Рибосомы образуются в. Рибосомы

Введение

1. История исследований рибосомы

3. Принципы функционирования роль РНК

4. Список литературы


Введение


Различают два осн. типа Р. Всем прокариотич. организмам (бактерии и синезеленые водоросли) свойственны т. наз. 70S Р. характеризующиеся коэф. (константой) седиментации ок. 70 единиц Сведберга или 70S (по коэф. седиментации различают и Р. др. типов а также субчастицы и биополимеры входящие в состав Р.). Их мол. м. составляет 2 5 · 106 линейные размеры 20-25 нм. По хим. составу это рибонуклеопротеиды; они состоят только из рРНК и белка (соотношение этих компонентов 2:1). Рибо-сомная РНК в Р. присутствует гл. обр. в виде Mg-соли (по-видимому частично и в виде Са-соли); магния в Р. до 2% от сухой массы. Кроме того в разл. кол-вах (до 2 5%) могут присутствовать также катионы аминов-спермина H2N(CH2)3NH(CH2)4NH(CH2)3NH2 спермидина H2N(CH2)3NH(CH2)4NH2 и др.

Цитоплазма клеток всех эукариотич. организмов содержит неск. более крупные 80S Р. Их мол. м. ок. 4·106 линейные размеры 25-30 нм содержание белка в них значительно больше чем в прокариотической Р. (соотношение РНК: белок ок. 1:1). Рибосомная РНК 80S также связана в осн. с Mg и Са и с небольшим кол-вом полиаминов (спермин спермидин и др.).

Хлоропласты и митохондрии эукариотич. клеток содержат Р. отличные от типа 80S. Р. хлоропластов высших растений принадлежат к истинному 70S типу. Митохонд-риальные Р. более разнообразны; их строение находится в зависимости от таксономич. принадлежности организма (т.е. от принадлежности к определенному виду роду или семейству). Напр. митохондриальные Р. млекопитающих существенно мельче типичных 70S Р.; коэф. седиментации этих Р. составляет ок. 55S (т. наз. минирибосомы).

Р. из самых разнообразных организмов (как прокариотич. так и эукариотич.) имеют сходное строение. Они состоят из двух разделяемых субчастиц или рибосомных субъединиц. При определенных условиях (напр. при понижении концентрации Mg2 + в среде) Р. обратимо диссоциирует на две субчастицы с соотношением их мол. масс ок. 2:1. Прокарйотическая 70S Р. диссоциирует на субъединицы с коэф. седиментации 50S (мол. м. 1 5·106) и 30S (мол. м. 0 85·106). Эукариотическая Р. разделяется на субчастицы 60S и 40S. Две рибосомные субчастицы объединены в полную Р. строго определенным образом предполагающим специфич. контакты их поверхностей.

Как прокариотические так и эукариотические Р. содержат две разл. высокомол. рРНК (по одной на каждую субчастицу) и одну относительно низкомол. рРНК в большой субчастице.

Рибосомные белки большинства животных представлены в осн. умеренно основными полипептидами хотя имеется неск. нейтральных и кислых белков. Мол. м. рибосомных белков варьирует от 6 тыс. до 60 тыс. В прокариотической Р. малая субчастица (30S) содержит ок. 20 большая (508)-ок. 30 разл. белков; в эукариотической P. 40S субчастица включает ок. 30 белков а 60S-ок. 40 (обычно Р. не содержат двух или неск. одинаковых белков). Рибосомные белки характеризуются глобулярной компактной конформацией с развитой вторичной и третичной структурой; они занимают преим. периферич. положение в ядре состоящем из рРНК. В отличие от вирусных нуклеопротеидов в структурно асим. рибосомном нуклеопротеиде рРНК не покрыта сплошной белковой оболочкой а в ряде мест образует пов-сть Р. Плотность упаковки рРНК в Р. достаточно высока и приблизительно соответствует плотности кристаллич. упаковки гидратир. полинуклеотидов.

По-видимому рРНК определяет осн. структурные и функцион. св-ва Р в частности обеспечивает целостность рибосомных субъединиц обусловливает их форму и ряд структурных особенностей. Специфич. пространств. структура рРНК детерминирует локализацию всех рибосомных белков играет ведущую роль в организации функцион. центров Р.

Рибосомный синтез белка-многоэтапный процесс. Первая стадия (инициация) начинается с присоединения матричной РНК (мРНК) к малой рибосомной субчастице не связанной с большой субчастицей. Характерно что для начала процесса необходима именно диссоциированная Р. К образовавшемуся т. наз. инициаторному комплексу присоединяется большая рибосомная субчастица. В стадии инициации участвуют спец. инициирующий кодон (см. Генетический код) инициаторная транспортная РНК (тРНК) и специфич. белки (т. наз. факторы инициации). Пройдя стадию инициации Р. переходит к последоват. считыванию кодонов мРНК по направлению от 5"- к 3"-концу что сопровождается синтезом полипептидной цепи белка кодируемого этой мРНК (подробнее о механизме синтеза полипептидов см. в ст. Трансляция). В этом процессе Р. функционирует как циклически работающая мол. машина. Рабочий цикл Р. при элонгации состоит из трех тактов: 1) кодонзави-симого связывания аминоацил-тРНК (поставляет аминокислоты в Р.) 2) транспептидации-переноса С-конца растущего пептида на аминоацил-тРНК т.е. удлинения строящейся белковой цепи на одно звено 3) транслокации-перемещения матрицы (мРНК) и пептидил-тРНК относительно Р. и переход Р. в исходное состояние когда она может воспринять след. аминоацил-тРНК. Когда Р. достигнет специального терминирующего кодона мРНК синтез полипептида прекращается. При участии специфич. белков (т. наз. факторов терминации) синтезир. полипептид освобождается из Р. После терминации Р. может повторить весь цикл с др. цепью мРНК или др. кодирующей последовательностью той же цепи.



