Рычаг. Равновесие рычага

В физике простыми механизмами называют приспособлении типа рычагов или винтов. Они предназначены для того, чтобы уменьшить необходимое для производства работы усилие человека и использовать это усилие наиболее эффективно. Часто несколько простых механизмов соединяют вместе. В результате получаются более сложные механизмы - сверла, часы. Колесо - одно из важнейших изобретений человечества. На нем основано действие многих механизмов.

Работа и мощность

Работа - физический термин, применяемый при рассмотрении движении тела под воздействием силы. Работа производится только тогда, когда есть передвижение тела и направлении действия силы. Тягловая сила быков и усилие человека заставляют плуг двигаться, значит, производиться работа. Работа - это передача энергии от одного тела к другому. Как и , работа измеряется в джоулях (Дж). 1 Дж равен работе (и затраченной энергии), произведенной при передвижении тела на 1 метр силой в 1 Н. Челочек, толкает ящик на З метра, прикладывая силу в 100 Н. Значит, проделана работа и в 300 Дж.

Мощность - это скорость, с которой производится работа (или передается энергия). Единица мощности - ватт (Вт); названа и честь Джеймса Уатта (см. статью « »). Что­бы вычислить мощность, нужно работу разделить на затраченное на нее время. Если мы хотим передвинуть этот ящик не за 2 минуты, а за одну, то нам потребуется вдвое большая мощность.

Усилие и нагрузка

Чтобы сдвинуть тело с места, необходи­мо преодолеть известную силу, называемую нагрузкой; часто это просто вес тела. Простые механизмы помогают человеку более эффективно использовать прилагаемое усилие. Нагрузка равна силе, развиваемой отверткой; она больше, чем затраченное человеком усилие. Усилие - это сила, поворачивающая рукоятку. Разделив нагрузку на усилие, мы получим отношение, называемое выигрышем в силе. Сжимая ручки щипцов, мы прикладываем к ним силу в 1 Н. При этом нам необходимо преодолеть нагружу в 4 Н, чтобы расколоть орех. Значит, выигрыш в силе равен 4:1. Если выигрыш в силе равен 4:1, это значит, что сила, прикладываемая механизмом к объекту, вчетверо превышает усилие человека. Такие механизмы называются усилителями .

Рычаги

Рычаг - это стержень, поворачивающийся вокруг неподвижной точки опоры. Рычаг облегчает манипуляции с тяжелыми грузами. Типы рычагов различаются положением точки опоры по отношению к месту приложения усилия и нагрузки. В рычагах первого типа точка опоры находится между точками приложении усилии и нагрузки. В рычагах второго типа па группа находится между точкой приложения усилии и точкой опоры. В рычагах третьего типа (см. рис.) усилие прикладывается между нагрузкой и точкой опоры. Чем дальше точка опоры от места усилия, тем легче работать с рычагом (подробнее об этом читайте в статье « », раздел «Вращающие силы»). Естественно, чаще используются более длинные рычаги.

Колесо

Когда колесо поворачивается, то на его ось действует большая сила, чем на обод. Этот эффект используется для получения выигрыша в силе, например в рулевом колесе. Чем больше руль, тем легче поворачивается его ось. Когда колесо фонографа поворачивается, на ось воздействует сила, достаточная для действия механизма. При повороте оси колесо переводит вращательное движение в прямолинейное движение, благодаря чему с его помощью возможно перемещение грузов. Точки обода колеса проходят большее расстояние, чем ось, т.к. диаметр колеса больше диаметра оси. Колесики роликовых коньков поворачиваются вокруг своих осей, и благодаря этому ботинок движется прямолинейно.

Зубчатая передача используется в различных сложных машинах, от автомобиля до часов, для изменения вращающей силы и скорости вращения. В такой передаче изменяется направление и величина вращающего усилия. Для зубчатой передачи необходимы два и более зубчатых колеса; зубцы одного точно входят в пазы другого. Тогда вращение одного ко­леса вызывает вращение другого. Большая шестерня заставляет маленькую вращаться быстрее, и наоборот. Действие механических часов основано на сложной системе взаимосвязанных зубчатых колес.

