Антиген и антитело – как работает иммунитет. Что такое антигены и антитела

Все ткани и клетки организма человека обладают антигенными свойствами. Одни антигены специфичны для всех млекопитающих, другие видоспецифичны для человека, третьи - для отдельных групп, их назвают изоантигенами (например, антигены групп крови). Антигены, свойственные только данному организму, называют аллоантигенами (греч. аллос - другой). К ним относятся антигены тканевой совместимости - продукты генов главного комплекса тканевой совместимости МНС (Major Histocompatibiliti Complex), свойственные каждому индивидууму. Антигены разных лиц, не имеющие отличий, называют сингенными. Органы и ткани помимо других антигенов обладают специфичными для них органными и тканевыми антигенами. Антигенным сходством обладают одноименные ткани человека и животных. Существуют стадиоспецифические антигены, появляющиеся и исчезающие на отдельных стадиях развития тканей или клеток. Каждая клетка содержит антигены характерные для наружной мембраны, цитоплазмы, ядра и других компонентов.

Антигены каждого организма в норме не вызывают в нем иммунологических реакций, поскольку организм к ним толерантен. Однако при определенных условиях они приобретают признаки чужеродности и становятся аутоантигенами, а возникшую против них реакцию называют аутоиммунной.

Антигены опухолей и противоопухолевый иммунитет. Клетки злокачественных опухолей представляют собой варианты нормальных клеток организма. Поэтому им свойственны антигены тех тканей, из

которых они произошли, а также антигены, специфичные для опухоли и составляющие малую долю всех антигенов клетки. В ходе канцерогенеза происходит дедифференцировка клеток, поэтому может происходить утрата некоторых антигенов, появление антигенов, свойственных незрелым клеткам, вплоть до эмбриональных (фетопротеины). Антигены, свойственные только опухоли, специфичны только для данного вида опухоли, а нередко для опухоли у данного лица. Опухоли, индуцированные вирусами, могут иметь вирусные антигены, одинаковые у всех опухолей, индуцированных данным вирусом. Под влиянием антител у растущей опухоли может меняться ее антигенный состав.

Лабораторная диагностика опухолевой болезни включает выявление антигенов, свойственных опухоли в сыворотках крови. Для этого в настоящее время медицинская промышленность готовит диагностические наборы, содержащие все необходимые ингредиенты для выявления антигенов при иммуноферментном, радиоиммунном, иммунолюминесцентном анализе.

Резистентность организма к опухолевому росту обеспечивается действием естественных киллерных клеток, которые составляют 15% всех лимфоцитов, постоянно циркулирующих в крови и всех тканях организма. Естественные киллеры (ЕК) обладают способностью отличать любые клетки, имеющие признаки чужеродности, в том числе опухолевые, от нормальных клеток организма и уничтожать чужеродные клетки. При стрессовых ситуациях, болезнях, иммунодепрессивных воздействиях и некоторых других ситуациях число и активность ЕК снижаются и это служит одной из причин начала опухолевого роста. В ходе развития опухоли ее антигены вызывают иммунологическую реакцию, но она, как правило, недостаточна для остановки опухолевого роста. Причины этого явления многочисленны и недостаточно изучены. К ним относятся:

    низкая иммуногенность опухолевых антигенов вследствии их близости к нормальным антигенам организма, к которым организм толерантен;

    развитие толерантности вместо позитивного ответа;

    развитие иммунного ответа по гуморальному типу, тогда как подавить опухоль могут только клеточные механизмы;

    иммунодепрессивные факторы, вырабатываемые злокачественной опухолью.

Химио и радиотерапия опухолей, стрессовые ситуации при хирургических вмешательствах могут быть дополнительными факторами, снижающими иммунную защиту организма. Меры по повышению уровня противоопухолевой резистентности включают использование иммуностимулирующих средств, препаратов цитокинов, стимуляцию иммуноцитов пациента in vitro с возвратом в русло крови больного.

Изоантигены. Это антигены, по которым отдельные индивидуумы или группы особей одного вида различаются между собой.

В эритроцитах, лейкоцитах, тромбоцитах, а также в плазме крови людей открыто несколько десятков видов изоантигенов.

Изоантигены, генетически связанные, объединены в группы, получившие названия: система ЛВО, резус и др. В основе деления людей на группы по системе АВО лежит наличие или осутствие на эритроцитах антигенов, обозначенных А и В. В соответствии с этим все люди подразделены на 4 группы. Группа I (0) - антигены отсутствуют, группа II (А) - в эритроцитах содержится антиген А, группа

III (В) - эритроциты обладают антигеном В, группа IV (АВ) - эритроциты обладают обоими антигенами. Поскольку в окружающей среде имеются микроорганизмы, обладающие такими же антигенами (их называют перекрестнореагирующими), у человека имеются антитела к этим антигенам, но только к тем, которые у него отсутствуют. К собственным антигенам организм толерантен. Следовательно, в крови лиц I группы содержатся антитела к антигенам А и В, в крови лиц II группы - анти-В, в крови лиц III группы - анти-А, в крови лиц

IV группы антитела к А и Вантигенам не содержатся. При переливании крови или эритроцитов реципиенту, в крови которых содержатся антитела к соответствующему антигену, в сосудах происходит агглютинация перелитых несовместимых эритроцитов, что может вызвать шок и гибель реципиента. Соответственно люди I (0) группы именуются универсальными донорами, а люди IV (АВ) группы - универсальными реципиентами. Кроме антигенов А и В эритроциты человека могут обладать и другими изоантигенами (М, М 2 , N, N 2) и др. К этим антигенам нет изоантител, и следовательно, их присутствие не учитывается при переливании крови.

Антигены главного комплекса тканевой совместимости. Помимо антигенов, свойственных всем людям и групповых антигенов, каждый организм обладает уникальным набором антигенов, свойственных только ему самому. Эти антигены кодируются группой генов, находящихся у человека на 6 хромосоме, и называются антигенами главного комплекса тканевой совместимости и обозначаются МНС-антигены (англ. Major histocompatibility complex). МНС-антигены человека впервые были обнаружены на лейкоцитах и поэтому имеют другое название HLA (Human leucocyte antigens). МНС-антигены относятся к гликопротеинам и содержатся на мембранах клеток организма, определяя его индивидуальные свойства и индуцируют трансплантационные реакции, за что они получили третье название - трансплантационные антигены. Кроме того, МНС-антигены играют обязательную роль в индукции иммунного ответа на любой антиген.

Гены МНС кодируют три класса белков, из которых два имеют прямое отношение к работе иммунной системы и рассматриваются ниже, а в число белков III класса входят компоненты комплемента, цитокины группы ФНО, белки теплового шока.