Схема синтеза полипептидной цепи полирибосомой: I-начал о синтеза II-окончание синтеза; а-мРНК б-рибосома в-большая субъединица рибосомы г-малая субъединица рибосомы.

В клетках с интенсивной секрецией белка и развитым эндоплазматич. ретикулумом значит. часть цитоплазмати-ческой Р. прикреплена к его мембране на пов-сти обращенной к цитоплазме. Эти Р. синтезируют полипептиды к-рые непосредственно транспортируются через мембрану для дальнейшей секреции. Синтез полипептидов для внутриклеточных нужд происходит в осн. на свободных (не связанных с мембраной) Р. цитоплазмы. При этом транслирующие Р. не равномерно диспергированы в цитоплазме а собраны в группы. Такие агрегаты Р. представляют собой структуры где мРНК ассоциирована со многими Р. находящимися в процессе трансляции; эти структуры получили назв. полирибосом или полисом.

При интенсивном синтезе белка расстояние между Р. вдоль цепи мРНК в полирибосоме м. б. предельно коротким т.е. Р. находятся почти вплотную друг к другу. Р. входящие в полирибосомы работают независимо и каждая из них синтезирует полную полипептидную цепь (см. рис.).

Рибосома - это округлая рибонуклеопротеиновая частица диаметром 20-30 нм. Она состоит из малой и большой субъединиц объединение которых происходит в присутствии матричной (информационной) РНК (мРНК). Одна молекула мРНК обычно объединяет несколько рибосом наподобие нитки бус. Такую структуру называют полисомой. Полисомы свободно располагаются в основном веществе цитоплазмы или прикреплены к мембранам шероховатой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка. Сравнение соотношения количества свободных и прикрепленных к мембранам полисом в эмбриональных недифференцированных и опухолевых клетках с одной стороны и в специализированных клетках взрослого организма -с другой привело к заключению что на полисомах гиалоплазмы образуются белки для собственных нужд (для «домашнего» пользования) данной клетки тогда как на полисомах гранулярной сети синтезируются белки выводимые из клетки и используемые на нужды организма (например пищеварительные ферменты белки грудного молока).Рибосомы. Так же как и эндоплазматическая сеть рибосомы были открыты только с помощью электронного микроскопа. Рибосомы - самые маленькие из клеточных органелл.

Рибосомы либо располагаются на поверхности мембраны гранулярной ЭПС в один ряд либо образуют розетки и спирали. В тех клетках где хорошо развита гранулярная ЭПС например в полностью дифференцированных клетках печени и поджелудочной железы большинство рибосом связано с ее мембранами. В клетках же где гранулярная ЭПС развита слабо рибосомы преимущественно свободно располагаются в основном веществе цитоплазмы. К клеткам такого типа относятся плазмоциты лимфатических узлов и селезенки овоциты человека и ряд других. Помимо цитоплазмы рибосомы обнаружены и в клеточном ядре где они имеют такую же округлую форму строение и размеры как и рибосомы цитоплазмы. Часть ядерных рибосом свободно располагается в кариоплазме а часть их находится в связи с нитевидными структурами из которых состоят остаточные хромосомы обнаруживаемые обычно при электронномикроскопическом исследовании интерфазного ядра. В последнее время рибосомы обнаружены в митохондриях и пластидах клеток растений.

Биохимический анализ рибосом полученных путем дифференциального центрифугирования клеточных гомогенатов показал что в состав их входит высокополимерная так называемая рибосомальная РНК и белок. Соотношение этих двух компонентов в рибосомах почти одинаково.

Белок рибосом самых разнообразных клеток и разных организмов в общем одинаков по составу аминокислот причем в нем часто преобладают основные аминокислоты а следовательно белки рибосом имеют...? свойства. Рибосомы содержат также Mg2+.

Функции рибосом. Исследование ультраструктуры клеток многочисленных видов многоклеточных растений и животных бактерий и простейших показало что рибосомы - обязательный органоид каждой клетки. Наличие этого органоида во всех клетках однородность его строения и химического состава свидетельствуют о важной роли рибосом в жизнедеятельности клеток. Было выяснено что на рибосомах происходит синтез белков.

В процессах биосинтеза белка роль рибосом заключается в том что к ним из основного вещества цитоплазмы непрерывно подносятся с помощью т-РНК аминокислоты и происходит укладка этих аминокислот в полипептидные цепи в строгом соответствии с той генетической информацией которая передается из ядра в цитоплазму через и-РНК постоянно поступающую к рибосомам. На основании такой функции рибосом в белковом синтезе можно назвать их своего рода "сборочными конвейерами" на которых в клетках образуются белковые молекулы.

В процессе синтеза белка таким образом активное участие принимают т-РНК и и-РНК а роль рибосомальной РНК еще не выяснена. По имеющимся в настоящее время данным рибосомальная РНК не принимает участия в синтезе белковых молекул. В комплексе с белком рибосом она образует строму этого органоида.

При осуществлении процессов синтеза белка в клетках активную роль выполняют не все рибосомы. Специальные биохимические исследования позволили установить. Что наиболее активная роль в синтезе клеточных белков принадлежит рибосомам связанным с мембранами ЭПС. Можно предполагать что эти два органоида теснейшим образом связанные друг с другом представляют собой единый аппарат синтеза (рибосомы) и транспорта (эндоплазматическая сеть) основной массы белка вырабатываемого в клетке.