Винты

Винт — это стержень с резьбой, т. е. его можно рассматривать как наклонную плоскость, «надетую» на цилиндр. Стержень — это цилиндр, а резь­ба - наклонная плоскость. Чтобы погрузить штопор в пробку, его приходится повернуть, много раз, но это всё же легче, чем вонзить его без вращения. Вращающая сила благодаря резьбе превращается в силу, действующую вдоль оси винта. Эта сила заставляет винт погружаться в препятствие. Спиральная лестница – это тот же винт. Идти по ней долго, тем не менее карабкаться вертикально вверх ещё труднее.

Блок

Блок облегчает подъем тяжелых грузов. На нем основано действие лифтов и кранов. Груз укрепляют на конце каната, переброшенного через колесо (или систему колес) с желобком на ободе. Если потянуть другой конец каната, груз начнет подниматься. Чтобы поднять тело при помощи блока, вы должны тянуть вниз: при этом вес нашего тела помогает процессу. Чем больше колес входит в блок, тем легче поднимать груз, так как его вес распределяется по большему участку каната. такой кран может поднять вчетверо больший груз, чем одноколесный блок, так как вес распределён по четырём участкам каната.

Вот как работает рычаг первого типа. Положите на карандаш плоскую деревянную или металлическую полоску, например прочную линейку. На один коней линейки положите книгу. Нажмите на линейку с другой стороны, и книга поднимется. Попробуйте переместить карандаш под линейкой, и вы увидите, что чем длиннее рычаг, тем легче под­нимать груз.

Использование простых механизмов

Простые механизмы используются самыми разнообразными способами в составе более сложных ма­шин. В нашем теле, как и в телах животных, есть заложенные природой простые механизмы. – древнейший механизм для перекачки воды из рек. идёт вверх по наклонностям при вращении винта. – простейшая форма винта. Он заставляет корабль двигаться в воде (см. статью « «), а самолёт – в воздухе (см. статью « «). Веер – это рычаг третьего типа. Когда вы обмахиваетесь веером, ваше запястье работает как точка опоры.

Наклонная плоскость

Примерами наклонных плоскостей могут служить скат или склон холма. По наклонной плоскости поднимать грузы лег­че, чем вертикально, так как груз проходит большее расстояние, следовательно, для производства той же самой работы требуется меньшая сила. Наклонная плоскость в 8 раз длиннее вертикальной линии, значит, на подъем груза необходима сила в 8 раз меньше. Строители египетских пирамид (подробнее об этом в статье « »), возможно, использовали спиралевидные наклонные плоскости для подъёма колоссальных каменных блоков на вершину пирамид. Высота самых больших пирамид около 146 метров.

На данном уроке, тема которого: «Простые механизмы» мы поговорим о механизмах, которые помогают нам в работе. На стройках, на производстве, на отдыхе - везде мы нуждаемся в помощи. Такими помощниками выступают рычаги. Сегодня мы о них и поговорим, а также решим задачу и разберем несколько самых простых примеров из жизни.

На данном уроке речь пойдет о простых механизмах.

Простые механизмы - это устройства, с помощью которых работа совершается только за счет механической энергии. Нас окружают устройства, работающие за счет электроэнергии (см. рис. 1), за счет энергии сгорания топлива, но не всегда так было.

Рис. 1. Чайник, работающий за счет электроэнергии

Раньше всю работу можно было выполнить фактически руками, или с помощью животных, за счет ветра или течения воды (мельницы), то есть за счет механической энергии (см. рис. 2).


Рис. 2. Давние простые механизмы

И помогают в этом, облегчают выполнение работы, простые механизмы.

Наши силы ограничены, и это проблема. Мы, например, не можем за один раз поднять и перенести с одного места на другое тонну кирпичей. Зато мы можем потратить больше времени, пройти большее расстояние туда-сюда и перенести кирпичи по четыре за один подход, или сколько сможем унести. Как быть с шурупом, который нужно вкрутить в дерево? Вкрутить его голыми руками мы не можем. Вкрутить его по кусочку, как гору кирпичей по кирпичику, тоже нельзя. Нужно использовать механизм, отвертку. С ней нам приходится прокрутить шуруп на несколько оборотов, чтобы он вошёл в дерево хотя бы на сантиметр. Но зато это несравненно легче, чем руками.