Белки I класса находятся на поверхности практически всех клеток организма. Они состоят из двух полипептидных цепей: тяжелая ацепь нековалентно связана со второй рцепью. ацепь существует в трех вариантах, что определяет разделение антигенов класса на три серологические группы А, В и С. Тяжелая цепь обуславливает контакт всей структуры с мембраной клеток и ее активность. Рцепь представляет собой микроглобулин одинаковый для всех групп. Каждый антиген I класса обозначается латинской буквой и порядковым номером данного антигена.

Антигены I класса обеспечивают представление антигенов цитотоксическим С08 + лимфоцитам, а распознавание этого антигена антигенпредставляющими клетками другого организма при трансплантации приводит к развитию трансплантационного иммунитета.

МНС антигены II класса находятся преимущественно на антигенпредставляющих клетках - дендритных, макрофагах, Влимфоцитах. На макрофагах и Влимфоцитах их экспрессия резко увеличивается после активации клетки. Антигены II класса подразделяются на 5 групп, в каждой из которых имеется от 3 до 20 антигенов. В отличие от антигенов I класса, которые выявляются в серологических тестах с помощью сывороток, содержащих антитела к ним, антигены II класса лучше всего выявляются в клеточных тестах - активации клеток при совместном культивировании испытуемых клеток со стандартными лимфоцитами.

План лекции:

1. Антигены: определение, строение, основные свойства.

2. Антигены микроорганизмов.

3. Антигены человека и животных.

4. Антитела: определение, основные функции, строение.

5. Классы иммуноглобулинов, их характеристика.

6. Динамика образования антител.

Антигены (от греч. anti - против, genos - создавать; термин предложил в 1899 г. Дойч ) - вещества различного происхождения, несущие признаки генетической чужеродности и при введении в организм вызывающие развитие специфических иммунологических реакций.

Основные функции антигенов:

Индуцируют иммунологический ответ (синтез антител и запуск реакций клеточного иммунитета).

Специфически взаимодействуют с образовавшимися антителами (in vivo и in vitro).

Обеспечивают иммунологическую память - способность организма отвечать на повторное введение антигена иммунологической реакцией, характеризующейся большей силой и более быстрым развитием.

Обуславливают развитие иммунологической толерантности - отсутствие иммунного ответа на конкретный антиген при сохранении спо-собности к иммунному ответу на другие антигены.

Строение антигенов:

Антигены состоят из 2 частей :

1. Высокомолекулярный носитель (шлеппер) - высокополимерный белок, определяющий антигенность и иммуногенность антигена.

2. Детерминантные группы (эпитопы) - поверхностные структуры антигена, комплементарные активному центру антител или рецептору Т-лимфоцита и определяющие специфичность антигена. На одном носителе может быть несколько разных эпитопов, состоящих из пептидов или липополисахаридов и располагающихся в разных частях молекулы антигена. Их разнообразие достигается за счет мозаики аминокислотных или липополисахаридных остатков, располагающихся на поверхности белка.

Количество детерминантных групп или эпитопов определяет валентность антигена .

Валентность антигена - количество одинаковых эпитопов на молекуле антигена, равное числу молекул антител, которые могут к ней присоединяться.

Основные свойства антигенов:

1. Иммуногенность - способность вызывать иммунитет, невосприимчивость к инфекции (применяется для характеристики инфекционных агентов).

2. Антигенность - способность вызывать образование специфических антител (частный вариант иммуногенности).

3. Специфичность - свойство, по которому антигены различаются между собой и определяющее способность избирательно реагировать со специфическими антителами или сенсибилизированными лимфоцитами.

Иммуногенность, антигенность и специфичность зависят от многих факторов.

Факторы, определяющие антигенность:

- Чужеродность (гетерогенность) - генетически обусловленное свойство антигенов одних видов животных отличаться от антигенов других видов животных (чем дальше друг от друга в фенотипическом отношении находятся животные, тем большей антигенностью по отношению друг к другу они обладают).


- Молекулярный вес должен быть не менее 10000 дальтон, с увеличением молекулярного веса антигенность возрастает.

- Химическая природа и химическая однородность: наибольшей антигенностью обладают белки, их комплексы с липидами (липопротеиды), с углеводами (гликопротеиды), с нуклеиновыми кислотами (нуклеопротеиды), а также сложные полисахариды (при массе более 100000 D), липополисахариды; сами по себе нуклеиновые кислоты, липиды вследствие недостаточной жесткости структуры неиммуногенны.

- Жесткость структуры (помимо определенной химической природы антигены должны обладать определенной жесткостью структуры, например, денатурированные белки не обладают антигенностью).

- Растворимость (нерастворимые белки не могут находиться в коллоидной фазе и не вызывают развитие иммунных реакций).

Факторы, определяющие иммуногенность:

Свойства антигенов.

Способ введения антигена (перорально, внутрикожно, внутримышечно).

Доза антигена.

Интервал между введением.

Состояние иммунизированного макроорганизма.

Скорость разрушения антигена в организме и выведения его из организма.

Иммуногенность и антигенность могут не совпадать! Например, дизентерийная палочка обладает высокой антигенностью, но выраженного иммунитета против дизентерии не вырабатывается.

Факторы, определяющие специфичность:

Химическая природа антигенной детерминанты.

Строение антигенной детеминанты (вид и последовательность аминокислот в первичной полипептидной цепи).

Пространственная конфигурация антигенных детерминант.

Виды антигенов по строению:

1. Гаптены (неполноценные антигены) - это чистая детерминантная группа (имеют небольшую молекулярную массу, не распознаются иммунокомпетентными клетками, обладают только специфичностью, т.е. не способны вызывать образование антител, но вступают с ними в специфическую реакцию):

- простые - взаимодействуют с антителами в организме, но не способны реагировать с ними in vitro;

- сложные - взаимодействуют с антителами in vivo и in vitro.

2. Полноценные (конъюгированные) антигены - образуются при связывании гаптена с высокомолекулярным носителем, обладающим иммуногенностью.

3. Полугаптены - это неорганические радикалы (J - , Cr - , Br - , N +), связанные молекулами белка.

4. Проантигены - гаптены, способные присоединяться к белкам организма и сенсибилизировать их как аутоантигены.

5. Толерогены - антигены, способные подавлять иммунологические реакции с развитием специфической неспособности отвечать на них.

Виды антигенов по степени чужеродности:

1. Видовые антигены - антигены определенного вида организмов.

2. Групповые антигены (аллоантигены) - антигены, обусловливающие внутривидовые различия у особей одного вида, разделяющие их на группы (серогруппы у микроорганизмов, группы крови у человека).

3. Индивидуальные антигены (изоантигены) - антигены конкретного индивидуума.