В рибосомах. Находящихся в ядре происходит синтез ядерных белков. Рибосомы митохондрий и пластид выполняют функцию синтеза части белков содержащихся в этих органоидах.

Вопрос о том где в клетке образуются рибосомы до сих пор не решен но сейчас уже довольно убедительно показано что основным местом формирования рибосом служит ядрышко и образованные в нем рибосомы поступают из ядра в цитоплазму.


1. История исследования рибосомы


Рибосомы впервые были описаны как уплотненные частицы или гранулы клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов. В 1974 г. Паладе Клод и Кристиан Де Дюв получили Нобелевскую премию по физиологии и медицине «за открытия касающиеся структурной и функциональной организации клетки». Термин "рибосома" был предложен Ричардом Робертсом в 1958 вместо "рибонуклеобелковая частица микросомальной фракции". Биохимические и мутационные исследования рибосомы начиная с 1960-х позволили описать многие функциональные и структурные особенности рибосомы. В начале 2000-х появились атомные структуры отдельных субъединиц а также полной рибосомы связанной с различными субстратами которые позволили понять механизм декодинга (распознавания антикодона тРНК комплементарного кодону мРНК) и детали взаимодействий между рибосомой антибиотиками тРНК и мРНК.


2. Строение и функции разновидности рибосом


Рибосома - крупный внутриклеточный макромолекулярный ансамбль ответственный за синтез полипептидной цепи из аминокислот (трансляцию); состоит из молекул РНК (т. наз. рибосомные рибонуклеиновые кислоты или рРНК) и белков.

Основная масса рибосом локализована в цитоплазме. В бактериальной клетке рибосомы составляют до 30% ее сухой массы: на одну бактериальную клетку приходится примерно 104 рибосом. В эукариотических клетках (клетки всех организмов за исключением бактерий и синезеленых водорослей) относительное содержание рибосом меньше и их количество очень сильно варьирует в зависимости от белок-синтезирующей активности соответствующей ткани или отдельной клетки.

В эукариотической клетке все рибосомы цитоплазмы (как мембрано-связанные так и свободные) образуются в ядрышке; считается что там они неактивны. Эукариотическая клетка имеет также специальные рибосомы в митохондриях (у животных и растений) и хлоропластах (у растений). Рибосомы этих органелл отличаются от цитоплазматических размерами и некоторыми функциональными свойствами. Они образуются непосредственно в этих органеллах.

Различают два основных типа рибосом. Всем прокариотическим организмам (бактерии и синезеленые водоросли) свойственны так называемые 70S рибосомы характеризующиеся коэффициентом (константой) седиментации около 70 единиц Сведберга или 70S (по коэф. седиментации различают и рибосомы других типов а также субчастицы и биополимеры входящие в состав Р.). Их молекулярная масса составляет 2 5 · 106 линейные размеры 20-25 нм. По химическому составу это рибонуклеопротеиды; они состоят только из рРНК и белка (соотношение этих компонентов 2:1). Рибосомная РНК в рибосоме присутствует в основном в виде Mg-соли (по-видимому частично и в виде Са-соли); магния в рибосоме до 2% от сухой массы. Кроме того в различных количествах (до 2 5%) могут присутствовать также катионы аминов-спермина H2N(CH2)3NH(CH2)4NH(CH2)3NH2 спермидина H2N(CH2)3NH(CH2)4NH2 и др.

Поскольку коэффициенты седиментации зависят не только от молекулярной массы но и от формы частиц седиментационные коэффициенты при диссоциации неаддитивны: так например бактериальные рибосомы с молекулярной массой ~3*106 Дальтон имеет коэффициент седиментации 70S обозначается как 70S и диссоциирует на субъединицы 50S и 30S: 70S 50S + 30S

Рибосомные субчастицы содержат по одной молекуле рРНК большой длины масса которой составляет ~1/2 - 2/3 массы рибосомной субчастицы таким образом в случае бактериальных рибосом 70S субчастица 50S содержит рРНК 23S (длина ~3000 нуклеотидов) и субчастица 30S содержит рРНК 16S (длина ~1500 нуклеотидов); большая рибосомная субчастица кроме «длинной» рРНК содержит также одну или две «коротких» рРНК (5S рРНК бактериальных рибосомных субчастиц 50S или 5S и 5.8S рРНК больших рибосомных субчастиц эукариот).

Цитоплазма клеток всех эукариотических организмов содержит несколько более крупные 80S рибосомы. Их молекулярная масса около 4·106 линейные размеры 25-30 нм содержание белка в них значительно больше чем в прокариотической рибосоме (соотношение РНК: белок ок. 1:1). Рибосомная РНК 80S также связана в основном с Mg и Са и с небольшим кол-вом полиаминов (спермин спермидин и др.).

Хлоропласты и митохондрии эукариотических клеток содержат рибосомы отличные от типа 80S. Рибосомы хлоропластов высших растений принадлежат к истинному 70S типу. Митохондриальные рибосомы более разнообразны; их строение находится в зависимости от таксономической принадлежности организма (т.е. от принадлежности к определенному виду роду или семейству). Напр. митохондриальные рибосомы млекопитающих существенно мельче типичных 70S Р.; коэффициент седиментации этих рибосом составляет около 55S (т. наз. минирибосомы).

