Что понимают под выражением атомные орбитали. Атомные орбитали

Согласно принципу неопределенности Гейзенберга, положение и момент электрона не поддаются одновременному определению с абсолютной точностью. Однако, несмотря на невозможность точного определения положения электрона, можно указать вероятность нахождения электрона в определенном положении в любой момент времени. Область пространства, в которой высока вероятность обнаружения электрона, называется орбиталью. Понятие «орбиталь» не следует отождествлять с понятием орбита, которое используется в теории Бора. Под орбитой в теории Бора понимается траектория (путь) электрона вокруг ядра.

Электроны могут занимать орбитали четырех разных типов, которые называются s-, р-, d- и f-орбиталями. Эти орбитали могут быть представлены трехмерными ограничивающими их поверхностями. Области пространства, ограниченные этими поверхностями, обычно выбираются так, чтобы вероятность обнаружения внутри них одного электрона составляла 95%. На рис. 1.18 схематически изображена форма s- и -орбиталей. s-Орбиталь имеет сферическую форму, а -орбитали - форму гантелей.

Поскольку электрон имеет отрицательный заряд, его орбиталь может рассматриваться как некоторое распределение заряда. Такое распределение принято называть электронным облаком (рис. 1.19).

Рис. 1.18. Форма s- и p-орбиталей.

Рис. 1.19. Электронное облако в поперечном разрезе. Окружностью представлена область вокруг ядра, в пределах которой вероятность нахождения электрона равна 95%.

При обсуждении химических свойств атомов и молекул - строения и реакционной способности - большую помощь в качественном решении того или иного вопроса может оказать представление о пространственной форме атомных орбиталей. В общем случае АО записываются в комплексной форме, но, используя линейные комбинации комплексных функций, относящихся к одному и тому же уровню энергии с главным квантовым числом п и с одинаковым значением орбитального момента /, можно получить выражения в действительной форме, которые можно изобразить в реальном пространстве.

Рассмотрим последовательно ряд АО в атоме водорода.

Наиболее просто выглядит волновая функция основного состояния 4^. Она имеет сферическую симметрию

Величина а определяется выражением где величина

называется радиусом Бора. Боровский радиус говорит о характерных размерах атомов. Величина 1/ос определяет масштаб характерного спада функций в одноэлектронных атомах

Из (ЗЛО) видно, что размер одноэлектронных атомов сжимается по мере роста заряда ядра обратно пропорционально значению Z. Например, в атоме Не + волновая функция будет спадать в два раза быстрее, чем в атоме водорода с характерным расстоянием, равным 0,265 А.

График зависимости *F ls от расстояния приведен на рис. 3.3. Максимум функции *Fj находится в нуле. Нахождение электрона внутри ядра не должно вызывать большого удивления, так как ядро нельзя представлять в виде непроницаемой сферы.

Максимальная вероятность обнаружить электрон на некотором расстоянии от ядра в основном состоянии атома водорода приходится на г = а 0 = 0,529 А. Эту величину можно найти следующим образом. Вероятность найти электрон в некотором малом объеме А V равна |*Р| 2 ДЙ. Объем AV полагаем настолько малым, что значение волновой функции можно считать постоянным в пределах этого малого объема. Нас интересует вероятность нахождения электрона на расстоянии г от ядра в тонком слое толщиной Аг. Так как вероятность нахождения электрона на расстоянии г не зависит от направления и конкретное направление нас не интересует, то нужно найти вероятность пребывания электрона в очень тонком сферическом слое толщиной Аг. Так как значение | V F| 2 легко вычисляется, нам необходимо

Рис. 3.3. Зависимость *F 1s от расстояния. Значения функции нормированы на ее величину в при г = О

Рис. 3.4. Схема вычисления объема сферического слоя

найти объем сферического слоя, который обозначим через А К Он равен разности объемов двух шаров с радиусами г и г + Аг (рис. 3.4):

Так как А г мало по сравнению с г, то при вычислении величины (г + Аг) 3 можно ограничиться первыми двумя слагаемыми. Тогда для объема сферического слоя получим

Последнее выражение можно получить и более простым способом. Так как А г мало по сравнению с г, то объем сферического слоя можно принять равным произведению площади сферического слоя на его толщину (см. рис. 3.4). Площадь сферы равна 4кг 2 , а толщина А г. Произведение этих двух величин дает то же выражение (3.11).

