Бета сканирование глаза. Как проводится эхобиометрия глаза

Медицинские термины «А-сканирование глаза» и «эхобиометрия» используют для обозначения диагностического метода, направленного на измерение глубины передней глазной камеры, длины глазного яблока и толщины хрусталика. Эти замеры имеют не только диагностическую ценность при определении миопии и других нарушений, но и, наряду с данными о параметрах кривизны роговицы, позволяют определить силу ИОЛ перед проведением хирургического вмешательства.

Пройти процедуру можно в офтальмологической клинике «Сфера». Мы проводим комплексные исследования с применением современного оборудования, позволяющие получить точные сведения, благодаря которым результаты любого лечения будут лучше.

Что это такое - эхобиометрия глаза?

А-сканирование глаза является одномерным ультразвуковым сканированием, в процессе которого все данные выводятся на монитор в виде соответствующего графика. Диагностика может проводиться с применением ультразвукового оборудования или оптическим способом.

Методы проведения Отличительные особенности
Ультразвуковое А-сканирование глаза Процедура предусматривает использование ультразвуковых волн и их способности отражаться от структур тела человека. В среднем она длится от 15-ти до 30-ти минут, во время которых офтальмолог проводит исследования специальным датчиком. Глаза пациента при этом должны быть открыты.
Оптическая биометрия Процедура не требует прямого контакта с глазной поверхностью, и в этом - её преимущество. В процессе задействован специальный аппарат, который позволяет проводить сканирование бесконтактно. Аппарат сам определяет, как глаз он сканирует, и выдаёт результаты соответственно. Отсутствие контакта исключает риск инфицирования или травмирования глазных структур.

Показания и противопоказания к проведению А-сканирования

Как делают А-сканирование глаза?

А-сканирование (УЗИ глаза) предусматривает использование обезболивающих капель. Непосредственно перед процедурой врач закапывает их в глаз пациента для того, чтобы исключить неприятные ощущения, моргание и слёзотечение. Пациент принимает положение сидя или лёжа. Врач помещает датчик на поверхность открытого глаза и плавно перемещает его. Данные, полученные в процессе сканирования, попадают в компьютер и выводятся на монитор.

Интерпретация результатов А-сканирования

Сравнивая полученные результаты с нормальными параметрами, офтальмолог может определить у пациента миопию или гиперметропию. К примеру, показатели нормальной длины глазной оси составляют 23 мм. Если у пациента имеется миопия, они превышают их, гиперметропия - напротив, уменьшаются. Исходя из полученных данных, пациенту могут подобрать очки или контактные линзы, определить тактику лечения или спланировать операцию.

Преимущества А-сканирования в нашей клинике

Клиника «Сфера» предоставляет свои услуги всем, кто желает хорошо видеть, уже более 20-ти лет и является признанным лидером в своей сфере. Мы располагаем мощной диагностической базой, которая включает и установку для проведения эхобиометрии. Это - ультразвуковой сканер «A-Scan Plas», созданный на производственных мощностях компании «Accutome» (США). Его можно использовать для сканирования любых типов глаз, включая и наличие зрелой катаракты. Расчёты ИОЛ, проводимые «A-Scan Plas», позволяют добиться максимальной точности: до 0,25D.

Для того, чтобы попасть на приём к нашим специалистам, воспользуйтесь онлайн-формой на нашем сайте или звоните нам: +7 495 139‑09-81.

B-сканирование – методика распознания внутренних структур глаз с помощью аппарата УЗИ .

Он относится к неинвазивным методам, не образует дискомфорт и боль во время процедуры.

Поэтому все категории пациентов легко переносят процесс. С помощью методики можно распознать изменения внутренней структуры глазного яблока при невозможности осмотра дна с помощью щелевой лампы . Рекомендовано осуществлять исследование хирургу, который будет проводить операцию, чтобы он мог поставить точный диагноз.

Что такое B-сканирование глаза

Методика проводится на основе аппарата УЗИ, который подводится к закрытым глазам пациента . Предварительно врач наносит гель, который устраняет возможность появления воздуха между глазами пациента и датчиком. Аппарат посылает внутрь глазного яблока ультразвуковые волны, которые отражаются и возвращаются обратно. Все данные по длине волны отображаются на экране монитора. Их расшифровывает врач-офтальмолог после завершение исследования.

С помощью Б-сканирования процедура выполняется быстро, возможно определение большого числа отклонений в нормальном строении глазного яблока.