4. Гетерогенные (перекрестнореагирующие, ксеноантигены) антигены - антигены, общие для организмов разных видов, далеко отстоящих друг от друга:

- антигенная мимикрия - длительное отсутствие иммунологической реакции на антигены из-за схожести с антигенами хозяина (микроорганизмы не распознаются как чужеродные);

- перекрестные реакции - образовавшиеся на антигены микроорганизмов антитела вступают в контакт с антигенами хозяина и могут вызывать иммунологический процесс (например: гемолитический стрептококк обладает перекрестнореагирующими антигенами с антигенами миокарда и почечных клубочков; вирус кори имеет перекрестнореагирующие антигены к белку миелину, поэтому иммунная реакция способствует демиелинизации нервных волокон и развитию рассеянного склероза).

Антигены микроорганизмов в зависимости от систематического положения:

1. Видоспецифические - антигены одного вида микроорганизмов.

2. Группоспецифические - антигены одной группы в пределах вида (подразделяют микроорганизмы на серогруппы ).

3. Типоспецифические - антигены одного типа (варианта) в пределах вида (подразделяют микроорганизмы на серовары/серотипы ).

ГУМОРАЛЬНЫЕ ФАКТОРЫ АДАПТИВНОГО ИММУНИТЕТА

Гуморальный иммунитет – одна из форм приобретенного иммунитета. Играет важную роль в противоинфекционной защите организма и обусловливается специфическими антителами , выработанными в ответ на чужеродный антиген . Считают, что патогенные микроорганизмы, размножающиеся в организме внеклеточно, как правило, обусловливают гуморальный иммунитет.

Антигены. Классификация антигенов

Антигены – это высокомолекулярные соединения. При попадании в организм вызывают иммунную реакцию и взаимодействуют с продуктами этой реакции: антителами и активированными лимфоцитами.

Классификация антигенов.

1. По происхождению:

1) естественные (белки, углеводы, нуклеиновые кислоты, бактериальные экзо– и эндотоксины, антигены клеток тканей и крови);

2) искусственные (динитрофенилированные белки и углеводы);

3) синтетические (синтезированные полиаминокислоты, полипептиды).

2. По химической природе:

1) белки (гормоны, ферменты и др.);

2) углеводы (декстран);

3) нуклеиновые кислоты (ДНК, РНК);

4) конъюгированные антигены (динитрофенилированные белки);

5) полипептиды (полимеры a-аминокислот, кополимеры глутамина и аланина);

6) липиды (холестерин, лецитин, которые могут выступать в роли гаптена, но, соединившись с белками сыворотки крови, они приобретают антигенные свойства).

3. По генетическому отношению:

1) аутоантигены (происходят из тканей собственного организма);

2) изоантигены (происходят от генетически идентичного донора);

3) аллоантигены (происходят от неродственного донора того же вида);

4) ксеноантигены (происходят от донора другого вида).

4. По характеру иммунного ответа:

1) тимусзависимые антигены (иммунный ответ зависит от активного участия Т-лимфоцитов);

2) тимуснезависимые антигены (запускают иммунный ответ и синтез антител В-клетками без Т-лимфоцитов).

Выделяют также:

1) Внешние антигены; попадают в организм извне. Это микроорганизмы, трансплантированные клетки и чужеродные частицы, которые могут попадать в организм алиментарным, ингаляционным или парентральным путем;

2) Внутренние антигены; возникают из поврежденных молекул организма, которые распознаются как чужие;

3) Скрытые антигены – определенные антигены (например, нервная ткань, белки хрусталика и сперматозоиды); анатомически отделены от иммунной системы гистогематическими барьерами в процессе эмбриогенеза; толерантность к этим молекулам не возникает; их попадание в кровоток может приводить к иммунному ответу.

Иммунологическая реактивность против измененных или скрытых собственных антигенов возникает при некоторых аутоиммунных заболеваниях.

Свойства антигенов

Антигены разделены на:

1. Полные (иммуногенные), всегда проявляющие иммуногенные и антигенные свойства,

2. Неполные (гаптены), не способные самостоятельно вызывать иммунный ответ.

1. Специфичность – структуры особенно отличающие 1 антиген от другого. Специфический участок – антигенная детерминанта (или эпитоп) избирательно реагирует с рецепторами и специфично с антигенами. Чем больше эпитопов, тем больше вероятности иммунного ответа.

2. Антигенность – избирательное реагирование со специфическими антителами или анти-специфичными клетками, способность вызывать иммунный ответ в определенном организме.

3. Чужеродность – без нее нет антигенности.

4. Иммуногенность – способность создавать иммунитет; зависит: от генетических особенностей, от размера, от количества эпитопов.

5. Толерантность – альтернатива в создании иммунитета; отсутствие иммунного ответа; не отвечает иммунный ответ на антигены – аалергия на уровне организма – иммунологическая терпимость.

Виды антигенов

1. Антигены бактерий:

1) Группоспецифические (встречаются у разных видов одного рода или семейства);

2) Видоспецифические (встречаются у различных представителей одного вида);

3) Типоспецифические (определяют серологические варианты – серовары, антигеновары – внутри одного вида).

2. Антигены вирусов:

1) Суперкапсидные антигены – поверхностные оболочечные;

2) Белковые и гликопротеидные антигены;

3) Капсидные – оболочечные;

4) Нуклеопротеидные (сердцевинные) антигены.

3. Гетероантигены – общие для представителей разных видов антигенные комплексы или общие антигенные детерминанты на различающихся по другим свойствам комплексах. За счет гетероантигенов могут возникать перекрестные иммунологические реакции. У микробов различных видов и у человека встречаются общие, сходные по строению антигены. Эти явления называются антигенной мимикрией.

4. Суперантигены – это особая группа антигенов, которые в очень малых дозах вызывают поликлональную активацию и пролиферацию большого числа Т-лимфоцитов. Суперантигенами являются бактериальные энтеротоксины, стафилококковые, холерные токсины, некоторые вирусы (ротавирусы).

Антигены (греч. anti- против + gennao создавать, производить)

биоорганические вещества, которые обладают признаками генетической чужеродности (антигенности) и при введении в вызывают развитие иммунного ответа.

Антигенность присуща не только белкам, но и многим сложным полисахаридам, липополисахаридам, полипептидам, а также некоторым искусственным высокополимерным соединениям. А. могут находиться в микробах (микробные ) и в тканях (тканевые антигены) животных и растений. на введение А. может проявляться в виде стимуляции выработки антител, клеточных реакций замедленной гиперчувствительности, трансплантационного иммунитета или возникновения толерантности (см. Иммунитет).

Термин « » употребляется в двояком смысле: для обозначения определенного очищенного примесей молекулярно-гомогенного вещества (например, кристаллический сывороточный , яичный альбумин, очищенный микробный и др.) или сложных препаратов, клеток или тканей, содержащих большое количество отдельных антигенных веществ.