Рассмотрим такой простой механизм, как, например, лопата. Конечно, она облегчает выполнение работы, с ней намного легче копать землю, чем руками. Мы воткнули лопату в землю. Чтобы поднять ком земли, нужно надавить на черенок. Где вы будете давить, чтобы было легче? Опыт подсказывает, что надо надавить, то есть приложить силу, поближе к концу черенка (см. рис. 3).

Рис. 3. Выбор точки приложения силы

Попробуйте приложить силу ближе к полотну лопаты, поднять ком земли станет намного тяжелее. Прикладывая прежнюю силу, вы уже ничего не поднимете. Именно поэтому лопаты с коротким черенком, например саперные, делаются с маленьким полотном: много земли с коротким черенком все равно не поднимешь.

Лопата представляет собой рычаг. Рычаг - это твердое тело, имеющее неподвижную ось вращения (чаще всего это точка опоры или подвеса). На него действуют силы, которые стремятся повернуть его вокруг оси вращения. У лопаты ось вращения - это точка опоры на верхнем краю ямки (см. рис. 4).

Рис. 4. Ось вращения лопаты

На полотно лопаты с некоторой силой действует комок земли, который мы поднимаем, а на черенок, с меньшей силой, - наши руки (см. рис. 5).

Рис. 5. Действие сил

Рассмотрим другой пример: все катались на качелях-балансире (см. рис. 6).

Рис. 6. Качели-балансир

Это тоже рычаг: есть неподвижная ось вращения, вокруг которой качели вращаются под действием сил тяжести детей.

Чтобы перевесить своего друга, сидящего на противоположном сидении, поднять его, вы сядете на самый край качели. Если сядете ближе к опоре качели, можете не перевесить. Тогда нужно на ваше место посадить кого-то взрослого и тяжелого (см. рис. 7).

Рис. 7. Приложенная сила должна быть больше, чем на краю

В такой точке приложения силы нужна большая сила, чем когда сила прикладывалась к краю качели (см. рис. 8).

Рис. 8. Приложение сил

Как вы уже заметили, чем дальше от точки опоры мы приложим силу, тем меньшая нужна сила для совершения одной и той же работы. Причем сила нужна во столько же раз меньшая, во сколько раз больше плечо рычага. Плечо рычага - это расстояние от точки опоры или подвеса рычага до точки приложения силы (см. рис. 9).

Рис. 9. Плечо рычага и сила

Силы будем прикладывать перпендикулярно рычагу.

Направление силы, действующей на рычаг

В каком направлении вы будете действовать на лопату, чтобы поднять землю? Вы приложите силу к лопате так, чтобы она оборачивалась вокруг точки опоры, то есть перпендикулярно черенку (см. рис. 10).

Если вы будете действовать вдоль черенка, землю это не поднимет, вы разве что вытащите лопату из земли или воткнете ее глубже. Если вы будете давить на черенок под углом, силу можно представить как сумму двух сил: вы давите перпендикулярно черенку и одновременно толкаете или тащите вдоль черенка (см. рис. 11).

Рис. 11. Действие силы вдоль черенка

Вращать лопату будет только перпендикулярная составляющая.

Итак, у нас есть рычаг и две силы, которые на него действуют: вес груза и сила, которую мы прикладываем, чтобы этот груз поднять. Мы выявили, что чем больше плечо рычага, тем меньше нужна сила, чтобы уравновесить рычаг. Причем во сколько раз больше плечо рычага, во столько раз меньше сила. Математически это можно записать в виде пропорции:

При этом неважно, приложены силы по разные стороны от точки опоры или по одну сторону. В первом случае рычаг назвали рычагом первого рода (см. рис. 12), а во втором - рычагом второго рода (см. рис. 13).

Рис. 12. Рычаг первого рода

Рис. 13. Рычаг второго рода

Работа с лопатой

Мы рассмотрели, как лопата позволяет нам легче копать землю. Она опирается на край образовавшейся ямки в земле, это будет осью ее вращения. Вес земли приложен к короткому плечу рычага, мы руками прикладываем силу к длинному плечу рычага (см. рис. 14).

Рис. 14. Приложение сил к лопате

Причем во сколько раз отличаются плечи рычага, во столько же раз отличаются силы, приложенные к этим плечам.