Показания к назначению УЗИ глаза

Б-сканирование глазных яблок проводится для определения следующих патологий:

  • катаракта – помутнение хрусталика;
  • глаукома – повышенная секреция жидкости внутрь камеры глаза, что приводит к увеличению и сдавлению окружающих элементов;
  • проникновение инородного тела во внутренние структуры глазного яблока;
  • травма внутренней структуры глазного яблока;
  • наличие злокачественных и доброкачественных опухолей;
  • снижение остроты зрения, когда человек хорошо видит вблизи, но плохо вдалеке (миопия);
  • нарушение структурности мышцы вокруг хрусталика или зрачка;
  • дистрофия , механическое повреждение и другие патологии зрительного нерва;
  • патология стекловидного тела;
  • заболевания, затрагивающие сетчатку (атрофия, механическое повреждение, отслойка);
  • снижение проходимости кровотока по сосудам микроциркуляции глаз (в последствие проникновения тромба, атеросклеротической бляшки, глюкозного конгломерата, ишемии сосудов).

Рекомендовано проводить обследование перед операцией, чтобы выявить точное строение глазного яблока. Также процедуру проводят после завершения операции, чтобы выявить тенденцию к выздоровлению пациента.

Подготовка к УЗИ глаза

Это неинвазивная процедура, поэтому специфической подготовки к проведению исследования не требуется. Человек должен сесть на стул, закрыть глаза. Врач нанесет гель, с помощью которого можно будет приложить датчик для УЗИ.

Женщинам рекомендуется не использовать макияж, так как гель сотрет его и размажет по глазам. Рекомендуется отсутствие на коже век больших ран, в которые может проникнуть гель, вызвав боль и дополнительное воспаление.

Проведение УЗИ глаза

Проведение методики осуществляется в несколько этапов:

  1. пациент ложится на кушетку, закрывает глаза;
  2. врач наносит специальный гель, разработанный для методики УЗИ;
  3. к глазам патента прикладывается датчик, который извлекает ультразвуковые волны;
  4. аппарат считывает показатели, перенося их на монитор экрана;
  5. после завершения исследования пациенту дают сухую салфетку, которой он стирает гель.

Противопоказаний к проведению методики УЗИ практически нет. Поэтому ее может выполнить даже человек с сильной чувствительностью глаз. Побочные эффекты после завершения процедуры отсутствуют.

Расшифровка результата

Существуют нормальные показатели, которые улавливает датчик прибора:

  • стекловидное тело и внутренняя структура хрусталика не должны быть с помутнением;
  • капсула хрусталика четкая, хорошо просматривается;
  • объем стекловидного тела не должен превышать 4 мм;
  • длина глазного яблока в норме 24-27 мм;
  • длина зрительного нерва не должна выходить из параметров 2-2,5 мм;
  • роговица не должна иметь искажение, повреждение, помутнение.

Если выявлены отклонения в одном из результатов теста, рекомендуется провести повторный диагностический тест. После этого врач назначает медикаментозное и хирургическое лечение.

Полезное видео

Зрение восстанавливается до 90%

Ультразвуковое B-сканирование

Ультразвуковое B-сканирование используется для детального исследования внутренних структур глаза. Особенно информативно В-сканирование для диагностики отслойки сетчатки, грубых изменений стекловидного тела, опухолей.

Ультразвуковое исследование в режиме В-сканирования. или В-режиме, двухмерное поперечное изображение глазного яблока и глазницы. Изображение воспроизводится в оттенках серою цвет, яркость которых зависит от силы эха. Сильные эховолны выглядит белыми, более слабые - серыми. Примерами сильного эха могут быть ткань сетчатки, склера и кальцифнкаты. Более слабое эхо отмечается от скоплений клеток внутри стекловидного тела. Изображения в В-режиме легче интерпретировать, чем изображения в А-режиме. так как получаемое при В-сканировании изображение чаше всего аналогично макроскопической картине или микроскопическому изображению поперечного сечения глазного яблока.

Методика

Для В-сканировапия применяют стандартизированные методики. Для исследования передней камеры глаза применяется методика иммерсии. Иммерсия до стигается при установке небольшой склеральной чашечки (цилиндра) между веками, ча шечку (цилиндр) заполняют раствором метил целлюлозы, в который погружают датчик. Для исследования заднего сегмента применяется контактный метод, когда датчик ставят не посредственно на глазное яблоко. При выполнении контактного исследования каждый сег мент глаза изучается в соответствии с определенной системой. Положение ультразвукового датчика выбирается таким образом, чтобы исключить прохождение волны или эха через си стему хрусталика, чтобы не провоцировать артефакты. Ультразвуковая информация чаще всего регистрируется с помощью снимков Polaroid специальных замороженных изображе ний, которые выбирают во время исследования, хотя эта методика и не позволяет запечатлеть динамическую информацию ультразвукового исследования.