Микробные А. являются основой иммунизирующих препаратов - вакцин (Вакцины), в т.ч. анатоксинов - бактериальных экзотоксинов, обезвреженных формалином. Наиболее значимые для развития невосприимчивости вакцинирующие А. носят название протективных.

Для проявления антигенности большое значение имеет молекулярная масса. например, приобретают , соединенные в полипептидную цепь достаточной величины и сложности. Имеются вещества, достаточно специфичные, чтобы нести признаки чужеродности, но обладающие малой величиной молекулы. Они вызывают реакции иммунитета в смеси со специальными стимуляторами антителогенеза. Минимальная молекулярная масса, необходимая для проявления антигенности, должна быть не менее десятка тысяч. например, яичный альбумин (один из низкомолекулярных полноценных антигенов) имеет молекулярную массу 40000, сывороточный альбумин - около 70000. с меньшей молекулярной массой могут стимулировать выработку антител при их введении со стимуляторами типа адъюванта Фрейнда. К таким веществам относятся, например, рибонуклеаза (молекулярная масса 13000), (молекулярная масса 6000). Наименьшая молекулярная масса веществ, против которых удалось получить без их присоединения к другим, более крупным молекулам, составляет примерно 1000 ( , ангиотензин). Полипептиды, размер которых превышает 8 аминокислот, обязательно являются антигенами.

Существует несколько объяснений значения величины молекулярной массы для осуществления ее антигенных функций. Высказывались предположения о значении того факта, что более крупные молекулы эффективнее захватываются макрофагами и дольше не выводятся из организма. В дальнейшем было получено более рациональное объяснение этого явления. Вскоре после открытия Т- и В-лимфоцитов и их взаимодействия для инициирования иммунного ответа было показано, что лимфоциты несут на своей поверхности разные . Рецепторы В-лимфоцитов имеют сродство к малым структурным специфичностям молекулы антигена, к его антигенным детерминантам; Т-лимфоциты обладают рецепторами к основной несущей части молекулы. Для индукции иммунного ответа необходимо стимулирование обоих типов лимфоцитов, в котором существенное значение имеет величина молекулы антигена.

Чужеродность - неотделимое от антигена понятие. Без чужеродности нет антигена применительно к данному организму. например, альбумин кролика не является антигеном для этого животного, но генетически чужероден для морской свинки.

Антигенность - мера антигенного качества, например большая или меньшая способность вызывать образование антител. Так, на бычий сывороточный гамма-глобулин у кролика вырабатывается большее количество антител, чем на бычий сывороточный альбумин.

Иммуногенность - способность создавать . Это понятие относится главным образом к микробным А., обеспечивающим создание иммунитета (невосприимчивость) к инфекциям.

Например, возбудитель дизентерии обладает высокой антигенностью, но выраженного иммунитета против дизентерии получить не удается. Возбудитель брюшного тифа является и высокоантигенным, и высокоиммуногенным. Поэтому брюшнотифозная создает выраженный иммунитет.

Специфичность - антигенные особенности, отличающие А. друг от друга. Существуют вещества, имеющие свой специфический облик, но не вызывающие иммунных реакций (в частности, выработку антител) при введении в организм. Однако с готовыми антителами они взаимодействуют. Такие вещества получили название гаптенов, или неполноценных антигенов. Гаптены имеют признаки чужеродности, но не обладают определенными качествами, необходимыми для проявления полноценных антигенных свойств. Гаптены приобретают свойства полноценных А после соединения с крупномолекулярными веществами° - белками, полисахаридами или искусственными высокомолекулярными полиэлектролитами.

Антигены, полученные путем присоединения к молекуле белка химической группировки, обеспечивающей новую иммунологическую специфичность, называются конъюгированными антигенами.

При иммунизации животных конъюгированными А., состоящими из одного и того же белка, но содержащими разные введенные химические группировки, образуются антитела, специфичные по отношению к этим поверхностным детерминантам. Следовательно, специфичность определяется введенной химической группой, получившей название антигенной детерминанты (эпитопа).

Одна и та же антигенная в виде гаптена, расположенная на разных носителях, обеспечивает выработку антител одной и той же специфичности. Однако антигенность получаемых комплексов различна при разных молекулах-носителях. Это свидетельствует о существовании в организме по крайней мере двух распознающих клеточных систем: для антигенной детерминанты и для несущей части молекулы.

Крупные белковые или полисахаридные молекулы несут на себе по нескольку детерминантных группировок. Посредством определения количества молекул антител, присоединяющихся к одной молекуле антигена, рассчитано число реактивных групп (валентности) различных белков. Это число увеличивается пропорционально возрастанию молекулярной массы белковых молекул.

Количество детерминантных групп на белковой молекуле имеет существенное значение для реализации ею антигенной функции. Так, для того, чтобы конъюгированный антиген, содержащий арсаниловую кислоту, осаждался анти-арсаниловой сывороткой, его молекула должна нести не менее 10-20 молекул арсаниловой кислоты. Различные антигенные детерминанты, расположенные на белковой полисахаридной молекуле, не равнозначны в процессе стимуляции иммунного ответа. Наиболее активные из них получили название иммунодоминантных групп.

Полисахариды, содержащие различные и аминосахара, сами по себе, без связи с липидом или белком, при достаточной величине молекулярной массы могут выступать в роли полноценных А. Они обязательно должны иметь повторяющиеся структурные элементы. Примерами служат А. групп крови, полисахаридные комплексы капсул пневмококков. и стероиды неантигенны. Предполагают, что , составляющие основу липидов, не обладают достаточной жесткостью структуры молекул, т.к. содержат длинные цепи парафиновых углеводородов. Значение жесткости структуры показано на примере малоантигенного - белка, не имеющего устойчивой конфигурации из-за большого содержания глицина. Введение в молекулу 2% тирозина или других групп с жесткой структурой превращает в вещество с выраженными антигенными свойствами.

Различают антигенную специфичность нескольких основных типов: видовую и групповую специфичность а также гетероспецифичность. Видовая специфичность позволяет отличать представителей одного вида организмов от особей другого вида по так называемым видоспецифическим А. С помощью антител против сывороточных белков человека (так называемые античеловеческие видоспецифические сыворотки) легко отличают крови, принадлежащее человеку, от любого пятна крови животных. По различным бактериальным А (О-антиген, Н-антиген, К-антиген и др.) можно отличить не только бактерий, но и его варианты. Групповая специфичность обусловливает различия среди особей одного вида организмов.

Антигены, по которым особи или группы особей животных одного вида различаются между собой, получили название изоантигенов (алло-антигенов). Для эритроцитов человека, кроме изоантигенов АВО. известно более 70 других, объединенных в 15 изоантигенных систем. Детально изучено химическое строение изоантигенов групп крови системы АВО. Показано, что эти антигены представляют собой полисахаридные комплексы. К изоантигенам относятся антигены гистосовместимости, или трансплантационные антигены. обусловливающих внутривидовые различия клеток и тканей, вследствие чего возникает их несовместимость при трансплантации (Трансплантация) органов и тканей.