Итак, мы приподняли ком земли, но дальше нужно взять лопату двумя руками, поднять ее полностью и перенести землю. Где мы возьмемся за черенок лопаты второй рукой? Всё просто, когда мы уже знаем принцип работы рычага. Вторая рука станет новой опорой рычага. Она должна быть расположена так, чтобы снова дать выигрыш в силе, она должна снова разделить рычаг на короткое и длинное плечи. Поэтому мы возьмем лопату как можно ближе к полотну лопаты. Попробуйте поднять лопату, взявшись обеими руками за край - у вас может ничего не получиться даже с пустой лопатой.

Принцип, по которому работает рычаг, используется очень часто. Например, плоскогубцы - рычаг первого рода (см. рис. 15). Мы действуем на ручки плоскогубцев с силой , а плоскогубцы действуют на кусок проволоки, трубку или гайку с силой , по модулю намного большей, чем . Во столько раз большей, во сколько раз больше:

Рис. 15. Пример рычага первого рода

Еще один рычаг - консервный нож, только теперь точки приложения находятся по одну сторону от точки опоры О. И снова мы прикладываем к ручке силу , а лезвие открывалки действует на жесть консервной банки с намного большей по модулю силой (см. рис. 16).

Рис. 16. Пример рычага второго рода

Во сколько раз больше, чем ? Во столько же, во сколько раз больше, чем :

Выигрыш в силе можно получить огромный, мы ограничены разве что длиной рычага и его прочностью.

Рассчитаем, какой длины должен быть рычаг, чтобы с его помощью хрупкая девушка массой 50 кг смогла приподнять автомобиль массой 1500 кг, надавив на рычаг всем своим весом. Точку опоры рычага разместим так, чтобы короткое плечо рычага было равно 1 м (см. рис. 17).

Рис. 17. Рисунок к задаче

В задаче описан рычаг (см. рис. 18).

Рис. 18. Условие задачи 1

Мы знаем, во сколько раз выигрыш в силе дает рычаг:

Силы прикладываются по разные стороны от опоры рычага, поэтому два плеча рычага в сумме составят его длину:

Мы описали математически процесс, заданный в условии. В нашем случае сила , действующая на плечо , - это вес автомобиля , а сила , действующая на плечо , - вес девушки .

Теперь осталось только решить уравнения и найти ответ.

Из первого уравнения найдем плечо .Бόльшая сила приложена к меньшему плечу рычага, значит - это и есть короткое плечо, равное 1 м.

Длина рычага равна:

Ответ: 31 м.

Как лопата копает сама?

Рассматривая примеры, мы не учитывали силу тяжести, действующую на рычаг.

Представьте, что мы воткнули лопату неглубоко в землю. Если лопата достаточно тяжелая, небольшую массу земли она сможет поднять без нашей помощи, нам даже не нужно будет прикладывать к черенку никакую силу. Лопата повернется вокруг оси вращения под действием сил тяжести, действующей на черенок лопаты (см. рис. 19).

Рис. 19. Поворачивание лопаты вокруг своей оси

Однако чаще всего вес рычага пренебрежимо мал по сравнению с силами, которые на него действуют, поэтому в нашей модели мы считаем рычаг невесомым.

На примере девушки и автомобиля мы увидели, что с помощью рычага можно выполнить такую работу, которую без рычага мы бы никогда не выполнили. С помощью рычага можно было бы сдвинуть даже Землю, о чем говорил Архимед (см. рис. 20).

Рис. 20. Предположение Архимеда

Проблема в том, что рычаг не на что опереть, нет подходящей точки опоры. И вы, конечно, представляете, какой невообразимой длины должен быть такой рычаг, ведь масса Земли равна 5974 миллиарда миллиардов тонн.

Слишком всё хорошо получается: мы можем почти неограниченно уменьшать силу, необходимую для выполнения работы. Должен быть подвох, иначе с рычагом наши возможности были бы безграничны. В чем подвох?

Используя рычаг, мы прикладываем меньшую силу, но при этом совершаем большее перемещение (см. рис. 21).

Рис. 21. Перемещение увеличивается

Мы передвинули черенок лопаты на вытянутую руку, но подняли землю всего на несколько сантиметров. Архимед, если бы всё-таки нашел точку опоры, за всю свою жизнь не успел бы повернуть свой рычаг так, чтобы сдвинуть Землю. Чем меньшую силу мы прикладываем, тем большее перемещение совершаем. А произведение силы на перемещение, то есть работа, остается постоянным. То есть рычаг дает выигрыш в силе, но проигрыш в перемещении, или наоборот.

