Биологическое воздействие ацетилхолина проявляется в. Что такое ацетилхолин? Эффект ацетилхолина

Основной структурной и функциональной единицей мозга являются синапсы - контакты между нервными клетками. А главное действующее лицо в синапсе - медиатор (это молекула, которая выделяется из аксона и воздействует на следующую клетку). Первым открытым медиатором явилось вещество под названием ацетилхолин. Ацетилхолин обнаружил в начале ХХ века Генри Дейл, когда работал со спорыньей. Уже в тот момент он заметил активность данной молекулы, которая серьезно влияла на работу разных внутренних органов. А в начале 20-х годов прошлого века австриец Отто Леви доказал, что ацетилхолин является медиатором в периферической нервной системе.

Гениальный эксперимент Отто Леви, за который он получил Нобелевскую премию, выглядел так. У него было две лягушки, и он из каждой лягушки извлек по сердцу. И дальше, соответственно, поместил первое сердце в сосуд с физиологическим раствором и подавал через блуждающий нерв (а это один из главных нервов) возбуждение на это лягушачье сердце, и блуждающий нерв заставляет сердце биться реже. Дальше Леви брал немного жидкости, окружающей это первое сердце, и наносил на второе сердце, и второе сердце тоже начинало биться реже. Данный эффект явился первым доказательством химической передачи сигнала в нервной системе, потому что явно что-то из блуждающего нерва выделялось и дальше управляло работой сердца. Всего через несколько лет Леви идентифицировал данное вещество как ацетилхолин. Ацетилхолин в итоге оказался важнейшим медиатором периферической нервной системы. Кроме того, он еще работает в головном мозге, о чем я, конечно, скажу.

Сама по себе молекула ацетилхолина довольно незатейлива. В центре находится холин, а к нему присоединены остатки уксусной кислоты, поэтому называется ацетилхолин. Молекула холина довольно простая, маленькая, в центре находится атом азота, но, несмотря на это, холин - это незаменимое вещество, то есть наш организм не умеет сам синтезировать холин, поэтому мы должны его получать с пищей. Поэтому холин относится к разряду так называемых витаминоидов. Настоящих витаминов часто не хватает в пище, а холина везде довольно много, поэтому, хоть это и незаменимое вещество, дефицита холина мы, как правило, не испытываем. Хотя в клинике избыток ацетилхолина все-таки используется: холин вводится в виде инъекций, если, например, у человека была травма мозга или инсульт.

Итак, ацетилхолин - это важнейший медиатор нашей периферической нервной системы, и первая зона, где он крайне важен, - это нервно-мышечные синапсы. Это синапсы, которые образуют нервные клетки с клетками наших скелетных мышц (они еще называются поперечно-полосатые мышечные клетки), и любое движение, любое сокращение любой нашей мышцы - а у нас их штук 400 - это выделение ацетилхолина. То есть я шевелю пальцем, соответственно, здесь, в нервно-мышечных синапсах, выделяется ацетилхолин и вызывает сокращение этой мышцы. А сам нейрон, между прочим, находится в спинном мозге, в шейных отделах. Представьте себе: клетка находится в спинном мозге, ее аксон имеет длину больше метра. Это само по себе впечатляет. Мы привыкли, что клетки маленькие и нейроны маленькие. Размер самых больших нейронов - это менее одной десятой доли миллиметра. Но аксоны могут быть очень длинными, по ним бежит электрический импульс, вызывает выделение ацетилхолина, и, соответственно, ацетилхолин воздействует на мышечные клетки и запускает их сокращение.

Как во всяком синапсе, в нервно-мышечных синапсах работают белки-рецепторы, то есть специальные молекулы, которые находятся на мембране мышечной клетки, и ацетилхолин присоединяется к ним, как ключ к замку, и запускает сокращение мышцы. Интересно, что, помимо ацетилхолина, на эти же рецепторы действует довольно известный токсин, который называется никотин, и никотин тоже способен запускать сокращение мышц. Правда, если мы берем организм человека, организм позвоночных, нужна довольно высокая концентрация никотина, чтобы пошло мышечное сокращение. Вообще никотин - это известный токсин, токсин табака, пасленового растения. Зачем табак вырабатывает никотин? Ему подобного рода вещество нужно для того, чтобы защищаться от травоядных, прежде всего от насекомых. И если колорадский жучок поест листьев табака, его нервно-мышечные синапсы очень мощно активизируются, случится судорога, он упадет с веточки и уже больше никогда не будет есть табак. То есть эволюция формирует эти токсины, чтобы защищаться в первую очередь от насекомых, и на млекопитающих они тоже действуют, потому что наша нервная система не так уж сильно отличается от нервной системы колорадского жука.