27)Допплерография(одномерная и двухмерная)принцип метода, показания, область применения .

Допплерография - одна из самых изящных инструментальных методик. Она основана на эффекте Допплера.эффект состоит в изменении длины волны (или частоты) при движении источника волн относительно принимающего их устройства. При приближении источника к приемнику длина волны уменьшается, а при удалении - увеличивается. Существуют два вида допплерографических исследований - непрерывный (постоянноволновой) и импульсный. Неприрывная допплерография Принцип:генерация ультразвуковых волн осуществляется непрерывно одним пьезокристаллическим элементом, а регистрация отраженных волн - другим. В электронном блоке прибора производится сравнение двух частот ультразвуковых колебаний: направленных на больного и отраженных от него. По сдвигу частот этих колебаний судят о скорости движения анатомических структур. Анализ сдвига частот может производиться акустически или с помощью самописцев. Показания и область применения Непрерывная допплерография - простой и доступный метод исследования. Он наиболее эффективен при высоких скоростях движения крови, например в местах сужения сосудов. Однако у этого метода имеется существенный недостаток: частота отраженного сигнала изменяется не только вследствие движения крови в исследуемом сосуде, но и из-за любых других движущихся структур, которые встречаются на пути падающей ультразвуковой волны. Таким образом, при непрерывной допплерографии определяется суммарная скорость движения этих объектов.

Импульсная допплерография. Принцип:

Она позволяет измерить скорость в заданном врачом участке контрольного объема. Размеры этого объема невелики - всего несколько миллиметров в диаметре, а его положение может произвольно устанавливать врач в соответствии с конкретной задачей исследования. В некоторых аппаратах скорость кровотока можно определять одновременно в нескольких (до 10) контрольных объемах. Область применения:отражает полную картину кровотока в ис-

следуемой зоне тела пациента Результаты импульсного допплерографического исследования могут быть

представлены врачу тремя способами:1) в виде количественных показателей скорости кровотока, 2)в виде кривых

3)аудиально, т.е. тональными сигналами на звуковом выходе аппарата. Звуковой выход позволяет на слух дифференцировать однородное, правильное, ламинарное течение крови и вихревой турбулентный кровоток в патологически измененном сосуде. При записи на бумаге ламинарный кровоток характеризуется тонкой кривой, тогда как

вихревое течение крови отображается широкой неоднородной кривой.

Цветное доплеровское картирование Метод основан на кодировании в цвете среднего значения допплеровского сдвига излучаемой частоты. При этом кровь, движущаяся к датчику, окрашивается в красный цвет, а от датчика - в синий. Интенсивность цвета возрастает с увеличением скорости кровотока. Иногда для усиления контрастирования в кровь вводят перфузат с микрочастицами, имитирующими эритроциты.

Энергетический допплер.

Принцип При этом методе в цвете кодируется не средняя величина допплеровского сдвига, как при обычном доппле-

ровском картировании, а интеграл амплитуд всех эхосигналов допплеровского спектра.

Область применения. Это дает возможность получать изображение кровеносного сосуда на значительно большем протяжении, визуализировать сосуды даже очень небольшого диаметра (ультразвуковая ангиография). На ангиограммах, полученных с помощью энергетического допплера, отражается не скорость движения эритроцитов, как при обычном цветовом картировании, а плотность эритроцитов в заданном объеме Допплеровское картирование используют в клинике для изучения формы, контуров и просвета кровеносных сосудов. С помощью этого метода легко выявляют сужения и тромбоз сосудов, отдельные атеросклеротические бляшки в них, нарушения кровотока. Кроме того, введение в клиническую практику энергетического допплера позволило этому методу выйти за рамки чистой ангиологии и занять достойное место при исследовании различных паренхиматозных органов с диффузными и очаговыми поражениями, например у больных циррозом печени, диффузным или узловым зобом, пиелонефритом и нефросклерозом и др., чему способствует появление класса контрастных веществ для ультразвукового исследования.