Рычаги, которые используются «наоборот»

Не всегда рычаги используются для того, чтобы совершать работу, прикладывая меньшую силу. Иногда важно выиграть в перемещении, даже если при этом приходится прикладывать бόльшую силу. Так делает рыбак, которому нужно вытащить рыбу, переместить ее на большое расстояние. При этом он использует удочку как рычаг, прикладывая силу к ее короткому плечу (см. рис. 22).

Рис. 22. Использование удочки

Рычагом является и наша рука. Мышцы руки сокращаются, и рука сгибается в локте. При этом она может поднять какой-нибудь груз, совершить работу. При этом на кости предплечья действуют с некоторыми силами мышцы и груз (см. рис. 23).

Рис. 23. Наша рука - рычаг

Ось вращения предплечья - локтевой сустав. Из таких рычагов состоит весь наш опорно-двигательный аппарат. И сам термин «плечо рычага» назван так по аналогии с плечом одного из рычагов в нашем теле - руки.

Мышцы так устроены, что они при сокращении не могут укорачиваться на те полметра, на которые нам нужно поднять, например, чашку с чаем. Нужно выиграть в перемещении, поэтому мышцы крепятся ближе к суставу, к меньшему плечу рычага. При этом нужно приложить бόльшую силу, но для мышц это не проблема.

Рычаг - не единственный простой механизм, который облегчает нам выполнение работы.

Каким простым механизмом вы пользуетесь, когда поднимаетесь на первый этаж? Можно допрыгнуть до окна, если получится, и просто вскарабкаться в комнату. Мы привыкли совершать ту же работу по перемещению себя домой намного безопаснее и легче - поднимаясь по лестнице. Так мы проделываем больший путь, но прикладываем к себе меньшую силу. Если мы сделаем длинную пологую лестницу, подниматься станет еще легче, будем идти почти как по ровной поверхности, но путь проделать придется бόльший (см. рис. 24).

Рис. 24. Пологая лестница

Наклонная плоскость является простым механизмом. Всегда легче не поднимать что-то тяжелое, а втащить его под уклон.

Рассмотрим, как топор раскалывает древесину. Его лезвие заостренное и расширяется ближе к основанию, и чем глубже клин топора вгоняется в древесину, тем шире она раздается и в итоге раскалывается (см. рис. 25).

Рис. 25. Рубка дров

Принцип действия клина тот же, что и для наклонной плоскости. Чтобы раздвинуть части древесины на сантиметр, нужно было бы приложить огромную силу. К клину достаточно приложить меньшую силу, правда, придется совершить большее перемещение вглубь древесины.

По тому же принципу наклонной плоскости работают и винты. Присмотримся к шурупу: бороздка вдоль шурупа представляет собой наклонную плоскость, только обернутую вокруг стержня шурупа (см. рис. 26).

Рис. 26. Наклонная плоскость шурупа

И мы также без особых усилий вгоняем шуруп на нужную нам глубину. При этом, как обычно, проигрываем в перемещении: нужно сделать много оборотов шурупа, чтобы вогнать его на пару сантиметров. В любом случае это лучше, чем раздвинуть древесину и вставить туда шуруп.

Когда мы вкручиваем шуруп отверткой, мы еще больше облегчаем себе работу: отвертка представляет собой рычаг. Смотрите: сила, с которой на жало отвертки действует шуруп, приложена к меньшему плечу рычага, а мы своей рукой действуем на большее плечо (см. рис. 27).

Рис. 27. Принцип работы отвертки

Рукоятка отвертки толще, чем жало. Если бы у отвертки были ручки, как у штопора, выигрыш в силе был бы еще больше.

Мы так часто пользуемся простыми механизмами, что даже не замечаем этого. Возьмем обычную дверь. Сможете назвать три случая использования простого механизма в работе двери?

Обратите внимание, где находится ручка. Она всегда находится у края двери, подальше от петель (см. рис. 28).

Рис. 28. Местоположение ручки на двери

Попробуйте открыть или закрыть дверь, надавив на нее поближе к петлям, будет трудно. Дверь представляет собой рычаг, и чтобы для открытия двери было достаточно как можно меньшей силы, плечо этой силы должно быть как можно больше.