Но жуки едят растения уже очень давно, поэтому эволюция растений свои токсины настраивала именно на членистоногих. А млекопитающие едят растения только около 70 миллионов лет, поэтому на нас никотин действует не очень сильно, по крайней мере судороги не вызывает, а вот на головной мозг влияет. Итак, рецепторы, которые работают в нервно-мышечных синапсах, называются никотиновые рецепторы, то есть на них влияет никотин, а еще, конечно, сам ацетилхолин. Помимо веществ, которые активируют работу рецепторов, есть вещества, блокирующие работу рецепторов. Скажем, никотин, активирующий рецепторы, называется агонистом этих рецепторов, а вещества, блокирующие работу рецепторов, называются антагонистами рецепторов.

Антагонистом никотиновых рецепторов, которые работают в нервно-мышечных синапсах, является, например, курарин - еще один растительный токсин, который производят тропические лианы, для того чтобы защищаться от насекомых. Но, соответственно, курарин, в отличие от никотина, будет вызывать не судороги, а, наоборот, паралич, остановку дыхания, поэтому аборигены Амазонии используют подобного рода токсины для охоты: мажут стрелы, и такая стрела, попав, например, в птицу или маленькую обезьянку, вызывает почти мгновенный паралич. И в клинике подобные вещества используются, для того чтобы в микродозах расслаблять мышечные волокна, мышечные сокращения. Такое порой нужно во время хирургических операций или при каких-то очень сильных спазмах. Так что любой токсин мы, если как следует его разбавим, можем превратить в лекарственный препарат, и на этом базируется традиционная фармакология, которая действительно использует растительные яды очень эффективно и очень широко.

Помимо нервно-мышечных синапсов, ацетилхолин еще очень серьезно влияет на работу внутренних органов. Он является важнейшим медиатором так называемой вегетативной нервной системы. Та часть нашей нервной системы, которая влияет на мышцы, - это соматическая нервная система, двигательная нервная система. И важным признаком этой части нервной системы является то, что здесь возможен произвольный контроль. То есть я хочу подвигать пальцем - никаких проблем. А кроме этого, есть вегетативная нервная система, которая влияет на работу внутренних органов, и здесь произвольного контроля нет. Я пальцем подвигать могу, но не могу сказать, например, коже в этой зоне: «Расширяй сосуды» или потовым железам: «Выделяйте пот». В эти зоны, в эти функции вход нашему сознанию закрыт, это так называемая непроизвольная регуляция. Но тем не менее она все равно управляется из нашей центральной нервной системы, из головного мозга, и большинство наших внутренних органов находится под двойным управлением.

Вегетативная нервная система делится на два конкурирующих блока: симпатическую и парасимпатическую. И ацетилхолин - это важнейший медиатор парасимпатической нервной системы, той части вегетативной нервной системы, которая успокаивает работу внутренних органов, по крайней мере большинства внутренних органов. Сердце бьется слабее и реже, скажем, зрачки сужаются, бронхи сужаются. А вот, например, желудочно-кишечный тракт под действием парасимпатической системы начинает работать активнее. И ацетилхолин, получается, активизирует работу желудочно-кишечного тракта, тормозит работу сердца, сужает зрачки. И агонист ацетилхолина действует примерно так же. Интересно, что рецепторы на внутренних органах не такие, как на мышцах. Никотин на них не действует. На них действует другой известный токсин, который называется мускарин. Это токсин мухомора. Он является агонистом тех рецепторов ацетилхолина, которые работают в парасимпатической системе, и поэтому эти рецепторы называют мускариновыми.

То есть вообще нейрофармакологи говорят, что к ацетилхолину два основных типа рецепторов: никотиновые и мускариновые. Соответственно, мускарин точно так же будет замедлять работу сердца, активировать желудочно-кишечный тракт, и опять-таки он нужен, чтобы защищаться от насекомых. Само название «мухомор» говорит о том, что вряд ли мускарин полезен для всяких членистоногих. Для всех этих рецепторов есть и антагонист, он называется атропин. Тоже довольно известный токсин, который характерен, скажем, для белены, белладонны. И он будет действовать в направлении, противоположном ацетилхолину. Скажем, под влиянием атропина расширяются бронхи, расширяются зрачки (это, кстати, используется в клинике), сердце работает активнее, поэтому атропин входит в состав некоторых лекарственных смесей, которые оказывают кардиостимулирующее действие.