Рибосомы из самых разнообразных организмов имеют сходное строение. Они состоят из двух разделяемых субчастиц или рибосомных субъединиц. При определенных условиях (например при понижении концентрации Mg2 + в среде) рибосома обратимо диссоциирует на две субчастицы с соотношением их молекулярных масс около 2:1. Прокарйотическая 70S рибосома диссоциирует на субъединицы с коэффициентом седиментации 50S (молекулярная масса 1 5·106) и 30S (молекулярная масса 0 85·106). Эукариотическая рибосома разделяется на субчастицы 60S и 40S. Две рибосомные субчастицы объединены в полную рибосому строго определенным образом предполагающим специфические контакты их поверхностей.

Как прокариотические так и эукариотические рибосомы содержат две различные высокомолекулярные рРНК (по одной на каждую субчастицу) и одну относительно низкомолекулярную рРНК в большой субчастице.

Рибосомные белки большинства животных представлены в основном умеренно основными полипептидами хотя имеется несколько нейтральных и кислых белков. Молекулярные массы рибосомных белков варьирует от 6 тыс. до 60 тыс. г/моль. В прокариотической рибосоме малая субчастица (30S) содержит около 20 большая (50S) - около 30 различных белков; в эукариотической рибосоме 40S субчастица включает около 30 белков а 60S-около 40 (обычно рибосомы не содержат двух или нескольких одинаковых белков). Рибосомные белки характеризуются глобулярной компактной конформацией с развитой вторичной и третичной структурой; они занимают преимущественно периферическое положение в ядре состоящем из рРНК. Плотность упаковки рРНК в рибосомах достаточно высока.

По-видимому рРНК определяет основные структурные и функциональные свойства рибосом в частности обеспечивает целостность рибосомных субъединиц обусловливает их форму и ряд структурных особенностей. Специфическая пространственная структура рРНК детерминирует локализацию всех рибосомных белков играет ведущую роль в организации функциональных центров рибосом.

Разделение декодирующей и энзиматической функций между субчастицами

Трансляция начинается с того что мРНК синтезируемая на ДНК в качестве копии одной из двух цепей последней связывается с рибосомной частицей. При этом рибосомная частица (у прокариот прямо и непосредственно а у эукариот после некоторого скольжения вдоль некодирующей части мРНК) специфически взаимодействует с началом кодирующей нуклеотидной последовательности мРНК.

Другие работы по теме:

Федеральное агентство по образованию ТВЕРСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (ТГТУ) Кафедра «Биотехнологии и химии» Дисциплина «Основы микробиологии и биотехнологии»

Биохимическая генетика ее общая характеристика и сущность. Основные понятия о молекулярной биохимической генетике. Понятие нуклеиновых кислот их структура и описание свойств. Сущность белкового синтеза и его особенности. Генетический код и его значение.

Понятие белков, их сущность и особенности, строение и функции в организме. Нуклеиновые кислоты – ДНК и РНК, их строение и значение. Сущность и роль в организме процессов транскрипции и трансляции. Практическое применение в медицине молекулярной генетики.

Строение клетки человека и функции ее органоидов. Клеточная теория. Строение клетки: Клетки находятся в межклеточном веществе, обеспечивающем их механическую прочность, питание и дыхание. Все клетки состоят из ядра и цитоплазмы. Цитоплазма представляет собой полужидкое основное вещество, в котором располагаются все органоиды и происходят все процессы жизнедеятельности.

Ознакомление со строением клетки животного организма и скелета грудной конечности у сельскохозяйственных животных. Основные функции органелл клетки. Определение упитанности заготавливаемого и сдаваемого на убой скота по живой массе и толщине шпика.

По строению клетки живые организмы делят на прокариот и эукариот. Клетки и тех и других окружены плазматической мембраной, снаружи от которой во многих случаях имеется клеточная стенка. Внутри клетки находится полужидкая цитоплазма.

Живые организмы разделили на царства Растений, Грибов, Животных и Простейших (одноклеточных), и царство бактерий, в которую входили все прокариоты. Но когда изучали бактерий, оказалось, что они также делятся на две сильно отличающиеся группы.

Компоненты бактериальной клетки, их функции. Энергетический обмен микробов. Способы получения энергии – брожение, дыхание. Типы дыхания бактерий. Влияние на микробную клетку ядовитых веществ. Стафилококковая интоксикация, возбудитель и его токсин.

История открытия Основная статья: Клеточная теория Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В 1665 году, пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа.

Хлоропласты (от греч. chloros - зеленый и plastos - вылепленный, образованный), внутриклеточные органеллы растительной клетки - пластиды, в которых осуществляется фотосинтез. Окрашены в зеленый цвет благодаря присутствию в них основного пигмента фотосинтеза - хлорофилла. Основная функция хлоропласт, состоящая в улавливании и преобразовании световой энергии, нашла отражение и в особенностях их строения.

Антибиотики – это группа соединений природного происхождения или их полусинтетических и синтетических аналогов, обладающих антимикробным или противоопухолевым действием.

Тема: Тип урока: комбинированный Цель: познакомить учащихся со строением клетки. Задачи: Обучающие Сформировать представление о устройстве живой клетки

Наука о клетке. Предмет цитологии- клетки многоклеточных животных и растений, а также одноклеточных организмов, к числу которых относятся бактерии, простейшие и одноклеточные водоросли. Цитология изучает строение и химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений.

Органоиды Современная цитология относит к органоидам клетки рибосомы, эндоплазм этическую сеть, комплекс Гольджи, митохондрии, клеточный центр, пластиды, лизосомы. Рибосомы (рис. 5) - небольшие сферические тельца,

Молекулярная сущность транскрипции, структура ядерного хроматина. Организация пластического метаболизма на примере секреторной клетки. Осуществление синтеза АТФ, строение цитоскелета. Функции плазматической мембраны и возникновение межклеточных контактов.