Гетероспецифичность - общая специфичность для представителей разных видов антигенных комплексов или общие антигенные детерминанты на антигенных комплексах, различающихся по другим признакам. Общие А встречаются у весьма отдаленных видов. Их называют гетерогенными антигенами. Примером гетерогенного антигена является антиген Форссмана, присутствующий в эритроцитах овец, лошадей, собак, кошек, мышей, кур, но отсутствующий у человека, обезьян, кроликов, крыс, уток. Описаны общие А. для человека и возбудителя чумы. А., определяющие группу крови А человека, обнаружены у вируса гриппа и некоторых других микроорганизмов. За счет гетерогенных антигенов могут возникать перекрестные иммунные реакции, приводящие к ошибочным заключениям А., специфичные для определенных тканей или органов, называют соответственно тканеспецифическими или органоспецифическими.

Новую антигенную специфичность могут приобретать , образуя комплексы с рядом лекарственных веществ, которые в этих случаях выступают в роли гаптенов. Этим можно объяснить возникновение лекарственной аллергии (Лекарственная аллергия), в т.ч. и аллергических реакций на , которые сами по себе неантигенны. например к пенициллину развивается у 1% больных, которым его вводят парентерально. Показано, что с белками ассоциируется не сам пенициллин, а продукты его распада, в частности бензилпенициллиновая кислота. Амидопирин хинидин, и некоторые другие лекарственные препараты обладают сродством к белкам форменных элементов крови. Соединяясь с ними, они могут вызвать иммунные поражения, сопровождающиеся развитием и лейкопении. Реализация этого процесса происходит при определенной предрасположенности индивидуума - врожденной или приобретенной.

Нередко лекарственно-модифицированные антигенные субстанции организма называют аутоантигенами. Однако это не совсем точно Истинными аутоантигенами являются нормальные компоненты организма, против которых при аутоиммунных заболеваниях возникают антитела () или клеточные аутоиммунные реакции (см. Аутоаллергия , Аутоиммунные болезни).


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Антигены" в других словарях:

    Современная энциклопедия

    Антигены - (от анти... и...ген), вещества, которые воспринимаются организмом как чужеродные и вызывают специфический иммунный ответ. Способны взаимодействовать с клетками иммунной системы и антителами. Попадание антигена в организм может привести к… … Иллюстрированный энциклопедический словарь

    - (от анти... и...ген) вещества, которые воспринимаются организмом как чужеродные и вызывают специфический иммунный ответ. Способны взаимодействовать с клетками иммунной системы и антителами. Попадание антигенов в организм может вызвать… … Большой Энциклопедический словарь

    Вещества, вызывающие в тканях макроорганизмов реакцию, направленную в конечном счете на удаление их из организма. Первой реакций на А. является образование специфичных им антител. В качестве А. могут выступать в основном белки, а также др.… … Словарь микробиологии

    Неструктурные белковые продукты ранних генов аденовирусов, вируса SV 40 и вируса полиомы. Специфичны для вирусов. Выделяют диффузией в агаре, ИФА, РСК. Биол. функция не известна. (Источник: «Словарь терминов микробиологии») … Словарь микробиологии

    - [Словарь иностранных слов русского языка

    - [от анти... и...ген(ы)], вещества белковой природы или полисахариды, которые, проникая в кровь, вызывают образование в ней специфических антител, способных нейтрализовать его болезнетворное действие. Все белки обладают свойствами антигенов,… … Экологический словарь

    Антигены - белковые образования, контролирующиеся генами, которые дают специфическую реакцию с соответствующими сыворотками... Источник: МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРОГНОЗИРОВАНИЕ, РАННЯЯ ДОКЛИНИЧЕСКАЯ ДИАГНОСТИКА И ПРОФИЛАКТИКА ИНСУЛИНЗАВИСИМОГО САХАРНОГО… … Официальная терминология

    АНТИГЕНЫ - АНТИГЕНЫ, в иммунологии название веществ, способных при введении их в животный организм вызвать в жидкостях и клетках последнего такие изменения, к рые влекут за собой появление и нарастание избирательного реактивного сродства этих клеток и… … Большая медицинская энциклопедия

    Ов; мн. (ед. антиген, а; м.). Вещества, чужеродные для данного организма, вызывающие образование антител. ◁ Антигенный, ая, ое. А ые вещества. * * * антигены (от анти... и...ген), вещества, которые воспринимаются организмом как чужеродные и… … Энциклопедический словарь

    Вещества генетически чужеродной информации, способные при попадании в организм вызывать иммунный ответ, направленный на их удаление или нейтрализацию. Обычно это макромолекулы – белки или полисахариды, входящие в состав клеток, тканей, органов и… … Биологический энциклопедический словарь

Книги

  • Биологические методы лечения онкологических заболеваний , Под редакцией Винсента Т. ДеВита , мл. , Сэмюэля Хеллмана , Стивена А. Розенберга , Книга посвящена одной из острейших проблем современной медицины - онкологическим заболеваниям. В ней подробно изложены новые биохимические подходы к лечению онкологических больных, новые… Категория: Онкология. Опухоли Издатель:

АНТИГЕНЫ (греческий anti-против + gennaö создавать, производить) - любое вещество, которое, поступая в организм парентеральным путем, вызывает ответную специфическую иммунологическую реакцию, проявляющуюся в образовании специфических антител. Попадание антигенов в организм может сопровождаться возникновением состояния толерантности к этому веществу (см. Толерантность иммунологическая) или повышением чувствительности к данному антигену. (см. Аллергия).

Специфическим антигеном может быть определенное молекулярно-гомогенное вещество. Однако антигенные свойства отдельных веществ проявляются и в том случае, если они входят в состав сложных смесей и систем. Поэтому в клинике инфекционных болезней, в лабораторной и эпидемиологической практике термин «антиген» часто используют по отношению к таким сложным системам, как микробные, растительные и животные клетки, тканевые экстракты, биологические жидкости и т. д., имея при этом в виду отдельные содержащиеся в этих системах антигены. Термин «антиген» нередко употребляют и для обозначения веществ, которые, в отличие от полноценных антигенов, не способны самостоятельно стимулировать синтез антител (см.) в организме, но могут специфически реагировать с уже образовавшимися антителами. В иммунологии для определения таких веществ принят специальный термин - гаптены (см.).

По своей природе антигены - высокомолекулярные полимеры естественного происхождения или синтезированные искусственным путем. Свойствами полноценных антигенов обладают белки, полипептиды, полисахариды, а также, вероятно, высокополимерные нуклеиновые кислоты и комплексные соединения этих веществ.