Это периферические эффекты ацетилхолина, они чрезвычайно важны. Но кроме периферии ацетилхолин работает еще и в головном мозге. При этом в головном мозге он не является самым важным медиатором, есть медиаторы поважнее. Тем не менее ацетилхолиновые нейроны встречаются в самых разных отделах центральной нервной системы: в продолговатом мозге, в среднем мозге, в гипоталамусе, в больших полушариях. Как правило, у них довольно короткие аксоны, и они воздействуют только на близлежащие нейроны. И основные эффекты ацетилхолина связаны с балансом сна и бодрствования, с общим уровнем активации мозга, и чаще всего мы застаем ацетилхолин за так называемым нормализующим эффектом. То есть получается, что если, например, у нас стресс, то ацетилхолин понижает уровень возбуждения и делает мозг более спокойным. Если, наоборот, мозг слишком вялый, то ацетилхолин способен его активировать. Это и называется нормализующее действие, и это очень полезное и замечательное действие, конечно.

Никотин как раз и работает в центральной нервной системе таким нормализующим образом, поэтому, если у курильщика, например, стресс, он курит для того, чтобы успокоиться, а если он с утра не может как следует проснуться и включиться в рабочий процесс, то, соответственно, он курит для того, чтобы активизировать свои нейронные сети. Все бы хорошо, но на самом деле у подобных веществ, которые являются агонистами или антагонистами разных медиаторов, есть масса неприятных эффектов. Самый главный из них называется привыкание и зависимость. И привыкание, и зависимость - это следствие самой логики работы синапса. Каждый синапс в нашей центральной нервной системе врожденно знает, с какой активностью передавать сигналы. И дальше представьте себе, что вы берете, скажем, тот же самый никотин и заставляете синапс работать активнее. Синапс через некоторое время начинает на это реагировать и снижать свою собственную эффективность. Становится меньше рецепторов, меньше синтезируется медиатора. Зачем я буду делать ацетилхолин, если я все равно получу никотин?

И в итоге, если вы воздействуете на синапс агонистом, он постепенно снижает свою собственную эффективность, и вам приходится все больше и больше вводить агониста, чтобы достичь нужного уровня активации. Это зависимость. А соответственно, если вы попытаетесь отменить препарат, не ввести агониста, то вдруг окажется, что никакого нормализующего действия ацетилхолина вообще нет. И тогда вместо нормализации, наоборот, возникнут эмоции, какое-то состояние дисфории, уровень бодрствования не будет выводиться на какое-то оптимальное значение. Любой человек, который бросал курить после серьезного периода использования никотина, эти эффекты знает, и табакокурение является действительно важной и тяжелой проблемой. Здесь проблема не только в никотине, но и во вдыхании смол, в раке легких, но это уже отдельная история.

Итак, ацетилхолин является важнейшим медиатором периферической нервной системы, нервно-мышечных синапсов, парасимпатической системы и является важным медиатором нашего головного мозга. Многие нейроны используют его, и часть лекарственных препаратов ориентирована именно на ацетилхолин. Препараты, влияющие на работу мышц, работу внутренних органов и даже на работу центральной нервной системы, вплоть до нейродегенерации, то есть часть современных препаратов, ориентированных на ацетилхолин, используют для того, чтобы бороться с такими тяжелейшими заболеваниями, как, скажем, болезнь Альцгеймера.