Гипотезы возникновения жизни на Земле, которые относятся к сфере научных исследований. Повышение повреждения растений фторидами и сернистым газом при высокой освещенности и влагообеспеченности. Различия между эукаритическими и прокариотическими клетками.

Физические и химические свойства, цветные реакции белков. Состав и строение, функции белков в клетке. Уровни структуры белков. Гидролиз белков, их транспортная и защитная роль. Белок как строительный материал клетки, его энергетическая ценность.

История развития исследований в области физиологии растений. Принципы происхождения и развития хлоропласта из пропластиды в клетке растений. Основные функции, строение, фотосинтез и генетический аппарат хлоропластов. Характеристика продукции фотосинтеза.

Механизмы регуляции экспрессии генов у прокариот и эукариот. Регуляция содержания РНК в процессе биосинтеза. Согласованная регуляция экспрессии прокариотических родственных генов. Репрессия триптофанового оперона. Суммарный эффект аттенуации и репрессии.

Понятие термина "трансляция" как передачи наследственной информации от иРНК к белку. "Перевод" последовательности трехчленных кодонов иРНК в последовательность аминокислот синтезируемого белка. Генетический код и механизм регулирования белкового синтеза.

Рассмотрение свойств (триплетность, непрерывность, неперекрываемость, универсальность) генетического кода. Изучение состава белоксинтезирующей системы. Описание процессов активирования аминокислот и их трансляции как этапов синтеза полипептидной цепи.

План. Введение. 3 1. Строение эукариотической клетки. 5 2. Прокариотическая клетка. 17 Заключение. 20 Список литературы. 21 Введение. Все живые существа состоят из клеток - маленьких, окруженных мембраной полостей, заполненных концентрированным водным раствором химических веществ. Простейшие формы жизни - это одиночные клетки, размножающиеся делением.

Отчёт по лабораторным работам Новосибирск 2002 Лабораторная работа №1 Тема: «Каталитическая активность ферментов в живых тканях» Цель: Сформировать знания о роли ферментов в живых тканях, закрепить умение делать выводы по наблюдениям.

Реферат по биологии Деление клетки. Митоз Выполнил ученик школы №182 11Ж класса: Ермолаев Юра. Проверила Людмила Константиновна. Москва 2001 План: Митоз

Синтез белка Важнейшие функции организма: обмен веществ, развитие, рост, движение – осуществляются биохимическими реакциями с участием белков. Поэтому в клетках непрерывно синтезируются белки: белки-ферменты, белки- гормоны, сократительные белки, защитные белки.

Автотрофные и гетеротрофные клетки, уравнение, сущность фотосинтеза, его световая, темновая фаза. Хемосинтез как преобразование энергии реакций окисления неорганических веществ в химическую энергию синтезируемых органических соединений, биосинтез белков.

Прокариоты и эукариоты, строение и функции клетки. Наружная клеточная мембрана, эндоплазматическая сеть, их основные функции. Обмен веществ и превращения энергии в клетке. Энергетический и пластический обмен. Фотосинтез, биосинтез белка и его этапы.

СТРОЕНИЕ КЛЕТКИ И ФУНКЦИИ ЕЕ ОРГАНОВ. Главные органоиды Строение Функции Цитоплазма Внутренняя полужидкая среда мелкозернистой структуры. Содержит ядро и органоиды.

Французский биохимик и микробиолог, удостоенный в 1965 Нобелевской премии по физиологии и медицине (совместно с А.М.Львовым и Ф.Жакобом) за исследование процессов синтеза белка.

Клеточный центр имеется у большинства животных клеток, а также у некоторых грибов, водорослей, мхов и папоротников. Он расположен вблизи ядра и образован двумя полыми цилиндрами — цен триолями. Каждая цент-риоль состоит из девяти триплетов микротрубочек (9 X 3), связанных специальными белками в единую систему (рис. 35). Центриоли располагаются перпендикулярно друг другу. От них в разных направлениях отходят многочисленные микротрубочки.

Функция центриолей — запуск сборки микротрубочек, т. е. они являются центром «производства» микротрубочек. К центриолям транспортируется белок тубулин, из молекул которого и собираются микротрубочки. Далее они направляются в разные участки клетки, где и выполняют свои функции.

При подготовке клетки к делению происходит удвоение центриолей. Во время деления они попарно расходятся к противоположным полюсам клетки и участвуют в образовании веретена деления. Таким образом, во время деления в клетке содержатся две пары центриолей (по одной паре у каждого полюса).

Рибосомы — немембранные органоиды, осуществляющие синтез белка. Они очень малы (15—30 нм) и содержатся как в эукариотических клетках, так и в клетках прокариот (бактерий). Количество рибосом в разных типах клеток составляет от нескольких тысяч до нескольких миллионов.

Рибосома состоит из двух субъединиц — большой и малой (рис. 36). Каждая субъединица представляет собой комплекс рибосомных РНК (рРНК) с белками. Субъединицы рибосом формируются в ядре, а затем через ядерные поры выходят в цитоплазму. На рибосомах осуществляется сборка молекул белков из аминокислот, доставляемых молекулами транспортных РНК (тРНК).

Большие и малые субъединицы рибосом располагаются в цитоплазме отдельно друг от друга и объединяются только для синтеза белка. Инн-циатором сборки рибосомы служит молекула информационной (матричной) РНК (иРНК, мРНК), содержащая информацию о структуре того белка, который предстоит синтезировать.