Присмотримся к самой ручке. Если бы она представляла собой голую ось, открыть дверь было бы трудно. Ручка увеличивает плечо, к которому приложена сила, и мы, прикладывая меньшую силу, открываем дверь (см. рис. 29).

Рис. 29. Ручка двери

Присмотримся к форме ключа. Думаю, вы сможете ответить, зачем их делают с широкими головками. А почему петли, на которых дверь держится, расположены не рядом друг с другом, а приблизительно на четверть высоты от краев двери? Вспомните, как мы брали лопату, когда поднимали ее - здесь тот же принцип. А еще можно обратить внимание на срезанный под углом язычок замка, на шурупы, которыми дверь прикручена к петлям (см. рис. 30).

Рис. 30. Петли двери

Как видите, простые механизмы лежат в основе всевозможных устройств - от двери и топора до подъемного крана. Мы используем их неосознанно, когда выбираем, например, где взяться за ветку, чтобы наклонить ее. Сама природа при создании человека использовала простые механизмы, когда создавала нашу опорно-двигательную систему или зубы с их клиновидной формой. И если вы будете внимательны, вы заметите еще множество примеров того, как простые механизмы облегчают выполнение механической работы, и сможете их использовать еще более эффективно.

На этом наш урок окончен, спасибо за внимание!

Список литературы

  1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. - 2-е издание, передел. - X.: Веста: Издательство «Ранок», 2005. - 464 с.
  2. Перышкин А.В. Физика: Учебник 7 класс. - М.: 2006. - 192 с.
  1. Virtuallab.by ().
  2. School.xvatit.com ().
  3. Лена24.рф ().
  4. Fizika.ru ().

Домашнее задание

  1. Что такое рычаг? Дайте определение.
  2. Какие примеры рычагов вы знаете?
  3. Длина меньшего плеча рычага 5 см, большего 30 см. На меньшее плечо действует сила 12 Н. Какую силу надо приложить к большему плечу, чтобы уравновесить рычаг?

Когда приходится приподнимать тяжелый груз, например, большой валун на поле, часто поступают так: подсовывают прочную палку одним концом под валун, подкладывают близ этого конца небольшой камень, полено или что-нибудь другое для опоры и налегают рукой на другой конец палки. Если валун слишком тяжел, то таким способом удается его приподнять с места.

Такая прочная палка, могущая поворачиваться вокруг одной точки, называется «рычагом», а точка, вокруг которой рычаг поворачивается, – его «точкой опоры». Надо запомнить также, что расстояние от руки (вообще от точки, где приложена сила) до точки опоры называется «плечом рычага»; так же называется расстояние от места, где на рычаг напирает камень, до точки опоры. У каждого рычага, следовательно, два плеча. Эти названия частей рычага нам нужны для того, чтобы было удобнее описать его действие.

Испытать работу рычага нетрудно: вы можете превратить в рычаг любую палочку и пробовать опрокидывать ею хотя бы стопку книг, подпирая свой рычаг книгой же. При таких опытах вы заметите, что, чем длиннее плечо, на которое вы напираете рукой, по сравнению с другим плечом, тем легче поднять груз. Вы можете на рычаге небольшою силою уравновесить большой груз только тогда, когда действуете на достаточно длинное плечо рычага, – длинное по сравнению с другим плечом. Каково же должно быть соотношение между вашею силою, величиной груза и плечами рычага, чтобы сила ваша уравновешивала груз? Соотношение таково: ваша сила должна быть во столько раз меньше груза, во сколько раз короткое плечо меньше длинного.

Приведем пример. Предположим, нужно поднять камень весом 180 кг; короткое плечо рычага равно 15 см, а длинное – 90 см. Силу, с которой вы должны напирать на конец рычага, обозначим буквой х. Тогда должна существовать пропорция:

х: 180= 15: 90.

Значит, вы должны напирать на длинное плечо с силою 30 кг.

Еще пример: вы в состоянии налегать на конец длинного плеча рычага с силою только 15 кг. Какой наибольший груз можете вы поднять, если длинное плечо равно 64 см, а короткое – 28 см?

Обозначив неизвестный груз через х, составляем пропорцию:

15: х = 28: 84,

Значит, вы можете таким рычагом поднять не больше 45 кг.