Образующийся в организме (эндогенный) ацетилхолин играет важную роль в процессах жизнедеятельности: он способствует передаче нервного возбуждения в ЦНС, вегетативных ганглиях, окончаниях парасимпатических (двигательных) нервов. Ацетилхолин является химическим передатчиком (медиатором) нервного возбуждения; окончания нервных волокон, для которых он служит медиатором, называются холинергическими, а рецепторы, взаимодействующие с ним, - холинорецепторами. Холинорецепторы - сложные белковые молекулы (нуклеопротеиды) тетрамерной структуры, локализованные на внешней стороне постсинаптической (плазматической) мембраны. По природе они неоднородны. Холинорецепторы, расположенные в области постганглионарных холинергических нервов (сердца, гладких мышц, желез) обозначают как м-холинорецепторы (мускариночувствительные), а находящиеся в области ганглионарных синапсов и в соматических нервно-мышечных синапсах - как н-холинорецепторы (никотиночувствительные) (С. В. Аничков). Такое деление связано с особенностями реакций, возникающих при взаимодействии ацетилхолина с этими биохимическими системами, мускариноподобных (снижение артериального давления, брадикардия, усиленная секреция слюнных, слезных, желудочных и других экзогенных желез, сужение зрачков и т. д.) в первом случае и никотиноподобных (сокращение скелетной мускулатуры и т. п.) во втором. М- и н-холинорецепторы локализованы в разных органах и системах организма, включая ЦНС. Мускариновые рецепторы стали делить в последние годы на ряд подгрупп (м1, м2, м3, м4, м5). Наиболее изучена в настоящее время локализация и роль м1- и м2-рецепторов. Ацетилхолин не оказывает строго избирательного действия на различные холинорецепторы. В той или другой степени он влияет на м- и н-холинорецепторы и на подгруппы м-холинорецепторов. Периферическое мускариноподобное действие ацетилхолина проявляется в замедлении сердечных сокращений, расширении периферических кровеносных сосудов и снижении артериального давления, активизации перистальтики желудка и кишечника, сокращении мускулатуры бронхов, матки, желчного и мочевого пузыря, увеличении секреции пищеварительных, бронхиальных, потовых и слезных желез, сужении зрачков (миоз). Последний эффект связан с усилением сокращения круговой мышцы радужной оболочки, которая иннервируется постганглионарными холинергическими волокнами глазодвительного нерва (n. oculomotorius). Одновременно в результате сокращения ресничной мышцы и расслабления цинновой связки ресничного пояска наступает спазм аккомодации. Сужение зрачка, обусловленное действием ацетилхолина, сопровождается обычно снижением внутриглазного давления. Этот эффект частично объясняется расширением при сужении зрачка и уплощении радужной оболочки шлеммова канала (венозный синус склеры) и фонтановых пространств (пространства радужно-роговичного угла), за счет чего улучшается отток жидкости из внутренних сред глаза. Не исключено, однако, что в снижении внутриглазного давления принимают участие и другие механизмы. Благодаря способности снижать внутриглазное давление вещества, действующие подобно ацетилхолину (холиномиметики, антихолинэстеразные препараты), широко применяются для лечения глаукомы1. Периферическое никотиноподобное действие ацетилхолина связано с его участием в передаче нервных импульсов с преганглионарных волокон на постганглионарные в вегетативных узлах, а также с двигательных нервов на поперечнополосатую мускулатуру. В малых дозах он является физиологическим передатчиком нервного возбуждения, в больших - может вызывать стойкую деполяризацию в области синапсов и блокировать передачу возбуждения. Ацетилхолину принадлежит также важная роль как медиатору в ЦНС. Он участвует в передаче импульсов в разных отделах мозга, при этом в малых концентрациях облегчает, а в больших - тормозит синаптическую передачу. Изменения в обмене ацетилхолина могут привести к нарушению функций мозга. Некоторые центральнодействующие его антагонисты являются психотропными препаратами. Передозировка антагонистов ацетилхолина может вызвать нарушения высшей нервной деятельности (галлюциногенный эффект и др.). Для применения в медицинской практике и экспериментальных исследований выпускается ацетилхолина хлорид (Acetylcholini chloridum).

Ацетилхолицин представляет собой нейромедиатор, осуществляющий связующие функции в организме человека. Это соединение доводит импульсы до мышц и целого ряда органов. Оно используется в исследованиях, при этом его лекарственное значение в настоящее время невелико вследствие существенных побочных эффектов при большой дозе и наличия более действенных аналогов.

Общие сведения

Ацетилхолин имеет формулу CH 3 -CO 2 -CH 2 -CH 2 -N(CH 3) 3 .

Ацетилхолин - это органическое соединение, которое выступает в организме как , в том числе в парасимпатической нервной системе и в нервно-мышечном синапсе. В качестве нейромедиатора данное соединение обладает следующими характеристиками:

  • его синтез происходит в пресинаптическом нейроне;
  • аккумуляция ацетилхолина происходит в пузырьках;
  • это соединение выделяется в прямой пропорции к силе стимула, вызывающего такое выделение (частоте импульсации);
  • постсиноптическое действие этого вещества прямым образом иллюстрируется с помощью микроинофореза;
  • дезактивировать данный медиатор можно с помощью действенных механизмов.

Определено, что лишь соединения, у которых наблюдается каждая из данных характеристик, могут рассматриваться как медиаторы.