Сформированные рибосомы могут находиться в свободном состоянии в гиалоплазме либо прикрепляться к поверхности эндоплазматической сети или ядра. Свободные рибосомы синтезируют белки, необходимые для нужд самой клетки. Рибосомы, прикрепленные к эндоплазматической сети и оболочке ядра, синтезируют белки, предназначенные для выведения из клетки, а также мембранные белки.

1. Чем являются клеточный центр и рибосомы?

Клеточными включениями, немембранными органоидами, мембранными органоидами.

2. Как устроен клеточный центр?

3. Почему клеточный центр называют «центром организации микротрубочек»?

4. Охарактеризуйте химический состав, строение и функцию рибосом.

5. Какие из перечисленных ниже белков синтезируются на свободных рибосомах, а какие — на рибосомах, прикрепленных к поверхности эндоплазматической сети или ядра клетки? Ответ обоснуйте.

а) Инсулин в клетках поджелудочной железы, б) Белки-рецепторы нейромедиаторов в нервных клетках, в) Гемоглобин в молодых эритроцитах.

г) Тубулин в клетках росткового слоя эпидермиса кожи.

д) Фибриноген в клетках печени.

6. Как вы думаете, где содержится больше рибосом — в клетках волосяных луковиц или в клетках жировой ткани? Почему?

7. Известно несколько групп веществ, способных связываться с рибосомами прокариот и нарушать их нормальное функционирование. Важно то, что эти вещества не оказывают подобного действия на рибосомы эукариот. Где находят применение такие вещества? В связи с чем?

    Глава 1. Химические компоненты живых организмов

  • § 1. Содержание химических элементов в организме. Макро- и микроэлементы
  • § 2. Химические соединения в живых организмах. Неорганические вещества
  • Глава 2. Клетка - структурная и функциональная единица живых организмов

  • § 10. История открытия клетки. Создание клеточной теории
  • § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизосомы
  • Глава 3. Обмен веществ и преобразование энергии в организме

  • § 24. Общая характеристика обмена веществ и преобразование энергии
  • Глава 4. Структурная организация и регуляция функций в живых организмах

    Глава 5. Размножение и индивидуальное развитие организмов

    Глава 6. Наследственность и изменчивость организмов

Рибосомы представляют собой рибонуклеопротеидные гранулы – немембранные органоиды общего значения, в которых осуществляется синтез белков, свойственных данному организму.

В цитоплазме клеток они располагаются:

    на поверхности мембраны ЭПС – связанные рибосомы;

    свободно в цитоплазме – свободные;

    входит в состав митохондрий – миторибосомы.

Строение рибосом . Рибосома состоит из двух субъединиц: большой и малой. Каждая субъединица представляет собой комплекс рРНК с белками.

Большая субъединица (60S), содержит три различных молекулы рРНК, связанных с 40 молекулами белков; малая содержит одну молекулу рРНК и 33 молекулы белков. Синтез рРНК осуществляется на петлях хромосом – ядрышковых организаторах (в области ядрышка). Сборка рибосом осуществляется в области пор кариотеки (ядерной мембраны).

Функции рибосом : на рибосомах осуществляется второй этап процесса биосинтеза белка – трансляция – сборка белковых молекул из аминокислот, доставляемых к ним транспортной РНК. Сборка аминокислот производится в соответствии с чередованием нуклеотида в цепи мРНК. Таким способом осуществляется трансляция генетической информации. Свободные рибосомы синтезируют белок, необходимый для жизнедеятельности самой клетки, прикрепленные – белок, подлежащий выведению из клетки.

Формирование рибосом происходит в цитоплазме клетки следующим образом: к молекуле иРНК вначале присоединяется малая субъединица, затем тРНК, и в последнюю очередь большая субъединица. Формируется сложный комплекс из плотно прилегающих друг к другу макромолекул. Имеются также данные о наличии в рибосомах липидов, ионов и ферментов. Соединение отдельных рибосом с мембранами ЭПС осуществляется большими субъединицами.

Во время интенсивного синтеза белков отдельные рибосомы объединяются с помощью информационной РНК, как бы нанизываясь на ее длинную молекулу, в небольшие группы, которые называются полисомами, или полирибосомами. Количество рибосом в полисоме может колебаться от 5 – 7 до 70 – 80 и более, что зависит от размера белковой молекулы.

Биогенез рибосом. Количество рибосом в цитоплазме подвержено значительным колебаниям, отражающим различные функциональные состояния клеток. Ключевая роль в образовании рибосом принадлежит ядрышку. Прямое доказательство того, что ядрышко ответственно за синтез рРНК, было получено в 1964 году, когда открыли, что в мутантных клетках, лишенных ядрышек, синтез рРНК не происходит. Синтез рРНК кодируется рибосомной ДНК, которая локализуется специфических участках хромосом – ядрышкообразующих районах. Рибосомальные белки (их насчитывается более 50 видов) синтезируются в цитоплазме, а затем транспортируются в ядрышки, где происходит их объединение с рРНК. Так в ядрышках образуются большие и малые субъединицы рибосом, которые в дальнейшем транспортируются из ядра в цитоплазму клетки.

Пластинчатый комплекс Гольджи

В 1898 г. итальянский ученый Гольджи, применив метод импрегнации азотнокислым серебром, обнаружил в нервных клетках спинномозгового узла структуры, состоящие из пластинок и пузырьков. Этo и есть пластинчатый комплекс, носивший долгое время имя Гольджи.