Сходным образом можно вычислить и длину плеча рычага, если она неизвестна. Например, сила в 10 кг уравновешивает на рычаге груз в 150 кг. Какой длины короткое плечо этого рычага, если его длинное плечо равно 105 см?

Обозначив длину короткого плеча буквою х, составляем пропорцию:

10: 150 = х: 105,

Короткое плечо равно 7 см.

Тот вид рычага, который был рассмотрен, называется рычагом первого рода. Существует еще рычаг второго рода, с которым мы теперь познакомимся.

Предположим, нужно поднять большой брус (рис. 14). Если он слишком тяжел для ваших сил, то вы засовываете под брус прочную палку, упираете ее конец в пол и тянете за другой конец вверх. В данном случае палка является рычагом; точка его опоры на самом конце; ваша сила действует на второй конец; но груз напирает на рычаг не по другую сторону от точки опоры, а по ту же сторону, где приложена ваша сила. Иными словами, плечи рычага в данном случае: длинное – полная длина рычага и короткое – часть его, засунутая под брус. Точка же опоры лежит не между силами, а вне их. В этом отличие рычага 2-го рода от рычага 1-го рода, у которого груз и сила расположены по разные стороны от точки опоры.

Рис. 14. Рычаги 1-го и 2-го рода: груз и сила расположены по разные стороны от точки опоры

Несмотря на это отличие, соотношение сил и плеч на рычаге 2-го рода такое же, как на рычаге 1-го рода: сила и груз обратно пропорциональны длинам плеч. В нашем случае, если для непосредственного поднятия двери нужно, например, 27 кг, а длина плеч 18 см и 162 см, то сила х, с которой вы должны действовать на конец рычага, определяется из пропорции

28 апреля в школе будет проходить научно-практическая конференция НОУ "Спектр".

Немного истории

Давным-давно, еще в 2005 году мы с моими учениками в школе организовали научное общество "Пифагорёнок", где занимались различной деятельностью от разбора олимпиадных задач, до исследовательских работ. Ежегодно, привлекая и других математиков школы, проводили конференции, затем вывозили ребят на конференции в Нальчик. Ежегодно наши ребята занимали призовые места на республиканских конкурсах. Все было как надо, у нас был свой устав, программа, требования. В конце года подводили итоги и каждому члену НОУ присваивались академические звания:

  • «почетный академик» - победителям и призерам международных и российских, республиканских предметных олимпиад, смотров, конкурсов;
  • «академик» - призерам областных и городских предметных олимпиад, конкурсов, смотров;
  • «магистр» - победителям школьных олимпиад, смотров, конкурсов;
  • «бакалавр» - призерам школьных олимпиад, смотров, конкурсов.
Вот такое свидетельство получали ребята (знаете они были очень рады им). Была такого рода игра у нас.

О нашем обществе тогда знали все. Гудели. На конференции в Нальчике как-то нам сказали, что не могут нам каждый раз давать призовые места, не вести много работ на конкурс. Что тоже сыграло свою роль. Когда член жюри, республиканского конкурса, при детях говорит "Ваши работы самые лучшие, но мы не можем дать больше одного места" ....
http://alfusja-bahova.ucoz.ru/index/nou_quot_pifagorenok_quot/0-5
Кстати, все ребята, которые тогда занимались в научном обществе без труда поступили в лучшие технические ВУЗы Москвы и Питера, на данный момент закончили успешно университеты. А одну девочку оставили в университете в Питере (не могу сейчас точно назвать названия вузов). Горжусь своими ребятами.

Но всему приходит конец. И нашему НОУ тоже. За эту работу мне никто ничего не оплачивал, а как только стали за это платить, "такая корова нужна самому", выяснилось, что "Пифагорёнок" нашей школе не нужен, создали новое общество "Спектр", где все проводится "спустя рукава", не хочу даже говорить об этом.

После одного пренеприятного случая перестала принимать с ребятами участия в школьных конференциях.

А в этом году, решила все же выйти на конференцию школьную со своими кружковцами. В среду приступили к проекту. Посмотрим, что получится.