Тканевый допплер. Принцип Он основан на визуализации нативных тканевых гармоник. Они возникают как дополнительные частоты при распространении волнового сигнала в материальной среде, являются составной частью этого сигнала и кратны его основной (фундаментальной) частоте. Регистрируя только тканевые гармоники (без основного сигнала), удается получить изолированное изображение сердечной мышцы без изображения содержащейся в полостях сердца крови. Показания,область применения. Подобная визуализация сердечной мышцы, выполненная в фиксированные фазы сердечного цикла - систолу и диастолу, позволяет неинвазивным путем оценить сократительную функцию миокарда

Регистрируя только тканевые гармоники (без основного сигнала), удается получить изолированное изображение

сердечной мышцы без изображения содержащейся в полостях сердца крови. Подобная визуализация сердечной мышцы, выполненная в фиксированные фазы сердечного цикла - систолу и диастолу, позволяет неинвазивным путем оценить сократительную функцию миокарда

УЗИ глаза – метод диагностики офтальмологических заболеваний, визуализирующий строение глаза, состояние глазных нервов, мышц и сосудов, хрусталика, сетчатки. Используется в рамках комплексной диагностики близорукости, дальнозоркости, астигматизма, дистрофии сетчатки, катаракты, глаукомы, опухолей глаза, травм, сосудистых патологий, невритов. Распространены несколько вариантов процедуры: одномерное (А), двухмерное (B), трехмерное (АB) сканирование, УЗДГ/УЗДС сосудов. Стоимость зависит от выбранного УЗ-режима.

Подготовка

УЗИ глаза не требует заблаговременной подготовки. Непосредственно перед процедурой необходимо удалить макияж с глаз, извлечь контактные линзы. При подозрении на наличие чужеродного тела в глазных тканях до ультразвукового исследования выполняется рентгенография глаза . При развитии новообразования любой этиологии рекомендуется предварительная диафаноскопия или рентген-исследование.

Что показывает

Результатом УЗИ глаза в А-режиме сканирования является одномерное изображение, получаемые параметры используются для вычисления силы интраокулярной линзы перед операцией удаления катаракты. При B-режиме получают двухмерное изображение глазниц и глазных яблок, исследование выявляет помутнения роговицы, катаракту , кровоизлияния, инородные тела, новообразования в глазу. При комплексном АB-режиме структуры глаза отображаются в трехмерном изображении. Исследование сосудов отражает особенности кровотока в реальном времени через графические и количественные показатели. Методом УЗИ глаза можно обнаружить следующие патологии:

  • Миопия , гиперметропия . Измеряется длина переднезадней оси глазного яблока. При врожденной близорукости она больше нормы, при дальнозоркости – меньше.
  • Помутнение хрусталика. В норме эта структура прозрачна и не отображается на мониторе. При помутнении хрусталик уплотняется и начинает отражать волны ультразвука – становится видимым.
  • Дегенеративно-дистрофические заболевания. Дегенерация сетчатки, атрофия зрительного нерва , глаукома, кератопатия , дистрофия конъюнктивы сопровождаются истончением и отмиранием клеток. На изображениях УЗИ пораженные области становятся менее яркими – от белых и светло-серых к серым, едва определяемым.
  • Новообразования, инородное тело. Исследование позволяет определить размеры и расположение опухоли, инородного предмета глаза. При УЗИ они выглядят как области повышенной и высокой эхо-активности.
  • Патологии зрительных нервов. Оценка состояния зрительных нервных волокон необходима при ретробульбарных невритах , нейрогенных опухолях, глаукоме , травматических поражениях. Определяется изменение толщины оболочки и диска нерва, расширение определенных его участков, стушевывание границ.
  • Сосудистые патологии глаза. УЗИ глазных сосудов используется для анализа кровотока при возрастных, диабетических, атеросклеротических изменениях. Исследование обнаруживает тромбоз мелких и крупных сосудов, неперфузируемые микрососуды, сосудистые мальформации, сужение просвета, скудность ветвления, замедление кровотока, извивание и волнообразный ход сосудов.

Кроме вышеперечисленного, УЗИ глаза назначается для выявления врожденных аномалий развития органа зрения, заболеваний слезных желез и слезного мешка. Несмотря на высокую информативность, результаты УЗИ не могут быть единственным подтверждением диагноза. Они используются в комплексе с данными клинического опроса, анамнеза, офтальмологического осмотра, рентгенографии и других инструментальных методов.

Преимущества

В настоящее время УЗИ глаза является наиболее информативным и доступным методом ранней диагностики офтальмологических патологий. К достоинствам метода относится безвредность: отсутствие лучевого воздействия и инвазивного вмешательства позволяют проводить обследования детей, пожилых людей, беременных, кормящих матерей. Кратковременность процедуры обследования и относительно низкая стоимость делают УЗИ одним из распространенных методов скрининга заболеваний глаз. Недостаток ультразвукового исследования глаза – четкость изображения ограничена площадью датчика, разрешение получается более низким, чем при МРТ и КТ.