Серьезный вклад в понимание значения пластинчатого комплекса внес советский ученый цитолог Д.Н. Насонов (1930), установивший существенную роль этой органеллы в процессах секреции.

Комплекс Гольджи (пластинчатый комплекс, аппарат Гольджи) – одномемранный органоид общего значенияклетки, участвующий в окончательном формировании продуктов ее жизнедеятельности (секретов, коллагена, гликогена, липидов и др.), а также в синтезе гликопротеидов.

Строение пластинчатого комплекса.

Комплекс Гольджи образован тремя компонентами:

    стопкой уплощенных цистерн (мешочков);

    пузырьками;

    секреторными пузырьками (вакуолями).

Зона скопления этих элементов называется – диктиосомы . Таких зон в клетке может быть несколько (иногда несколько десятков и даже сотен). Комплекс Гольджи располагается около ядра клетки, часто вблизи центриолей, реже рассеян по всей цитоплазме.

Диктосиомы связаны между собой каналами. Отдельная диктоксиома чаще всего имеет чашеобразную форму. Она имеет диаметр около 1 мкм и содержит 4 – 8 лежащих параллельно уплощенных цистерн, пронизанных порами. Концы цистерн расширены. От них отщепляются пузырьки и вакуоли, окруженные мембраной и содержащие различные вещества.

Комплекс Гольджи отчетливо поляризован по вертикали. В нем выделяют две поверхности (два полюса):

    цис-поверхность , или незрелая поверхность, которая имеет выпуклую форму, обращена к ЭПС (ядру) и связана с отделяющимися от нее мелкими транспортными пузырьками;

    транс-поверхность , или поверхность вогнутой формы, обращена к плазмолемме, со стороны которой от цистерн комплекса Гольджи отделяются вакуоли (секреторные гранулы).

Функции Комплекса Гольджи:

    синтез гликопротеинов и полисахаридов;

    модификация первичного секрета, его конденсация и упаковка в мембранные пузырьки (формирование секреторных гранул);

    процессинг молекул (фосфорилирование, сульфатирование, ацилирование и т. п.);

    накопление секретируемых клет­кой веществ;

    образование лизосом, пероксисом;

    сборка мембран, обеспечивает обновление плазматической мембраны;

    сортировка синтезированных клеткой белков у транс-поверхности перед их окончательным транспор­том (производится посредством рецепторных белков, распознающих сигнальные участки макромолекул и направляющих их в различные пузырьки);

    транспорт веществ: из транспортных пузырьков вещества проникают в стопку цистерн комплекса Гольджи с цис-поверхности, а выходят из нее в виде вакуолей с транс-поверхности.

Из ЭПС транспортные пузырьки, несущие продукты первичных синтезов, присоединяются к цистернам. В цистернах продолжается синтез полисахаридов, образуются комплексы белков, углеводов и липидов, иначе говоря, приносимые макромолекулы модифицируются. Здесь происходит синтез полисахаридов, модификация олигосахаридов, образование белково-углеводных комплексов и ковалентная модификация переносимых макромолекул.

По мере модификации вещества переходят из одних цистерн в другие. На боковых поверхностях цистерн возникают выросты, куда перемещаются вещества. Выросты отщепляются в виде пузырьков, которые удаляются от КГ в различных направлениях по цитоплазме.

Судьба пузырьков, отщепляющихся от КГ, различна. Одни из них направляются к поверхности клетки и выводят синтезированные вещества в межклеточный матрикс (это или продукты метаболизма или гранулы секрета).

Таким образом, в КГ не только завершаются многообразные синтезы, но и происходит разделение синтезированных продуктов, сортировка в зависимости от их дальнейшего предназначения. Такая функция КГ называется сегрегационной.

Биогенез пластинчатого комплекса . Согласно существующим предположениям пластинчатый комплекс может возникать различными путями:

    вследствие фрагментации (деления) его элементов;

    из мембран гранулярной ЭПС;

    из микропузырьков, образующихся на внешней поверхности ядерной оболочки;

    может образоваться de novo (новообразование).

Рибосома(от «РНК» и soma – тело) – клеточный немембранный органоид, осуществляющий трансляцию (считывание кода мРНК и синтез полипептидов).

Рибосомы эукариот расположены на мембранах эндоплазматической сети (гранулярная ЭС) и в цитоплазме. Прикрепленные к мембранам рибосомы синтезируют белок «на экспорт», а свободные рибосомы – для нужд самой клетки. Различают 2 основных типа рибосом – прокариотные и эукариотные. В митохондриях и хлоропластах также имеются рибосомы, которые близки к рибосомам прокариот.

Рибосома состоит из двух субъединиц – большой и малой. У прокариотических клеток они обозначены 50S и 30S субъединицы, у эукариотических – 60S и 40S. (S – коэффициент, который характеризует скорость осаждения субъединицы при ультрацентрифугировании). Субъединицы эукариотических рибосом образуются путем самосборки в ядрышке и через поры ядра поступают в цитоплазму.

Рибосомы в клетках эукариот состоят из четырех нитей РНК (три молекулы рРНК в большой субъединице и одна молекула рРНК – в малой) и примерно 80 разных белков, т.е представляют собой сложнейший комплекс из молекул, скрепленных слабыми, нековалентными связями. (Рибосомы в клетках прокариот состоят из трех нитей РНК; две нити рРНК находятся в большой субъединице и одна рРНК – в малой). Процесс трансляции (биосинтеза белка) начинается со сборки активной рибосомы. Этот процесс называется инициацией трансляции. Сборка происходит строго упорядоченным образом, что обеспечивается функциональными центрами рибосом. Все центры находятся на контактирующих поверхностях обеих субъединиц рибосомы. Каждая рибосома работает как большая биохимическая машина, а точнее, как суперфермент, который, во-первых, правильно ориентирует участников (мРНК и тРНК) процесса друг относительно друга, а во-вторых, катализирует реакции между аминокислотами.

