения существования в популяции двух или более различающихся форм, когда частота наиболее редкой из них не может быть объяснена только мутационными событиями. Поскольку мутация гена является редким событием (1х10 6), частоту мутантного аллеля, составляющую более 1%, можно объяснить только его постепенным накоплением в популяции за счет селективных преимуществ носителей данной мутации.

Многочисленность расщепляющихся локусов, многочисленность аллелей в каждом из них наряду с явлением рекомбинации создает неисчерпаемое генетическое разнообразие человека. Расчеты свидетельствуют, что за всю историю человечества на земном шаре не было, нет и в обозримом будущем не встретится генетического повторения, т.е. каждый рожденный человек является уникальным явлением во Вселенной. Неповторимость генетической конституции во многом определяет особенности развития заболевания у каждого конкретного человека.

Человечество эволюционировало как группы изолированных популяций, длительное время проживающих в одних и тех же условиях окружающей среды, включая климатогеографические характеристики, характер питания, возбудителей болезней, культурные традиции и т.д. Это привело к закреплению в популяции специфических для каждой из них сочетаний нормальных аллелей, наиболее адекватных условиям среды. В связи с постепенным расширением ареала обитания, интенсивными миграциями, переселением народов возникают ситуации, когда полезные в определенных условиях сочетания конкретных нормальных генов в других условиях не обеспечивают оптимальное функционирование некоторых систем организма. Это приводит к тому, что часть наследственной изменчивости, обусловленная неблагоприятным сочетанием непатологических генов человека, становится основой развития так называемым болезней с наследственным предрасположением.

Кроме того, у человека как социального существа естественный отбор со временем протекал во все более специфических формах, что также расширяло наследственное разнообразие. Сохранялось то, что могло отметаться у животных, или, наоборот, терялось то, что животные сохраняли. Так, полноценное обеспечение потребностей в витамине С привело в процессе эволюции к утере гена L-гулонодактоноксидазы, катализирующей синтез аскорбиновой кислоты. В процессе эволюции человечество приобретало и нежелательные признаки, имеющие прямое отношение к патологии. Например, у человека в процессе эволюции появились гены, определяющие чувствительность к дифтерийному токсину или к вирусу полиомиелита.

Таким образом, у человека, как и у любого другого биологического вида, нет резкой грани между наследственной изменчивостью, ведущей к нормальным вариациям признаков, и наследственной изменчивостью, обусловливающей возникновение наследственных болезней. Человек, став биологическим видом Homo sapiens, как бы заплатил за «разумность» своего вида накоплением патологических мутаций. Это положение лежит в основе одной из главных концепций медицинской генетики об эволюционном накоплении патологических мутации в популяциях человека.

Наследственная изменчивость популяций человека, как поддерживаемая, так и уменьшаемая естественным отбором, формирует так называемый генетический груз.

Некоторые патологические мутации могут в течение исторически длительного времени сохраняться и распространяться в популяциях, обусловливая гак называемый сегрегационный генетический груз; другие патологические мутации возникают в каждом поколении как результат новых изменений наследственной структуры, создавая мутационный груз.

Отрицательный эффект генетического груза проявляется повышенной летальностью (гибель гамет, зигот, эмбрионов и детей), снижением фертильности (уменьшенное воспроизводство потомства), уменьшением продолжительности жизни, социальной дизадаптацией и инвалидизацией, а также обусловливает повышенную необходимость в медицинской помощи.

Английский генетик Дж.Ходдейн был первым, кто привлек внимание исследователей к существованию генетического груза, хотя сам термин был предложен Г. Меллером еще в конце 40-х гг. Смысл понятия «генетический груз» связан с высокой степенью генетической изменчивости, необходимой биологическому виду для того, чтобы иметь возможность приспосабливаться к изменяющимся условиям среды.