В химическом плане ацетилхолин является сложным эфиром, образованным холином и уксусной кислотой.

В организме данное вещество синтезируется посредством холинэстеразы - особого фермента. При его разрушении происходит образование уксусной кислоты и оксида. Соединение нестойкое и под влиянием ацетилхолинэстеразы оно также распадается весьма быстро.

Также возможно получить его искусственным путем в форме одной и из солей, к примеру, хлорида. Полученный таким способом препарат (ацетилхолин-хлорид) применяют для исследования в сфере фармакологии и в редких случаях как лекарственный препарат. Выпускается соединение в виде ампулы объёмом 5 миллилитров, в которых находится 0,1 либо 0,2 грамма сухого вещества. Для инъекций его растворяют в стерильной воде объёмом 2–5 миллилитров.

Ацетилхолин представляет собой кристаллическую массу белого цвета или бесцветные кристаллы.

Классификация холиновых белков (какие бывают и их специфика)

Холиновые белки подразделяются на воздействующие на н-холинорецепторы и м-холинорецепторы. Холинрецепторы - макромолекулы белка сложной структуры, которые располагаются на наружной стороны постсинаптической мембраны.

Первые из нихотиночувствительные, отсюда и буква «н» в их названии. Они встречаются внутри нервно-мышечных структур и ганглионных синапсов.

Вторая разновидность белков приобрела букву «м», поскольку они являются мускариночувствительными. Они присутствуют в области холинергических постганглионарных нервов. Иначе говоря, в сердце, гладкой мускулатуре и железах.

В нервной системе ацетилхолин синтезируется с участием глюкозы. При ее распаде возникают ацетильные группы, выделяется энергия. Благодаря этой энергии возникает аденозинтрифосфат, а уже посредством этого соединения происходит фосфорилирование соединений промежуточного характера, требуемых для синтеза. Предпоследняя стадия - это формирование ацетилкофермента А, из которого следом при реакции с холином возникает уже сам ацетилхолин.

При этом механизм попадания холинов в место образования ацетилхолина для реакции с ацетилкоферментом А в настоящее время неизвестен. Предполагается, что его половина поступает в это место из плазмы крови, а ещё половина остается после гидролиза прежнего

Синтез данного вещества происходит в нервных окончаниях внутри цитоплазмы аксонов. После этого соединение складируется в синаптических везикулах (пузырьках), В отдельном подобном органоиде находится от 1000 до 10000 молекул этого соединения. Предполагается, что примерно 15–20% объема данного вещества в пузырьках составляет количество ацетилхолина, доступное к немедленному использованию. Прочий хранящийся в везикулах запас может быть активирован для использования лишь спустя некоторое время после соответствующего сигнала.

Распад ацетилхолина в человеческом организме происходит весьма быстро. Запускается данный процесс ацетилхолинэстераза, специальный фермент.

Функции

Функция ацетилхолина - служить медиатором внутри ЦНС (центральной нервной системы). Это вещество влияет на передачу импульсов от одних разделов головного мозга к другим. При этом небольшое содержание данного вещества способствует передаче импульсов, а его значительное количество - тормозит её.

Также ацетилхолин служит для передачи к мускулам тела. При нехватке данного вещества сила, с которой сокращаются мускулы, падает. Недостаток именно данного соединения приводит к тому, что человека начинает страдать болезнью Альцгеймера.

Действие ацетилхолина выражается в более медленном ритме сердцебиения, снижении артериального давления, увеличении диаметра кровеносных сосудов периферического расположения. Соединение улучшает перистальтику в пищеварительном тракте (кишечнике и желудке). Также его присутствие усиливает сокращательную способность мускулатуры целого ряда органов, включая мочевой и желчный пузыри, матку, а также бронхи. Ацетилхолин усиливает железную секрецию, в частности у слёзных, потовых, бронхиальных и пищеварительных желёз.

Помимо этого он вызывает сужение зрачка (миоз), этот эффект становится следствием более интенсивных сокращение управляющей радужной оболочкой круговой мышцы, на которую воздействуют находящиеся в глазодвигательном нерве постганглионарные холинергетические волокна. .Такое сужение зрачка чаще всего идет в сочетании с уменьшением внутриглазного давления. Это обусловлено тем, что при таком сужении происходит расширение шлеммова канала, а также пространства в углу, образуемом радужной оболочкой и роговицей. Вследствие этого жидкость получает большую возможность для оттока из глазной внутренней среды.