Ультразвуковая диагностика - результативный метод обследования при нарушениях прозрачности оптических сред глаза. Желательно, чтобы процедуру проводил оперирующий хирург, а не врач или медсестра из отделения диагностики. Так точнее определяется состояние больного и выбирается оптимальная тактика лечения.

Для получения точных результатов диагностики необходимо правильно понимать принципы воздействия ультразвуковых потоков на ткани организма.

В офтальмологии применяются отраженные ультразвуковые эхо-импульсы. Короткие импульсы имеют частоту 10 МГц и выше. Датчик устойчиво фиксирует отраженные сигналы при частоте повторения импульсов 1-5 кГц. Средняя скорость распространения ультразвуковой энергии в тканях глаза 1540 м/с. Позволяет вычислить и показать на мониторе расстояние между датчиком и тканью, отражающей эхо. Отражаясь, УЗ-импульс преломляется на границе сред разной плотности.

При малом радиусе кривизны пьезоэлектрического преобразователя в точке фокусировки формируется неточное изображение. Пучки УЗ-импульсов 3 мм при уровне в 6 дБ дают недостаточно качественное латеральное разрешение. Картинки, находящиеся на близком расстоянии, на мониторе двоятся. Картинки вдали от датчика выглядят размазанными в латеральных областях.

Частота и аксиальное разрешение взаимосвязаны. Повышение частоты увеличивает четкость разрешения. Если широкий пучок импульсов возвращается от изогнутых поверхностей, аксиальное разрешение снижается.

Поскольку верхние частоты лучше захватываются организмом, для слабых импульсов необходима дополнительная мощность. Максимальная мощность, которую можно использовать, зависит от наличия катаракты.

Клиническая практика показала, что получить качественный результат можно генерацией сигнала 10-20 МГц и аксиальным разрешением около 0,15 мм. Перпендикулярное попадание УЗ волн на поверхность обеспечивает налучшее отражение сигнала. Монитор показывает не все поперечные сечения даже если подобрана правильная амплиткуда импульсов.

Поскольку звук быстрее проходит через хрусталик, структуры, локализованные за хрусталиком, выглядят на мониторе ближе, чем в действительности, а на краю хрусталика волна преломляется.

Наиболее акустически плотные структуры - интраокулярные инородные тела, хрусталик, интраокулярные линзы характеризуются многими внутренними отражениями. Они показываются на мониторе как равномерно расположенные сигналы со снижающейся амплитудой, находящиеся за главным сигналом. Распознать их можно благодаря пародоксальным движениям при скольжении прибора.

Бывает, что ретролентальные мембраны пропитываются солями кальция. На мониторе возникают выраженные тени, т.к. кальцифицированные структуры поглощают часть импульсов.

При повторном прохождении УЗ-импульсов через ткани на дисплее показываются отдаленные структуры с пониженной амплитутой. Это поглощение возможно компенсировать усилением сигала от отдаленных структур.

Устройства, показывающие на экране поверхности склеры, сетчатки и роговицы могут выдавать диагностически неточные показатели. Например, есть вероятность принять СТ за сетчатку. Также электронное распознавание отбрасывает импульсы с минимальной амплитудой внутри СТ, субретинальной жидкости, хрусталика и пр.

А-сканирование

Одна из разновидностей УЗИ - А-сканирование или амплитудная ультрасонография. Не играет значительной роли в диагностике непрозрачных оптических сред глаза. Возвращает плоское точечное изображение (ID), в котором сложно ориентироваться. Неопытный врач предложит неопределенное толкование. И только офтальмолог с большим опытом может дать информативный результат. Амплитуда эхо-сигнала в данном типе исследования сильно зависит от угла отражения импульса от глазных структур. Непрямой угол сильно ослабляет отраженный сигнал, от складок сетчатки будут возникать фрагменты с сильным и слабым эхом. Поэтому А-сканирование считается методом, дающим много погрешностей.

В-сканирование

При секторальном УЗИ (синоним В-сканирование) сканируются срезы или плоскости тканей. Результат представляется в виде массива пикселов, ранжированных по интенсивности.

Как и в предыдущем методе, сильные сигналы отражаются структурами, локализованными перпендикулярно УЗ импульсам. Четко отображаются сетчатка, склера, капсулы хрусталика и роговица.

3D моделирование глаз

При медленном вращении сектора сканирования можно получать объемные изображения в форме конусов. Их можно показать на мониторе как 3D, применив перспективу, тень, параллакс и др. Поскольку модель строится при расхождении волн из одной точки, поверхности структур, локализованные не перпендикулярно, будут пропущены или показаны с меньшей амплитудой эхо. Пока что 3D ультразвуковые аппараты используются редко.