Активные центры рибосом:

1)центр связывания мРНК (М-центр);

2) пептидильный центр (П-центр). С этим центром в начале процесса трансляции связывается инициирующая тРНК; на последующих стадиях трансляции из А-центра в П-центр перемещается тРНК, удерживающая синтезированную часть пептидной цепи;

3)аминокислотный центр (А-центр) – место связывания кодона мРНК с антикодоном тРНК, несущей очередную аминокислоту.

4)пептидилтрансферазный центр (ПТФ-центр): он катализирует реакцию связывания аминокислот. При этом образуется еще одна пептидная связь, и растущий пептид удлиняется на одну аминокислоту.


Схема синтеза белка на рибосомах гранулярной эндоплазматической сети.

(рис. из книги биология клетки, том II )

Схематическое изображение полирибосомы. Синтез белка начинается со связывания малой субчастицы, в месте расположения AUG -кодона в молекуле информационной (матричной РНК) (рис. из книги биология клетки, том II ).

Эндоплазматическая сеть

Эндоплазматическая сеть (син. эндоплазматический ретикулум)органоид эукариотической клетки. В клетках разного типа и при различных функциональных состояниях этот компонент клетки может выглядеть по-разному, но во всех случаях – это лабиринтная протяженная замкнутая мембранная структура, построенная из сообщающихся трубкообразных полостей и мешочков, называемых цистернами. Снаружи от мембран эндоплазматической сети находится цитозоль (гиалоплазма, основное вещество цитоплазмы), а просвет эндоплазматической сети представляет собой замкнутое пространство (компартмент), сообщающееся посредством везикул (транспортных пузырьков) с комплексом Гольджи и внешней для клетки средой. Эндоплазматическая сеть делится на две функционально различные структуры: гранулярную (шероховатую) эндоплазматическую сеть и гладкую(агранулярную) эндоплазматическую сеть.

Гранулярная эндоплазматическая сеть, в клетках секретирующих белок, представлена системой многочисленных плоских мембранных цистерн с рибосомами на наружной поверхности. Комплекс мембран гранулярной эндоплазматической сети связан с наружной мембраной оболочки ядра и перинуклеарной (околоядерной) цистерной.

В гранулярной эндоплазматической сети происходит синтез белков и липидов для всех мембран клетки, синтезируются ферменты лизосом, а также осуществляется синтез секретируемых белков, т.е. предназначенных для экзоцитоза. (Остальные белки синтезируются в цитоплазме на рибосомах, не связанных с мембранами ЭС.) В просвете гранулярной ЭС белок окружается мембраной, и образующиеся пузырьки отделяются (отпочковываются) от несодержащих рибосомы областей ЭС, которые и доставляют содержимое в другую органеллу – комплекс Гольджи – путем слияния с ее мембраной.

Та часть ЭС, на мембранах которой рибосомы отсутствуют, называется гладким эндоплазматическим ретикулумом. Гладкая эндоплазматическая сеть не содержит уплощенных цистерн, а представляет собой систему анастомозирующих мембранных канал

ов, пузырьков и трубочек. Гладкая сеть является продолжением гранулярной, однако не содержит рибофоринов – гликопротеиновых рецепторов, с которыми соединяется большая субъединица рибосом и поэтому не связана с рибосомами.

Функции гладкой эндоплазматической сети многообразны и зависят от типа клеток. Гладкая эндоплазматическая сеть участвует в метаболизме стероидных, например, половых гормонов. В ее мембранах локализованы управляемые кальциевые каналы и энергозависимые кальциевые насосы. Цистерны гладкой эндоплазматической сети специализированы для накопления в них Са 2+ путем постоянного откачивания Са 2+ из цитозоля. Подобные депо Са 2+ существуют в скелетной и сердечной мышцах, нейронах, яйцеклетке, эндокринных клетках и др. Различные сигналы (например, гормоны, нейромедиаторы, факторы роста) влияют на активность клеток путем изменения концентрации внутриклеточного посредника – Са 2+ . В гладкой эндоплазматической сети клеток печени происходит обезвреживание вредных веществ, (например ацетальдегида, образующегося из алкоголя), метаболическая трансформация лекарств, образование большей части липидов клетки и их накопление, например при жировой дистрофии. В полости ЭС содержится много различных молекул-компонентов. Среди них имеют большое значение белки шапероны.


Шапероны (англ. букв. – пожилая дама, сопровождающая молодую девушку на балах) – семейство специализированных внутриклеточных белков, обеспечивающих быстрое и правильное сворачивание (фолдинг) вновь синтезированных молекул белка. Связывание с шаперонами препятствует агрегации с другими белками и тем самым создает условия для формирования вторичной и третичной структуры растущего пептида. Шапероны принадлежат к трем белковым семействам, так называемым белкам теплового шока (hsp 60, hsp 70, hsp 90). Синтез этих белков активируется при многих стрессах, в частности, при тепловом шоке (отсюда и название h eart shook protein – белок теплового шока, а цифра обозначает его молекулярную массу в килодальтонах). Эти шапероны предотвращают денатурацию белков при высокой температуре и др. экстремальных факторах. Связываясь с аномальными белками, восстанавливают их нормальную конформацию и тем самым повышают выживаемость организма при резком ухудшении физико-химических параметров среды.