Также ацетилхолин служит для улучшения концентрации внимания путем выработки нейронов, располагающихся в .

Ещё одна функция соединения - это влияние на засыпание и пробуждение. Спящий просыпается, после того как возрастает интенсивность деятельности холинергических нейронов, располагающихся в стволе головного мозга, а также в переднем мозге в базальных ядрах.

Ацетилхолицин, выработанный искусственно, используют для лечения лишь в некоторых случаях. Это обусловлено тем, что при пероральном приёме данное соединение быстро подвергается гидролизации, в результате чего его всасывания со слизистых желудочно-кишечного тракта не происходит. При введении его в организм иным образом, в том числе посредством инъекций он также не оказывает существенного воздействия на центральную нервную систему. Именно поэтому сейчас в большинстве случаев от него отказываются.

Также требуется иметь в виду, что ацетилхолин сужает вены в сердце. Если ввести пациенту чрезмерную дозу данного вещества, то результатом может стать брадикардия, падение артериального давления, аритмия, потливость и иные неблагоприятные эффекты.

N, N, N-триметил-2-аминоэтанола ацетат

Химические свойства

Ацетилхолин – основной нейромедиатор , отвечающий за нервно-мышечную передачу в парасимпатической нервной системе. Это четвертичное моноаммониевое соединение. Само по себе вещество не стойкое, в организме быстро разрушается с помощью ацетилхолинэстеразы , в результате чего образуется уксусная кислота и холин .

Средство синтезируют в виде белых кристаллов или кристаллической массы, которая имеет свойство расплываться при контакте с воздухом. Вещество хорошо растворяется в спирте и воде. Его нельзя кипятить и долго хранить, ацетилхолин разлагается.

Используется в качестве лекарства, улучшающего нервно-мышечную передачу и для проведения фармакологических исследований. Часто его синтезируют в виде соли или хлорида .

Данный нейромедиатор играет важную роль в организме, повышает работоспособность головного мозга и память. Поэтому важно, чтобы содержалось достаточно ацетилхолина в продуктах питания, входящих в ежедневный рацион.

Выпускают средство в ампулах по 5 мл, содержащих по 100-200 мг сухого препарата. Перед использованием его растворяют в воде для инъекций.

Фармакологическое действие

Холинолитическое, сосудорасширяющее, гипотензивное.

Фармакодинамика и фармакокинетика

Холиномиметическое действие Ацетилхолина на организм возникает из-за стимуляции им н- и м-холинорецепторов . Вещество замедляет сердечные сокращения, расширяет периферические кровеносные сосуды, понижает , усиливает перистальтику кишечника и желудка.

Средство влияет на секрецию бронхиальных и пищеварительных желез, выведение пота и слез. Также вещество производит миотический эффект, усиливает (сужение зрачка), понижает .

Малые дозы ацетилхолина стимулируют передачу нервных импульсов в различных отделах головного мозга, а большие – напротив тормозят этот процесс. Данный нейромедиатор в целом повышает работоспособность головного мозга и память. Поэтому важно, чтобы содержалось достаточно ацетилхолина в продуктах питания, входящих в ежедневный рацион. При его недостатке развиваются нарушения работы мозга ().

Показания к применению

Ранее его назначали в качестве холиномиметика . Также возможно применение средства для лечения в течение непродолжительного периода, так как при длительном использовании может развиться .

Противопоказания

Побочные действия

Во время лечения Ацетилхолином могут развиться:

  • брадикардия , понижение артериального давления , ;
  • тошнота, нарушения зрения, повышенное слезотечение;
  • ринорея , бронхоспазм ;
  • частое мочеиспускание.

Инструкция по применению (Способ и дозировка)

Ацетилхолин назначают подкожно и внутримышечно. В среднем дозировка для взрослых составляет 50-100 мг. При необходимости инъекции можно делать несколько раз подряд, до трех раз.

Нельзя допускать внутривенного введения препарата, так как это может привести к резкому понижению артериального давления , вплоть до остановки сердца.

Передозировка

Передозировка может вызвать резкое снижение АД , брадикардию , остановку сердца, нарушения ритма, миоз , диарею и так далее. Для устранения нежелательных симптомов рекомендуется как можно скорее ввести подкожно или внутривенно 1 мл 0,1% р-ра или другого холинолитика (например, ). При необходимости произвести повторные инъекции.