Антигенность определяется не только особенностями химического строения веществ, но зависит также от видовой принадлежности иммунизируемого животного и его генетической конституции (см. Иммуногенетика). Одно и то же вещество, не будучи антигенным по отношению к животным одного вида, вызывает специфическую иммунологическую реакцию при введении особям другого вида. Так, полисахарид декстран не является антигеном для кроликов, а при введении человеку стимулирует синтез специфических антител даже после однократной инъекции. Более того, в пределах одного вида встречаются особи, рефрактерные (не вырабатывающие антитела) и, наоборот, высокочувствительные к данному антигену.

Антигенность как биологическое явление относительна, и для реализации этого свойства необходимо проникновение вещества во внутреннюю среду иммунокомпетентного организма, чувствительного к данному веществу.

Несмотря на огромное число фактов, полученных в ходе химического исследования антигены, иммунология еще не достигла такого уровня, чтобы можно было провести полный перечень тех физико-химических особенностей строения веществ, которые создают необходимую основу для возникновения антигенных свойств. Тем не менее известны некоторые признаки, отличающие антигенные вещества от неантигенных, например, свойствами полноценных антигенов обладают вещества, характеризующиеся, как правило, высоким молекулярным весом - 10 000 и выше.

Функционально активные белки состоят из субъединиц - полипептидных цепей, соединенных друг с другом в единую молекулу дисульфидными или водородными связями. Диссоциация этих связей в ряде случаев приводит к нарушению антигенной специфичности. Так, фермент лактатдегидрогеназа (молекулярный вес 135000) состоит из четырех субъединиц двух генетически различных типов. В отличие от нативного фермента, полипептидные субъединицы в диссоциированном состоянии не только не способны индуцировать синтез специфических антител, но и не реагируют с антисывороткой к нативному ферменту.

Появление антигенной способности с увеличением молекулярного веса веществ характерно не только для белков, но и для полисахаридов. Исследование различных препаратов декстранов с молекулярным весом от 10 000 до 200 000 показало, что стимуляцию антителогенеза у человека вызывают декстраны, молекулярный вес которых не ниже 50 000. Вместе с тем было бы неверно считать, что высокий молекулярный вес является обязательным свойством антигена. Так, сульфированный полистирол - высокомолекулярный полимер - не обладает антигенностью. Нуклеиновые кислоты, несмотря на высокий молекулярный вес, значительно более слабые антигены, чем белки. Сывороточный альбумин и гемоглобин имеют одинаковый молекулярный вес (около 70 000), однако способность индуцировать образование антител у гемоглобина выражена в значительно меньшей степени, чем у альбумина.

Явное исключение из изложенного составляют антигеноактивные вещества, которые характеризуются относительно невысоким молекулярным весом: глюкагон, гормон поджелудочной железы (молекулярный вес 3800) и другие, антигенное действие которых проявляется при иммунизации с адъювантами (см.). Более того, иммунными свойствами могут обладать синтетические полипептиды, молекулярный вес которых равен 4000 и 1200.

Помимо величины молекулы, антигенность вещества определяется также и рядом других его свойств. Одним из необходимых свойств антигенов, как полагают, является жесткость структуры входящих в его состав детерминантных групп. Так, желатина, представляющая собой слабоантигенный белок, денатурированный нагреванием, не обладает фиксированной внутренней структурой; в ее состав входит много глицина, не имеющего в α-положении боковых групп, что обусловливает возможность продольного вращения. Если же ввести в молекулу желатины химической группировки, увеличивающие жесткость ее структуры (тирозин, триптофан, фенилаланин), то она преобразуется в сравнительно сильный антиген. Аналогичного рода данные были получены при изучении антигенных свойств синтетических полипептидов. Повышать жесткость молекул в полисахаридных антигенов могут пиранозные или фуранозные кольца.

Исследование искусственных полипептидов позволило установить роль некоторых аминокислот в проявлении антигенных свойств веществ. При сравнении полипептидов глю58-, тир4-, глю57-, лиз38-, ала5- было показано, что аланин, так же как и тирозин, усиливает иммуногенные свойства полипептида. Установлено снижение влияния глутаминовой кислоты на антигенность полипептида после введения в его состав небольшого количества тирозина.

Менее ясен вопрос о значении заряженных групп для проявления антигенности. По данным одних исследователей, NH 3 + -группы необходимы для обеспечения антигенной активности полипептидов. Однако другие исследователи считают, что у синтетических полипептидов, не содержащих заряженных групп после дезаминирования, способность индуцировать синтез антител не только сохраняется, но и усиливается.

Свойством антигенов является их способность подвергаться в организме процессам метаболизма. В этой связи интересны данные о роли оптической изомерии аминокислот в определении антигенности вещества. Как оказалось, полипептиды, построенные из L-аминокислот, являются активными стимуляторами антителогенеза, тогда как полипептиды из D-аминокислот способны вызывать образование антител лишь при введении их в малых дозах. В больших дозах D-полипептиды вызывают толерантность.

Антигенная активность веществ, и в частности их способность к индукции синтеза антител, наиболее сильно проявляется, в том случае, если иммунизируемое животное принадлежит к иному, чем источник данного вещества, виду. Общепризнано, что антигенность белков тем выше, чем к более отдаленной таксономической группе относится иммунизируемое животное.

Белки и углеводы крови и внутренних органов обычно не антигенны для организма, в котором они синтезируются, и в то же время антигенны для других особей того же вида. Эта закономерность не распространяется на так наз. забарьерные органы, то есть органы, отделенные от кровотока особыми барьерами (гемато-энцефалический барьер, гемато-тестикулярный барьер и др.), белки которых в норме обычно не поступают в кровь и являются антигенами для собственного организма. В число таких органов входит мозг, хрусталик, паращитовидные железы, семенник.

Толерантность (иммунологическая ареактивность организма к данному антигену) к собственным белкам хорошо объясняется с позиций клонально-селекционной теории иммунитета. Одно из основных положений этой теории утверждает, что «распознавание» собственных белков организма и толерантность к ним связаны с элиминацией в эмбриональном периоде развития всех клонов лимфоидных клеток, способных реагировать против антигена данного организма. С позиций этой теории антигены представляются веществами, несущими в себе признаки чужеродной генетической информации. Следовательно, для того чтобы вещество могло проявить свои антигенные свойства, оно должно отличаться от антигена тканей иммунизируемой особи. Отсюда вытекает, что антигенность вещества зависит и от его специфичности.

С помощью метода комплексных антигенов, то есть антигена, в молекулу которых искусственно введена определенная хим. группировка, было установлено, что антигенная специфичность комплексных антигенов определяется не всей макромолекулой в целом, а свойствами этой группировки - детерминантной группы. При этом оказалось, что специфичность антигенов определяется не только химическим составом детерминантной группы, но и положением ее в антигене, а также пространственным расположением атомов в ней и связанной с этим их стереоизомерией.