Итак, вероятность W найти электрон в этом слое равна

Выражение для *P ls взято из приложения 3.1. Если считать величину Аг постоянной, то максимум приведенной функции наблюдается при г = а 0 .

Если хотят узнать, какова вероятность W обнаружить электрон в объеме V, то необходимо проинтегрировать плотность вероятности обнаружения электрона по этой области пространства в соответствии с выражением (3.6).

Например, какова вероятность обнаружить электрон в атоме водорода в сферической области пространства с центром в ядре и с радиусом й 0 . Тогда

Здесь величина d V в процессе вычислений заменена на 4кг 1 dr по аналогии с (3.11), так как волновая функция зависит только от расстояния и поэтому интегрировать по углам не нужно ввиду отсутствия угловой зависимости интегрируемой функции.

Качественное представление о распределении волновой функции в пространстве дает изображение атомных орбиталей в виде облаков, причем, чем интенсивнее цвет, тем выше значение Ч"-функции. Орбиталь будет выглядеть так (рис. 3.5):

Рис. 3.5.

Орбиталь 2p z B виде облака изображена на рис. 3.6.

Рис. 3.6. Изображение 2р г -орбитали атома водорода в виде облака

Аналогичным образом в виде облака будет выглядеть распределение электронной плотности, которое можно найти, умножив плотность вероятности I"Fj 2 на заряд электрона. В этом случае иногда говорят о размазывании электрона. Однако это ни в коей мере не означает, что мы имеем дело с размазыванием электрона по пространству - никакого реального размазывания электрона по пространству не происходит, и поэтому атом водорода нельзя представлять в виде ядра, погруженного в реальное облако отрицательного заряда .

Однако такие изображения в виде облаков используют редко, а гораздо чаще используют линии, чтобы создать представление об угловой зависимости Ч"-функций. Для этого рассчитывают значения Ч"-функций на сфере, проведенной на некотором расстоянии от ядра. Затем рассчитанные значения откладывают на радиусах с указанием знака Ч"-функций для наиболее информативного для данной Ч"-функций плоского сечения. Например, орбиталь Is обычно изображают в виде окружности (рис. 3.7).

Рис.

На рис. 3.8 2/> г -орбиталь построена на сфере некоторого радиуса. Для получения пространственной картины необходимо произвести вращение фигуры относительно оси z. Индекс «z» при записи функции указывает на ориентацию функции вдоль оси «г». Знаки «+» и «-» соответствуют знакам Ч"-функций. Значения 2/? г -функции положительны в той области пространства, где ^-координата положительна, и отрицательны в той области, где ^-координата отрицательна.

Рис. 3.8. Форма 2p z -орбитали. Построена на сфере некоторого радиуса

Аналогичная ситуация и в случае остальных /ьорбиталей. Например, 2/? х -орбиталь ориентирована вдоль оси х и положительна в той части пространства, где координата х положительна, и ее значения отрицательны там, где значения координаты х отрицательны (рис. 3.9).

Изображение волновых функций с указанием знака имеет важное значение для качественного описания реакционной способности химических соединений, и поэтому изображения типа приведенных на рис. 3.9 встречаются в химической литературе наиболее часто.

Рассмотрим теперь d-орбитали (рис. 3.10). Орбитали d xy , d xz , d yz , выглядят эквивалентным образом. Их ориентация и знаки определяются нижними индексами: индекс ху показывает,

Рис. 3.9. Форма 2р х - орбитали. Построена на сфере некоторого радиуса


что орбиталь ориентирована под углами в 45° по отношению к осям х и у и что знак У-функции положителен там, где произведение индексов х и у положительно.


Рис. 3.10.

Похожим образом дело обстоит и с остальными ^/-орбиталями. Изображение ^/-орбиталей, приведенное на рис. 3.10, наиболее часто встречается в литературе. Видно, что орбитали d , d x2 _ y2 , d z2 не являются эквивалентными. Эквивалентными являются только орбитали d , d xz , d yz . Если для описания структуры молекулы необходимо использовать пять эквивалентных ^/-орбиталей, то их можно построить, используя линейные комбинации орбиталей .