Взаимодействие

Антихолинэстеразные лекарственные средства усиливают холиномиметическое действие данного вещества.

М-холиноблокаторы , нейролептики , трициклические антидепрессанты , производные фенотиазина , снижают эффективность средства.

Условия продажи

На данный момент лекарство не продается в аптеках.

Условия хранения

Хранят препарат в плотно запаянных ампулах.

Особые указания

На данный момент данное вещество в медицинской практике практически не применяется.

Средство иногда входит в состав некоторых комб. препаратов для местного использования в хирургии глаза, чтобы создать стойкий и продолжительный миоз .

Препараты, в которых содержится (Аналоги)

На данный момент препараты ацетилхолина не выпускают.

АЦЕТИЛХОЛИН - медиатор нервного возбуждения. Синтезируется в организме из аминоспирта холина и уксусной кислоты. Биологически очень активное вещество.

Ацетилхолин оказывает многостороннее действие на организм. Основная функция - медиация нервных импульсов. Нервные волокна и соответствующие им нейроны, осуществляющие передачу нервных импульсов посредством ацетилхолина, называются холинергическими. К ним относятся мотонейроны, иннервирующие скелетные мышцы; преганглионарные нейроны парасимпатических и симпатических нервов; постганглионарные нейроны всех парасимпатических и некоторых симпатических нервов (матки, потовых желез) и некоторые нейроны центральной нервной системы. Все холинергические волокна содержат холинацетилтрансферазу - специфический фермент, с помощью которого происходит синтез ацетилхолина. Ацетилхолин находится в нервных окончаниях в пузырьках, из которых он изливается в синаптическую щель в момент прихода нервного импульса. Освобождение ацетилхолина нервными окончаниями носит квантовый характер. По-видимому, содержимое пузырька и составляет ту наименьшую порцию ацетилхолина (квант), которая может быть выделена. В нормальных условиях каждый нервный импульс вызывает выделение нескольких сотен квантов ацетилхолина. Взаимодействуя со специфической макромолекулой на постсинаптической мембране - холинорецептором, ацетилхолин повышает проницаемость мембраны для ионов: возникает постсинаптический потенциал, который изменяет возбудимость эффекторной клетки, а в случае нервно-мышечного синапса является непосредственной причиной генерации потенциала действия. Эффект ацетилхолина прекращается под влиянием фермента ацетилхолинэстеразы (см. Холинэстеразы), который гидролизует ацетилхолин на малоактивный холин и уксусную кислоту, а также вследствие простой диффузии ацетилхолина из синаптической щели. В молекуле ацетилхолина есть две активные группы, обеспечивающие взаимодействие с холинорецептором: заряженная триметиламмониевая группа (катионная «головка»), которая реагирует с анионной группой в холинорецепторе, и сильно поляризованная сложноэфирная группа, реагирующая с так называемым эстерофильным участком холинорецептора.

Различают два вида действия ацетилхолина: мускариноподобное и никотиноподобное. Мускариноподобное действие проявляется эффектами, аналогичными тем, которые возникают при раздражении парасимпатических нервов гладких мышц, сердца, желез, и снимается атропином; никотиноподобное выражается возбуждением вегетативных ганглиев и мозгового вещества надпочечников, а также скелетной мускулатуры и снимается большими дозами никотина, гексонием, тубокурарином. В соответствии с этим холинореактивные системы разных органов обозначают как м-холинореактивные (мускариночувствительные) и н-холинореактивные (никотиночувствительные) .

В обычных условиях преобладает мускариноподобное действие ацетилхолина. При инстилляции ацетилхолина в глаз происходит сужение зрачка и спазм аккомодации, снижается внутриглазное давление. При попадании в общий кровоток наблюдается снижение кровяного давления, вызванное расширением сосудов (коронарные сосуды человека ацетилхолин суживает) и в меньшей степени замедлением сердечной деятельности, усиление двигательной активности желудочно-кишечного тракта, сокращение мускулатуры бронхов, желчного и мочевого пузыря, матки, усиление секреции желез с холинергической иннервацией, особенно слюнных и потовых.

Никотиноподобное действие ацетилхолина на вегетативные ганглии и надпочечники проявляется после атропинизации и при использовании более высоких доз. Оно выражается в прессорном эффекте. Ацетилхолин также стимулирует никотиночувствительные системы каротидных клубочков и рефлекторно возбуждает дыхание.