В естественных белках антигенная специфичность также определяется небольшой частью ее молекулы. Установлено, что реакцию образования антител против фиброина шелка могут специфически подавлять продукты гидролиза шелка с молекулярным весом, равным всего около 600-1000, причем самыми эффективными в таком подавлении являются глицилаланиновые цепочки длиной в 12 аминокислот (молекулярный вес 900). Из октапептидов наиболее эффективным оказался гли-/гли3-ала3-/тир- с молекулярным весом около 600, который и является главной частью специфической антигенной детерминанты. По данным других исследователей, антигенная специфичность декстрана, синтетических полипептидов (полиаланина, полилизина), миоглобина зависит от небольших реактивных участков с молекулярным весом в пределах 350-990.

Сравнение антигенных свойств у белков с известной последовательностью аминокислотных остатков позволило установить, что для появления новой антигенной специфичности достаточно минимальных изменений в первичной структуре белков. Так, антигенные различия инсулинов у некоторых животных (свиней, крупного рогатого скота, овец, лошадей) обусловлены замещением аминокислотных остатков всего в трех участках полипептидной цепи. Генетические варианты молекул иммуноглобулинов человека различаются между собой лишь одним аминокислотным остатком в 189-м положении легких цепей, однако этого оказывается достаточно, чтобы они различались как антигены.

Анализ антигенной специфичности синтетических полипептидов показал дальше, что в большой степени их специфичность определяется характером концевых групп. Однако в ряде случаев удавалось отметить существование перекрестных реакций и между полипептидами, концевые группы которых отличались друг от друга. Как было выяснено, такие перекрестные реакции были обусловлены наличием общих аминокислот в других положениях. В последующих опытах было установлено, что антитела могут быть направлены против всего полипептида, состоящего из пяти аминокислот, в целом. Сходные результаты дали и опыты с углеводными гаптенами. Здесь также было выявлено ведущее влияние на специфичность антигена концевых групп, а также показано, что антитела могут быть направлены и против всего гаптена в целом. Самой большой группировкой, которая может реагировать с данным антителом и, следовательно, определять специфичность антигена, являются, очевидно, гексасахариды.

Таким образом, в естественных белках и полисахаридах антигенная специфичность определяется составом и последовательностью аминокислот в полипептидной цепи и моносахаров в полисахариде, особенно их концевыми аминокислотами или моносахарами.

Как известно, вторичная и в конечном счете третичная структура белковой молекулы определяется последовательностью аминокислот. С другой стороны, антигенную специфичность молекулы белка определяют в основном группировки, расположенные на ее поверхности. Поэтому можно утверждать, что антигенная специфичность белка зависит и от его вторичной и, возможно, третичной структуры. Кроме того, приводившиеся выше результаты изучения антигенных свойств лактатдегидрогеназы показывают, что антигенная специфичность высокомолекулярных белков, состоящих из субъединиц, может определяться и их четвертичной структурой.

Образующиеся на поверхности белковой молекулы антигенные детерминанты могут различаться по форме, размерам, по числу и набору входящих в эти детерминанты аминокислот. В результате при иммунизации даже чистым кристаллическим препаратом белка в организме образуются антитела разных типов, неоднородные по своей специфичности. Число антигенных детерминант в молекуле (валентность антигена) варьирует у разных белков в зависимости от размеров молекул: от 5 в молекуле яичного альбумина (молекулярный вес 40 500) до 40 в молекуле тиреоглобулина (мол. вес 650 000). Однако прямой зависимости между валентностью и молекулярным весом антигенов не существует.

Характер взаимодействия антигенных детерминант и остальной части молекулы в определении антигенных свойств вещества пока еще полностью не раскрыт. Тем не менее накопленные факты свидетельствуют о том, что стимуляция иммунологических реакций организма осуществляется реактивными группами молекул антигенов, определяющими его специфичность, то есть детерминантными группами.

Говоря о специфичности природных антигенов в первую очередь имеют в виду их видовую специфичность. Действительно, для особей данного вида присуща антигенная специфичность, не характерная для особей, которые принадлежат к любому другому виду живых существ. Не следует, однако, думать, что имеются какие-то вещества, специально «отвечающие» за антигенную видоспецифичность. Такой видоспецифичностью обладают, очевидно, многие, если не большинство веществ, содержащихся в организме.

Хотя все виды живых существ четко отличаются друг от друга своими видоспецифическими антигенами, степень этого различия может быть неодинаковой. Близкородственные виды характеризуются наличием достаточно сходных видоспецифических антигенов. Видам, далеко отстоящим друг от друга, присущи и резко различающиеся видоспецифические антигены. На основе учета этого явления выросло самостоятельное биологическое направление - иммуносистематнка, использующее метод антигенного анализа для решения сложных таксономических проблем и вопросов эволюционных отношений различных видов микроорганизмов, растений и животных.

Уже в начале нашего века было установлено, что группы различных особей одного и того же вида могут отличаться друг от друга по содержанию антигенов, которые впоследствии получили название изоантигенов. Изоантигены были выявлены в клетках всех изучавшихся видов животных. Однако достаточно полно они изучены лишь у человека. Как оказалось, изоантигенная структура клеток человека исключительно сложна. Только в эритроцитах человека было выявлено более 15 систем изо-антигенов, включающих около 100 антигенов. (см. Группы крови). Подобно тому, как практика переливания крови потребовала развития исследований, приведших к описанию антигенной структуры эритроцитов, наблюдающееся в наши дни повышение интереса клиницистов к пересадке тканей и органов обусловило переход к тщательному изучению антигенного состава других клеток организма. Было установлено, что большинство антигенов, обусловливающих реакцию реципиента против пересаженного органа, содержится в лейкоцитах. Поэтому особое внимание было обращено на изучение антигенов, содержащихся в этих клетках крови. Различные исследователи описали большое количество разнообразных антигенов лейкоцитов. При сопоставлении всех этих антигенов друг с другом оказалось, что большинство их принадлежит к единой системе, получившей название HL-A. Помимо этой системы, пока выявлена еще одна система лейкоцитарных антигенов, генетически независимая от системы HL-A, - система группы 5. Как было установлено, все антигены обеих систем, за исключением, возможно, антигена 9, представлены несколькими аллелями (см.). Было также показано, что эти антигены присутствуют, помимо лейкоцитов, в клетках многих органов и тканей человека, что особенно важно для подбора доноров и реципиентов при пересадке органов в клинике (см. Несовместимость иммунологическая).

Помимо изоантигенов, характерных для эритроцитов и для лейкоцитов, были обнаружены изоантигены, присущие тромбоцитам, лимфоцитам, гранулоцитам, сыворотке крови и др. Поэтому, помимо «общих» изоантигенов, существуют, очевидно, и органоспецифические изоантигены. Вопрос этот, имеющий огромную теоретическую и практическую (при пересадке органов) значимость и в то же время исключительно сложный, в наст, время почти не разработан.

