1 случайная величина х задана функцией распределения. Непрерывная случайная величина, функция распределения и плотность вероятности

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть , получим Р(Х≥3) = 1-0.5 = 0.5;

г) сумма вероятностей противоположных событий равна единице, поэтому Р(Х≥5)+Р(Х<5)=1. Отсюда, используя условие, в силу которого при х>4 функция F(x)=1, получим Р(Х≥5) = 1-Р(Х<5) = 1-F(5) = 1-1 = 0.

Случайная величина Х задана функцией распределния

Найти вероятность того, что в результате четырех независимых испытаний величина Х ровно три раза примет значение, принадлежащее интервалу (0.25, 0.75).

Вероятность того, что Х примет значение, заключенное в интервале (a, b), равна приращению функции распределения на этом интервале: P(a

P(0.25< X <0.75) = F(0.75)-F(0.25) = 0.5

Следовательно, , или Отсюда , или.

Случайная величина X задана на всей оси Ox функцией распределения . Найти возможное значения , удовлетворяющее условию: с вероятностью случайная X в результате испытания примет значение большее

Решение. События и - противоложные, поэтому . Следовательно, . Так как , то .

По определению функции распределения, .

Следовательно, , или . Отсюда , или.

Дискретная случайная величина X задана законом распределения

Итак, искомая функция распределения имеет вид

Дискретная случайная величина X задана законом распределения

Найти функцию распределения и начертить ее график.

Дана функция распределения непрерывной случайной величины X

Найти плотность распределения f(x).

Плотность распределения равна первой производной от функции распределения:

При x=0 производная не существует.

Непрерывная случайная величина X задана плотностью распределения в интервале ; вне этого интервала . Найти вероятность того, что X примет значение, принадлежащее интервалу .

Воспользуемся формулой . По условию ,и . Следовательно, искомая вероятность

Непрерывная случайная величина X задана плотностью распределения в интервале ; вне этого интервала . Найти вероятность того, что X примет значение, принадлежащее интервалу .

Воспользуемся формулой . По условию ,и . Следовательно, искомая вероятность

Плотность распределения непрерывной случайной величины Х в интервале (-π/2, π/2) равна f(x)=(2/π)*cos2x ; вне этого интервала f(x)=0. Найти вероятность того, что в трех независимых испытаниях Х примет ровно два раза значение, заключенное в интервале (0, π/4).

Воспользуемся формулой Р(a

Р(0

Ответ: π+24π.

fx=0, при x≤0cosx, при 0

Используем формулу

Если х ≤0, то f(x)=0, следовательно,

F(x)=-∞00dx=0.

Если 0

F(x)=-∞00dx+0xcosxdx=sinx.

Если x≥ π2 , то

F(x)=-∞00dx+0π2cosxdx+π2x0dx=sinx|0π2=1.

Итак, искомая функция распределения

Fx=0, при x≤0sinx, при 0 π2.

Задана плотность распределения непрерывной случайной величины Х:

Fx=0, при x≤0sinx, при 0 π2.

Найти функцию распределения F(x).

Используем формулу

Плотность распределения непрерывной случайной величины Х задана на всей оси Ох равеством . Найти постоянный параметр С.

.

. (*)

.

Таким образом,

Плотность распределения непрерывной случайной величины задана на всей оси равенством Найти постоянный параметр С.

Решение. Плотность распределения должна удовлетворять условию . Потребуем, чтобы это условие выполнялось для заданной функции:

.

. (*)

Найдем сначала неопределенный интеграл:

.

Затем вычислим несобственный интеграл:

Таким образом,

Подставив (**) в (*), окончательно получим .

Плотность распределения непрерывной случайной величины X в интервале равна ; вне этого интервала f(х) = 0. Найти постоянный параметр С.

.

. (*)

Найдем сначала неопределенный интеграл:

Затем вычислим несобственный интеграл:

(**)

Подставив (**) в (*), окончательно получим .

Плотность распределения непрерывной случайной величины Х задана в интервале равенством ; вне этого интервала f(х) = 0. Найти постоянный параметр С.

Решение. Плотность распределения должна удовлетворять условию , но так как f(x) вне интервала равна 0 достаточно, чтобы она удовлетворяла: Потребуем, чтобы это условие выполнялось для заданной функции:

.

. (*)

Найдем сначала неопределенный интеграл:

Затем вычислим несобственный интеграл:

(**)

Подставив (**) в (*), окончательно получим .

Случайная величина X задана плотностью распределения ƒ(x) = 2x в интервале (0,1); вне этого интервала ƒ(x) = 0. Найти математическое ожидание величины X.

Решение. Используем формулу

Подставив a = 0, b = 1, ƒ(x) = 2x, получим

Ответ: 2/3.

Случайная величина X задана плотностью распределения ƒ(x) = (1/2)x в интервале (0;2); вне этого интервала ƒ(x) = 0. Найти математическое ожидание величины X.

Решение. Используем формулу

Подставив a = 0, b = 2, ƒ(x) = (1/2)x, получим

М (Х) = = 4/3

Ответ: 4/3.

Случайная величина X в интервале (–с, с) задана плотностью распределения

ƒ(x) = ; вне этого интервала ƒ(x) = 0. Найти математическое ожидание величины X.

Решение. Используем формулу

Подставив a = –с, b = c, ƒ(x) = , получим

Учитывая, что подынтегральная функция нечетная и пределы интегрирования симметричны относительно начала координат, заключаем, что интеграл равен нулю. Следовательно, М(Х) = 0.

Этот результат можно получить сразу, если принять во внимание, что кривая распределения симметрична относительно прямой х = 0.

Случайная величина Х в интервале (2, 4) задана плотностью распределения f(x)=

. Отсюда видно, что при х=3 плотность распределения достигает максимума; следовательно, . Кривая распределения симметрична относительно прямой х=3, поэтому и .

Случайная величина Х в интервале (3, 5) задана плотностью распределения f(x)=; вне этого интервала f(x)=0. Найти моду, математическое ожидание и медиану величины Х.

Решение. Представим плотность распределения в виде . Отсюда видно, что при х=3 плотность распределения достигает максимума; следовательно, . Кривая распределения симметрична относительно прямой х=4, поэтому и .

Случайная величина Х в интервале (-1, 1) задана плотностью распределения ; вне этого интервала f(x)=0. Найти: а) моду; б) медиану Х.