Электрон имеет двойственную природу: в разных экспериментах он может проявлять свойства частицы и волны. Свойства электрона как частицы : масса, заряд; волновые свойства ‑ в особенностях движения, интерференция и дифракция.

Движение электрона подчиняется законам квантовой механики .

Основные характеристики, определяющие движение электрона вокруг ядра: энергия и пространственные особенности соответствующей орбитали.

При взаимодействии (перекрывании) атомных орбиталей (АО) , принадлежащих двум или более атомам, образуются молекулярные орбитали (МО) .

Молекулярные орбитали заполняются обобществленными электронами и осуществляют ковалентную связь .

Перед образованием молекулярных орбиталей может происходить гибридизация атомных орбиталей одного атома.

Гибридизация – изменение формы некоторых орбиталей при образовании ковалентной связи для более эффективного их перекрывания. Образуются одинаковые гибридные АО , которые участвуют в образовании МО , перекрываясь атомным орбиталями других атомов. Гибридизация возможна лишь для атомов, образующих химические связи, но не для свободных атомов.


Углеводороды

Основные вопросы:

  1. Углеводороды. Классификация. Номенклатура.
  2. Строение. Свойства.
  3. Применение углеводородов.

Углеводороды – класс органических соединений, которые состоят из двух элементов: углерода и водорода.

Выбрать изомеры и гомологи:

Назвать алканы:

____________________________________________

__________________________________________


Ä реакция нитрования (реакция Коновалова, 1889 ) – реакция замещения водорода на нитрогруппу.

Условия : 13% НNO 3 , t = 130 – 140 0 C, Р= 15 – 10 5 Па. В промышленном масштабе нитрование алканов проводят в газовой фазе при 150 – 170 0 С оксидом азота (ІV) или парами азотной кислоты.

СН 4 + НО – NO 2 → CН 3 – NO 2 + Н 2 О

нитрометан

@ Решить задания:

1. Состав алканов отражает общая формула:

а) С n H 2 n +2 ; б) С n H 2 n -2 ; в) С n H 2 n ; г) С n H 2 n -6 .

2. С какими реагентами могут взаимодействовать алканы:

а) Br 2 (раствор); б) Br 2 , t 0 ; в) Н 2 SO 4 ; г) НNO 3 (разбав.), t 0 ; д ) КМnО 4 ; е ) КОН?

Ответы: 1) реагенты а, б, г, д ; 2) реагенты б, в, е ;

3) реагенты б, г ; 4) реагенты б, г, д, е .

  1. Установить соответствие между типом реакции и схемой (уравнением) реакции:
  1. Укажите вещество, которое образуется при полном хлорировании метана:

а) трихлорметан; б) тетрахлорметан; в) дихлорметан; г) тетрахлорэтан.

  1. Укажите наиболее вероятный продукт монобромирования 2,2,3-триметилбутана:

а) 2-бром-2,3,3-триметилбутан; б) 1-бром-2,2,3-триметилбутан;

в) 1-бром-2,3,3-триметилбутан; г) 2-бром-2,2,3-триметилбутан.

Составьте уравнение реакции.

Реакция Вюрца действие металлического натрия на галогенопроизводные углеводородов. При взаимодействии двух разных галогенопроизводных образуется смесь углеводородов, которая может быть разделена перегонкой.

СН 3 І + 2 Na + СН 3 І → С 2 Н 6 + 2 NaІ

@ Решить задания:

1. Укажите название углеводорода, который образуется при нагревании бромэтана с металлическим натрием:

а) пропан; б) бутан; в) пентан; г) гексан; д) гептан.

Составить уравнение реакции.

  1. Какие углеводороды образуются при действии металлического натрия на смесь:

а) иодметана и 1-бром-2-метилпропана; б) 2-бромпропана и 2-бромбутана?

Циклоалканы

1. Для малых циклов (С 3 – С 4) характерны реакции присоединения водорода, галогенов и галогеноводородов. Реакции сопровождаются размыканием цикла.

2. Для других циклов (С 5 и выше) характерны реакции замещения.