Еще И. И. Мечниковым было установлено, что возможно получение иммунных сывороток, направленных против клеток определенных органов или тканей, - так называемых цитотоксинов. Это открытие легло в основу учения об антигенной органо(ткане)специфичности. Существование органоспецифических антигенов было показано практически во всех органах. Были получены данные о том, что в ряде органов существует два типа органоспецифических антигенов, которые встречаются в одноименных органах представителей разных видов живых существ, и антигены, характеризующие органы только представителей данного вида.

В настоящее время для большинства органов (печень, почка, хрусталик глаза и др.) исследованы главным образом водорастворимые органоспецифические антигены, которые представляют собой более или менее сложные системы белков. Что же касается органоспецифических антигенов, не переходящих в экстракты, то о них имеются лишь единичные отрывочные данные. В самое последнее время были обнаружены антигены, общие для почки, печени, селезенки, сердца, но отсутствующие в сыворотке крови. Некоторые исследователи выделяют их в новую группу - межорганных антигенов.

К группе описанных антигенов примыкают выделяемые некоторыми исследователями так называемые органоидные антигены, характеризующие антигенную специфичность клеточных ядер, митохондрий, рибосом и т. д.

В последние годы установлено существование антигенов, характерных для организмов, их органов или тканей, находящихся на определенных стадиях индивидуального развития. Эти антигены получили название стадиоспецифических антигенов.

Для патологии существенное значение имело обнаружение так называемых патологических антигенов, возникающих в результате патологических процессов. К ним относятся «раковые», «ожоговые», «лучевые» и другие антигены, образующиеся в патологически измененных тканях. Доказано появление новых антигенов (трансплантационных, комплементфиксирующих и поверхностных) в клетках опухолей, индуцированных вирусами.

Антигенная специфичность веществ клеток и тканей отражает существенные особенности их строения, функции и физиологического состояния. Вскрытие причин антигенного действия веществ, анализ их свойств, выяснение химических основ антигенной специфичности веществ - все эти вопросы являются одними из основных вопросов современной иммунохимии. Вместе с тем исследование свойств природных антигенов в наст, время не ограничивается рамками собственно иммунохимии и инфекционной иммунологии и служит для решения многих вопросов, имеющих общебиологическое значение, и, в частности, вопросов эволюции животного и растительного мира.

Анализ антигенных свойств вирусов, бактерий, клеток и тканей многоклеточных организмов показал исключительную сложность их антигенного строения. Наряду с антигенами, свойственными группам особей или всем особям, относящимся к одному виду (видовые, групповые антигены бактерий, изоантигены), в тканях животных присутствуют антигены, распространенные более или менее широко у представителей других видов. Важное значение имело установление того факта, что в определенной степени общие антигены, за исключением гетерогенных антигенов типа антигенов Форссмана, отражают генеалогические связи между видами, у которых они встречаются.

Разные ткани организма отличаются по степени межвидового сходства их антигенов. Сыворотка крови, печень, селезенка и некоторые другие внутренние органы содержат преимущественно антигены с сильно выраженной видовой специфичностью. Напротив, антигены мышц, семенников, мозга, хрусталика по своей специфичности мало отличаются от антигенов гомологичных органов и тканей у представителей разных видов млекопитающих и даже в целом у позвоночных. Это объясняется сходством химического строения и свойств соответствующих белков, несущих одинаковую функцию. Очевидно, в процессе эволюции, на каком-то ее этапе, было достигнуто исключительно полное приспособление структуры таких белков для выполнения функций, имеющих жизненно важное значение, в результате чего все последующие мутации, нарушавшие это соответствие, элиминировались естественным отбором. Как правило, такими общими антигенами являются белки, характеризующиеся крайне слабой антигенностью (гемо-глобины, инсулины, карбомилсинтетаза), или белки тканей, анатомически изолированных от лимфоидной системы организма (белки хрусталика).

Некоторые антигены высокоорганизованных животных и, в частности, человека несут защитную функцию в поддержании генетического постоянства внутренней среды организма. Установлено, что антигены системы AB0 (см. Группы крови) присутствуют не только в тканях, но и в виде водорастворимых антигенов в биологических жидкостях и секретах. Объясняя возможное значение явления секреции антигенов, П. Н. Косяков предположил, что антигены AB0 в слюне и в верхних отделах желудочно-кишечного тракта играют защитную роль, нейтрализуя содержащиеся в пище гемагглютинины животного или растительного (лектины) происхождения. Групповые антигены семенной жидкости предохраняют мужские половые клетки от воздействия изоантител, находящихся в женских половых путях в момент оплодотворения.

В явлениях групповой несовместимости материнского организма и плода изоантигены (системы AB0 и др.) последнего, находясь в околоплодной жидкости, амнионе и хорионе, играют защитную роль, связывая антитела матери, проникающие через плаценту, и не «допуская» их к тканям плода.

В последние годы некоторыми исследователями выдвигается положение о возможной морфогенетической роли антигенов в эмбриогенезе (см. Иммунология эмбриогенеза).

Биологическое значение антигенов безусловно не ограничивается их участием в рассмотренных выше явлениях. Так, например, в последнее время интенсивно исследуется вопрос о связи изоантигенов крови с предрасположенностью лиц, дифференцированных по этим антигенам, к некоторым видам заболеваний.

Библиография: Актуальные вопросы иммунологии, под ред. Л. А. Зильбера и П. А. Вершиловой, с. 312, М.. 1964, библиогр.; Бойд У. Основы иммунологии, пер. с англ., М., 1969, библиогр.; Г а γ-ρο в и ц Ф. Иммунохимия и биосинтез антител, пер. с англ., М., 1969, библиогр.; Зильбер JI. А. и Абелев Г. И. Вирусология и иммунология рака, М., 1962, библиогр.; Косяков П. Н. Иммунология изоантигенов и изоантител, М., 1965, библиогр.; Петров Р. В. Иммунология острого лучевого поражения, М., 1962, библиогр.; Туманов А. К. Сывороточные системы крови, М., 1968, библиогр.; Эфроимсон В. П. Введение в медицинскую генетику, М., 1968, библиогр.; Andersson В. Interaction between immunocompetent cells and antigen, Stockholm, 1972, bibliogr.; Immunological tolerance to microbial antigens, ed. by H. Friedman, N. Y., 1971. bibliogr.; Kissme-y e r-N ielsen F. a. Thorsby E. Human transplantation antigens, Copenhagen, 1970; Strong and weak histocompatibility antigens, Copenhagen, 1970, bibli-ogr.; Surface antigens on nucleated cells, Copenhagen, 1971, bibliogr.

О. E. Вязов, В. М. Барабанов.