Все эффекты ацетилхолина можно усилить путем предварительного введения антихолинэстеразных веществ (эзерин, прозерин и др.). При обычных путях введения ацетилхолин не проникает через гемато-энцефалический барьер и не оказывает влияния на центральную нервную систему. Многообразие эффектов ацетилхолина, среди которых могут оказаться нежелательные, ослабляющие друг друга, а также кратковременность действия крайне ограничивают его применение в медицинской практике. Ацетилхолин широко используют при экспериментальном исследовании функций холинергических структур в виде хорошо растворимой соли - ацетилхолина хлорида (Acetylcholini chloridum, Acetylcholinum chloratum; список Б). Форма выпуска: ампулы по 5 мл, содержащие 0,2 г препарата.

Ацетилхолин как медиатор аллергических реакций

Сходство картины отравления ацетилхолином у собак с картиной развития у них анафилактического шока (см.) позволило предположить непосредственное участие холинергических процессов, имеющих место в деятельности некоторых органов, в механизме аллергических реакций этих органов. Таким органом является, напр., язык собаки, имеющий парасимпатическую иннервацию. Предполагалось, что точкой приложения антигена в сенсибилизированном органе служат окончания парасимпатических нервов. Это было подтверждено экспериментально. Введение антигена в сосуды языка сенсибилизированной собаке вызывает явный сосудорасширяющий эффект. В норме эти явления не наблюдаются. При выключении парасимпатической иннервации половины языка путем предварительного (за месяц до опыта) вылущения подчелюстной и подъязычных слюнных желез и вместе с ними подчелюстных и подъязычных периферических узлов парасимпатического иннервационного аппарата сосудов языка собаки полностью снимается описанная выше реакция сосудов этой половины языка на антиген. Вместе с тем при перерезке язычного нерва характер сосудистой реакции на антиген не меняется, что свидетельствует об отсутствии реакции на антиген чувствительных окончаний соматических нервов. Участие ацетилхолина в процессах распространения отравления в организме маловероятно. Роль анафилактического яда в этом смысле выполняют, очевидно, более стойкие продукты распада ткани, к которым относятся активные кинины, серотонин, гистамин и др. Таким образом, ацетилхолиновая гипотеза патогенеза аллергии ни в какой степени не противоречит представлению об участии гистамина в качестве одного из важных звеньев в механизме аллергической альтерации ткани. Участие ацетилхолина и холинергических процессов в механизме «органной» аллергии, то есть в условиях его действия in loco nascendi в соответствующих холинергических синапсах, имеет значение существенного, а в ряде структур и основного звена в определении функциональных выражений аллергии. К таким структурам относятся синаптические связи в вегетативной и центральной нервной системе, парасимпатическая сосудодвигательная иннервация, иннервация сердца и т. д. Вероятно, в них изменяется активность холинэстеразы, увеличивается скорость освобождения ацетилхолина при возбуждении их специфическим антигеном и, что самое важное, в них появляется возбудимость к специфическому антигену, который совершенно или почти совершенно отсутствовал в нормальном состоянии.

Библиография: Аничков С. В. и Гребенкина М. А. Фармакологическая характеристика холинорецепторов центральной нервной системы, Бюлл. эксперим. биол, и мед., т. 22, № 3, с. 28, 1946; Кибяков А. В. Химическая передача нервного возбуждения, М.- Л., 1964, библиогр.; Михельсон М. Я. и Зеймаль Э.В. Ацетилхолин, о молекулярном механизме действия, Л., 1970, библиогр.; Руководство по фармакологии, под ред. Н. В. Лазарева, т. 1, с. 137, Л., 1961; Турпаев Т. М. Медиаторная функция ацетилхолина и природа холино-рецептора, М., 1962; Э к к л с Д. Физиология синапсов, пер. с англ., М., 1966, библиогр.; Central cholinergic transmission and its behavioral aspects, Fed. Proc., v. 28, p. 89, 1969, bibliogr.; Dale H.H. The action of certain esters and ethers of choline, and their relation to muscarine, J. Pharmacol., v. 6, p. 147, 1914; Goodman L. S. a. G i 1 m a n A. Pharmacological basis of therapeutics, N. Y., 1970; Katz B. The release of neural transmitter substances, Springfield, 1969, bibliogr.; Michelson M. J. a. Danilov A. F. Cholinergic transmissions, в кн.: Fundament. biochem. Pharmacol., ed. by Z. M. Bacq, p. 221, Oxford a. o., 1971.

H. Я. Лукомская, М. Я. Михельсон; А. Д. Адо (алл.).