Непредельные углеводороды (ненасыщенные):

Алкены (олефины, ненасыщенные углеводороды с двойной связью, этиленовые углеводороды): Строение: sp 2 -гибридизация, плоскостное размещение орбиталей (плоский квадрат). Реакции: присоединения (гидрование, галогенирование, гидрогалогенирование, полимеризация), замещения(не характерны),окисления (горение, КМnO 4), разложения (без доступа кислорода).

@ Решить задания:

  1. Какова гибридизация атомов углерода в молекуле алкена:

а) 1 и 4 – sp 2 , 2 и 3 – sp 3 ; б) 1 и 4 – sp 3 , 2 и 3 – sp 2 ;

в) 1 и 4 – sp 3 , 2 и 3 – sp; г) 1 и 4 – не гибридизованы, 2 и 3 – sp 2 .

2. Назвать алкен:



  1. Составить уравнения реакций на примере бутена-1, назвать полученные продукты.

4. В приведенной ниже схеме превращений этилен образуется в реакции:

а) 1 и 2; б) 1 и 3; в) 2 и 3;

г) этилен не образуется ни в одной реакции.

  1. Какая реакция идет против правила Марковникова:

а)СН 3 – СН = СН 2 + НВr →; б) СН 3 – СН = СН 2 + Н 2 O →;;

в) СН 3 – СН = СН – CH 2 + НCI →; г) СCI 3 – СН = СН 2 + НCI →?

þ Диены с сопряженными связями: гидрование 1,3-бутадиена – образуется 2-бутен (1,4-присоединение):

þ гидрирование 1,3-бутадиена в присутствии катализатора Nі ‑ бутан:

þ галогенирование 1,3-бутадиена – 1,4-присоединение (1,4 – дибром-2-бутен):

þ полимеризация диенов:


Полиены (ненасыщенные углеводороды со многими двойными связями) – это углеводороды, в составе молекул которых содержится не меньше трёх двойных связей.

Получение диенов:

Ø действие спиртового раствора щелочи:

Ø способ Лебедева (синтез дивинила):

Ø дегидратация гликолей (алкандиолов):

Алкины (ацетиленовые углеводороды, углеводороды с одной тройной связью): Строение: sp-гибридизация, линейное размещение орбиталей. Реакции: присоединения (гидрование, галогенирование, гидрогалогенирование, полимеризация), замещения(образование солей),окисления (горение, КМnO 4), разложения (без доступа кислорода). 5-метилгексин-2 1-пентин 3-метилбутин-1
1. Какие углеводороды соответствуют общей формуле С n H 2n-2: а) ацетиленовые, диеновые; б) этиленовые, диеновые; в) циклоалканы, алкены; г) ацетиленовые, ароматические? 2. Тройная связь является сочетанием: а) трехσ-связей; б) одной σ-связи и двух π-связей; в) двух σ-связей и одной π-связи; г) трехπ-связей. 3. Составить формулу 3-метилпентина -3.
І. Реакции присоединения
v Гидрирование происходит через стадию образования алкенов:
v Присоединение галогенов происходит хуже, чем в алкенах: Алкины обесцвечивают бромную воду (качественная реакция ).
v Присоединение галогенводородов:
Продукты присоединения к нессиметричным алкинам определяются правилом Марковникова:
v Присоединение воды (гидратация) – реакция М.Г.Кучерова, 1881.
Для гомологов ацетилена продуктом присоединения воды является кетон:
ІІІ. Образование солей (кислотные свойства) –реакции замещения
ð Взаимодействие с активными металлами : Ацетилениды используют для синтеза гомологов.
ð Взаимодействие алкинов с аммиачными растворами оксида серебра или хлорида меди(І) :
Качественная реакция на конечную тройную связь ‑ образование серовато-белого осадка ацетиленида серебра или красно-коричневого – ацетиленида меди (І): НС ≡ СН + СuCI → СuC ≡ ССu ↓ + 2HCI Реакция не происходит
ІV. Реакции окисления
Ÿ Мягкое окисление – обесцвечивание водного раствора перманганата калия (качественная реакция на кратную связь ): При взаимодействии ацетилена с разбавленным раствором КМnО 4 (комнатная температура) ‑ щавелевая кислота .