На очередном занятии кружка приступили к исследовательскому проекту "Рычаг. Виды рычагов. Рычаги в быту человека".
Цель и задачи исследовательской работы:

  1. Изучить устройство и принцип действия рычага;
  2. Собрать механизм «Рычаг» с помощью Lego «Физика и технология»;
  3. Исследовать свойства рычага. Выяснить условие равновесия рычага;
  4. Анкетирование одноклассников;
  5. Исследовать использование рычага в доме, в быту, в технике, в спорте и развлечениях;
  6. Выводы.
Разобрали с ребятами:

Знаете ли вы?

Термин «рычаг» (англ. lever)происходит от французского слова levier, которое в переводе означает «поднимать»
С древних времен для облегчения своего труда человек использует различные механизмы, которые способны преобразовывать силу человека в значительно большую силу. Еще три тысячи лет назад при строительстве пирамид в Древнем Египте тяжелые каменные плиты передвигали и поднимали с помощью простых механизмов.
Рычаг – это жесткий стержень или твердый предмет, который служит для передачи силы. С помощью рычага можно изменять прикладываемую силу (усилие), направление и расстояние перемещения. В каждом рычаге обязательно присутствуют усилие, опора (или ось вращения) и нагрузка (груз). В зависимости от их взаимного расположения различают рычаги первого, второго и третьего рода.
На этом занятии разобрали устройство и принцип действия рычага. С помощью Лего собрали три рода механизма "Рычаг". Попытались провести первичное исследование. Узнали что у любого рычага есть точка опоры, точка приложения усилия и точка приложения нагрузки (т.е. груз)
Виды рычагов
В рычагах первого рода точка опоры расположена между точками приложения усилия и нагрузки.
Наиболее распространенными примерами рычага первого рода являются пила, лом, плоскогубцы и ножницы.


В рычагах второго рода точка опоры и точка приложения усилия находятся на противоположных концах, а точка приложения нагрузки расположена между ними. Самые часто встречающиеся примеры рычага второго рода – щипцы для раскалывания орехов, тачка, ключ для открывания бутылок.


В рычагах третьего рода точка опоры и точка приложения нагрузки находятся на противоположных концах, а точка приложения усилия – между ними. Наиболее известные примеры рычага третьего рода – пинцет и щипцы для льда.

В вашем браузере отключен JavaScript

На следующем занятии кружка продолжим свое исследование.

РS. На данном сайте много классных физиков, я рада была бы получить от Вас советы и рекомендации по нашему проекту. Не откажусь ни от какой помощи!!!

Рычагом называют твердое тело, которое может вращаться вокруг неподвижной точки. Неподвижную точку называют точкой опоры . Расстояние от точки опоры до линии действия силы называют плечом этой силы.

Условие равновесия рычага : рычаг находится в равновесии, если приложенные к рычагу силы F 1 и F 2 стремятся вращать его в противоположных направлениях, причем модули сил обратно пропорциональны плечам этих сил: F 1 /F 2 = l 2 /l 1 Это правило было установлено Архимедом. По легенде он воскликнул: Дайте мне точку опоры и я подниму Землю .

Для рычага выполняется «золотое правило» механики (если можно пренебречь трением и массой рычага).

Прикладывая к длинному рычагу некоторую силу, можно другим концом рычага поднимать груз, вес которого намного превышает эту силу. Это означает, что, используя рычаг, можно получить выигрыш в силе. При использовании рычага выигрыш в силе обязательно сопровождается таким же проигрышем в пути.

Момент силы. Правило моментов

Произведение модуля силы на ее плечо называют моментом силы . M = Fl , где М - момент силы, F - сила, l - плечо силы.

Правило моментов : рычаг находится в равновесии, если сумма моментов сил, стремящихся вращать рычаг в одном направлении, равна сумме моментов сил, стремящихся вращать его в противоположном направлении. Это правило справедливо для любого твердого тела, способного вращаться вокруг закрепленной оси.

Момент силы характеризует вращающее действие силы . Это действие зависит как от силы, так и от ее плеча. Именно поэтому, например, желая открыть дверь, стараются приложить силу как можно дальше от оси вращения. С помощью небольшой силы при этом создают значительный момент, и дверь открывается. Открыть ее, оказывая давление около петель, значительно труднее. По той же причине гайку легче отворачивать более длинным гаечным ключом, шуруп легче вывернуть с помощью отвертки с более широкой ручкой и т. д.

Единицей момента силы в СИ является ньютон-метр (1 Н*м). Это момент силы 1 Н, имеющей плечо 1 м.