Состав атома.

Атом состоит из атомного ядра и электронной оболочки .

Ядро атома состоит из протонов (p + ) и нейтронов (n 0). У большинства атомов водорода ядро состоит из одного протона.

Число протонов N (p + ) равно заряду ядра (Z ) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов).

N (p +) = Z

Сумма числа нейтронов N (n 0), обозначаемого просто буквой N , и числа протонов Z называется массовым числом и обозначается буквой А .

A = Z + N

Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е -).

Число электронов N (e -) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

Масса протона примерно равна массе нейтрона и в 1840 раз больше массы электрона, поэтому масса атома практически равна массе ядра.

Форма атома - сферическая. Радиус ядра примерно в 100000 раз меньше радиуса атома.

Химический элемент - вид атомов (совокупность атомов) с одинаковым зарядом ядра (с одинаковым числом протонов в ядре).

Изотоп - совокупность атомов одного элемента с одинаковым числом нейтронов в ядре (или вид атомов с одинаковым числом протонов и одинаковым числом нейтронов в ядре).

Разные изотопы отличаются друг от друга числом нейтронов в ядрах их атомов.

Обозначение отдельного атома или изотопа: (Э - символ элемента), например: .


Строение электронной оболочки атома

Атомная орбиталь - состояние электрона в атоме. Условное обозначение орбитали - . Каждой орбитали соответствует электронное облако.

Орбитали реальных атомов в основном (невозбужденном) состоянии бывают четырех типов: s , p , d и f .

Электронное облако - часть пространства, в которой электрон можно обнаружить с вероятностью 90 (или более) процентов.

Примечание : иногда понятия "атомная орбиталь" и "электронное облако" не различают, называя и то, и другое "атомной орбиталью".

Электронная оболочка атома слоистая. Электронный слой образован электронными облаками одинакового размера. Орбитали одного слоя образуют электронный ("энергетический") уровень , их энергии одинаковы у атома водорода, но различаются у других атомов.

Однотипные орбитали одного уровня группируются в электронные (энергетические) подуровни:
s -подуровень (состоит из одной s -орбитали), условное обозначение - .
p -подуровень (состоит из трех p
d -подуровень (состоит из пяти d -орбиталей), условное обозначение - .
f -подуровень (состоит из семи f -орбиталей), условное обозначение - .

Энергии орбиталей одного подуровня одинаковы.

При обозначении подуровней к символу подуровня добавляется номер слоя (электронного уровня), например: 2s , 3p , 5d означает s -подуровень второго уровня, p -подуровень третьего уровня, d -подуровень пятого уровня.

Общее число подуровней на одном уровне равно номеру уровня n . Общее число орбиталей на одном уровне равно n 2 . Соответственно этому, общее число облаков в одном слое равно также n 2 .

Обозначения: - свободная орбиталь (без электронов), - орбиталь с неспаренным электроном, - орбиталь с электронной парой (с двумя электронами).

Порядок заполнения электронами орбиталей атома определяется тремя законами природы (формулировки даны упрощенно):

1. Принцип наименьшей энергии - электроны заполняют орбитали в порядке возрастания энергии орбиталей.

2. Принцип Паули - на одной орбитали не может быть больше двух электронов.

3. Правило Хунда - в пределах подуровня электроны сначала заполняют свободные орбитали (по одному), и лишь после этого образуют электронные пары.

Общее число электронов на электронном уровне (или в электронном слое) равно 2n 2 .

Распределение подуровней по энергиям выражается рядом (в прядке увеличения энергии):

1s , 2s , 2p , 3s , 3p , 4s , 3d , 4p , 5s , 4d , 5p , 6s , 4f , 5d , 6p , 7s , 5f , 6d , 7p ...

Наглядно эта последовательность выражается энергетической диаграммой:

Распределение электронов атома по уровням, подуровням и орбиталям (электронная конфигурация атома) может быть изображена в виде электронной формулы, энергетической диаграммы или, упрощенно, в виде схемы электронных слоев ("электронная схема").

Примеры электронного строения атомов:

Валентные электроны - электроны атома, которые могут принимать участие в образовании химических связей. У любого атома это все внешние электроны плюс те предвнешние электроны, энергия которых больше, чем у внешних. Например: у атома Ca внешние электроны - 4s 2 , они же и валентные; у атома Fe внешние электроны - 4s 2 , но у него есть 3d 6 , следовательно у атома железа 8 валентных электронов. Валентная электронная формула атома кальция - 4s 2 , а атома железа - 4s 2 3d 6 .

Периодическая система химических элементов Д. И. Менделеева
(естественная система химических элементов)

Периодический закон химических элементов (современная формулировка): свойства химических элементов, а также простых и сложных веществ, ими образуемых, находятся в периодической зависимости от значения заряда из атомных ядер.

Периодическая система - графическое выражение периодического закона.

Естественный ряд химических элементов - ряд химических элементов, выстроенных по возрастанию числа протонов в ядрах их атомов, или, что то же самое, по возрастанию зарядов ядер этих атомов. Порядковый номер элемента в этом ряду равен числу протонов в ядре любого атома этого элемента.

Таблица химических элементов строится путем "разрезания" естественного ряда химических элементов на периоды (горизонтальные строки таблицы) и объединения в группы (вертикальные столбцы таблицы) элементов, со сходным электронным строением атомов.

В зависимости от способа объединения элементов в группы таблица может быть длиннопериодной (в группы собраны элементы с одинаковым числом и типом валентных электронов) и короткопериодной (в группы собраны элементы с одинаковым числом валентных электронов).

Группы короткопериодной таблицы делятся на подгруппы (главные и побочные ), совпадающие с группами длиннопериодной таблицы.

У всех атомов элементов одного периода одинаковое число электронных слоев, равное номеру периода.

Число элементов в периодах: 2, 8, 8, 18, 18, 32, 32. Большинство элементов восьмого периода получены искусственно, последние элементы этого периода еще не синтезированы. Все периоды, кроме первого начинаются с элемента, образующего щелочной металл (Li, Na, K и т. д.), а заканчиваются элементом, образующим благородный газ (He, Ne, Ar, Kr и т. д.).

В короткопериодной таблице - восемь групп, каждая из которых делится на две подгруппы (главную и побочную), в длиннопериодной таблице - шестнадцать групп, которые нумеруются римскими цифрами с буквами А или В, например: IA, IIIB, VIA, VIIB. Группа IA длиннопериодной таблицы соответствует главной подгруппе первой группы короткопериодной таблицы; группа VIIB - побочной подгруппе седьмой группы: остальные - аналогично.

Характеристики химических элементов закономерно изменяются в группах и периодах.

В периодах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается число внешних электронов,
  • уменьшается радиус атомов,
  • увеличивается прочность связи электронов с ядром (энергия ионизации),
  • увеличивается электроотрицательность,
  • усиливаются окислительные свойства простых веществ ("неметалличность"),
  • ослабевают восстановительные свойства простых веществ ("металличность"),
  • ослабевает основный характер гидроксидов и соответствующих оксидов,
  • возрастает кислотный характер гидроксидов и соответствующих оксидов.

В группах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается радиус атомов (только в А-группах),
  • уменьшается прочность связи электронов с ядром (энергия ионизации; только в А-группах),
  • уменьшается электроотрицательность (только в А-группах),
  • ослабевают окислительные свойства простых веществ ("неметалличность"; только в А-группах),
  • усиливаются восстановительные свойства простых веществ ("металличность"; только в А-группах),
  • возрастает основный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • ослабевает кислотный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • снижается устойчивость водородных соединений (повышается их восстановительная активность; только в А-группах).

Задачи и тесты по теме "Тема 9. "Строение атома. Периодический закон и периодическая система химических элементов Д. И. Менделеева (ПСХЭ)"."

  • Периодический закон - Периодический закон и строение атомов 8–9 класс
    Вы должны знать: законы заполнения орбиталей электронами (принцип наименьшей энергии, принцип Паули, правило Хунда), структуру периодической системы элементов.

    Вы должны уметь: определять состав атома по положению элемента в периодической системе, и, наоборот, находить элемент в периодической системе, зная его состав; изображать схему строения, электронную конфигурацию атома, иона, и, наоборот, определять по схеме и электронной конфигурации положение химического элемента в ПСХЭ; давать характеристику элемента и образуемых им веществ по его положению в ПСХЭ; определять изменения радиуса атомов, свойств химических элементов и образуемых ими веществ в пределах одного периода и одной главной подгруппы периодической системы.

    Пример 1. Определите количество орбиталей на третьем электронном уровне. Какие это орбитали?
    Для определения количества орбиталей воспользуемся формулой N орбиталей = n 2 , где n - номер уровня. N орбиталей = 3 2 = 9. Одна 3s -, три 3p - и пять 3d -орбиталей.

    Пример 2. Определите, у атома какого элемента электронная формула 1s 2 2s 2 2p 6 3s 2 3p 1 .
    Для того, чтобы определить, кокой это элемент, надо выяснить его порядковый номер, который равен суммарному числу электронов атома. В данном случае: 2 + 2 + 6 + 2 + 1 = 13. Это алюминий.

    Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


    Рекомендованная литература:
    • О. С. Габриелян и др. Химия 11 кл. М., Дрофа, 2002;
    • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001.

Орбитали

Внимательное рассмотрение атомных спектров показывает, что «толстые» линии, обусловленные переходами между энергетическими уровнями, на самом деле расщеплены на более тонкие линии. Это означает, что электронные оболочки в действительности расщеплены на подоболочки. Электронные подоболочки обозначают по типам соответствующих им линий в атомных спектрах:

s -подоболочка названа по «резкой» s -линии - sharp ;
p -подоболочка названа по «главной» p -линии - principal ;
d -подоболочка названа по «диффузной» d -линии - diffuse ;
f -подоболочка названа по «фундаментальной» f -линии - fundamental .

Линии, обусловленные переходами между этими подоболочками, испытывают дальнейшее расщепление, если атомы элементов помещены во внешнее магнитное поле. Это расщепление называется эффектом Зеемана. Экспериментально было установлено, что s -линия не расщепляется, р -линия расщепляется на 3, d -линия - на 5, f -линия - на 7.
Согласно принципу неопределенности Гейзенберга положение и импульс электрона не поддаются одновременному определению с абсолютной точностью. Однако, несмотря на невозможность точного определения положения электрона, можно указать вероятность нахождения электрона в определенном положении в любой момент времени. Из принципа неопределенности Гейзенберга вытекают два важных следствия.
1. Движение электрона в атоме - движение без траектории. Вместо траектории в квантовой механике введено другое понятие - вероятность пребывания электрона в определенной части объема атома, которая коррелирует с электронной плотностью при рассмотрении электрона в качестве электронного облака.
2. Электрон не может упасть на ядро. Теория Бора не объяснила это явление. Квантовая механика дала объяснение и этому явлению. Увеличение степени определенности координат электрона при его падении на ядро вызвало бы резкое возрастание энергии электрона до 10 11 кДж/моль и больше. Электрон с такой энергией вместо падения на ядро должен будет покинуть атом. Отсюда следует, что усилие необходимо не для того, чтобы удержать электрон от падения на ядро, а для того, чтобы «заставить» электрон находиться в пределах атома.
Функция, зависящая от координат электрона, через которую определяется вероятность его нахождения в той или иной точке пространства, называется орбиталью . Понятие «орбиталь» не следует отождествлять с понятием «орбита», которое используется в теории Бора. Под орбитой в теории Бора понимается траектория (путь) движения электрона вокруг ядра.
Часто принято рассматривать электрон как размытое в пространстве отрицательно заряженное облако с общим зарядом, равным заряду электрона. Тогда плотность такого электронного облака в любой точке пространства пропорциональна вероятности нахождения в ней электрона. Модель электронного облака очень удобна для наглядного описания распределения электронной плотности в пространстве. При этом s -орбиталь имеет сферическую форму, р -орбиталь - форму гантели, d -орбиталь - четырехлепесткового цветка или удвоенной гантели (рис. 1.10).

Таким образом, s -подоболочка состоит из одной s -орбитали, p -подоболочка - из трех p -орбиталей, d -подоболочка - из пяти d -орбиталей, f -подоболочка - из семи f -орбиталей.