Цитология

Лекция №2. «Основы цитологии – клетка».

Анатомия и физиология как науки, изучающие структуры и механизмы удовлетворения потребностей человека. Человек как биосоциальное существо. Анатомо-физиологические аспекты потребностей человека. Человек как предмет изучения анатомии и физиологии

Анатомия и физиология человека – основные предметы теоретической и практической подготовки медработников. Анатомия – наука о форме, строении и развитии организма. Основным методом анатомии было рассечение трупа (anatemne– рассечение). Анатомия человека изучает форму и строение человеческого тела и его органов. Физиология изучает функции и процессы организма, их взаимосвязь. Анатомия и физиология – составные части биологии, относятся к медико-биологическим наукам. Анатомия и физиология – теоретический фундамент клинических дисциплин. Первоосновой медицины является изучение тела человека. «Анатомия в союзе с физиологией – царица медицины» (Гиппократ). Человеческий организм является целостной системой, все части которого связаны между собой и с окружающей средой. На ранних этапах развития анатомии проводилось лишь описание органов человеческого тела, которые наблюдали при вскрытии трупов, так появилась описательная анатомия. В начале 20 века возникла систематическая анатомия, т.к. организм стали изучать по системам органов. При хирургических вмешательствах потребовалось точно определять местоположение органов, так появилась топографическая анатомия. С учетом запросов художников выделилась пластическая анатомия, описывающая внешние формы. Затем сформировалась функциональная анатомия, т.к. органы и системы стали рассматривать во взаимосвязи с их функциями. Раздел, изучающий двигательный аппарат дал начало динамической анатомии. Возрастная анатомия изучает изменение органов и тканей в связи с возрастом. Сравнительная изучает сходства и различия организма человека и животных. С момента изобретения микроскопа образовалась микроскопическая анатомия.


1. описательная

2. систематическая

3. топографическая

4. пластическая

5. функциональная

6. динамическая

7. возрастная

8. сравнительная

9. микроскопическая

10. патологическая


Методы анатомии:

  1. рассечение, вскрытие, препаровка на трупе с помощью скальпеля на трупе.
  2. наблюдение, осмотр тела невооруженным глазом – макроскопическая анатомия
  3. изучение с помощью микроскопа – микроскопическая анатомия
  4. с помощью технических средств (рентген-лучи, эндоскопия)
  5. метод инъекции красящих веществ в органы
  6. метод коррозии (растворение тканей и сосудов, полости которых были заполнены нерастворяющимися массами)

Физиология – экспериментальная наука. Для экспериментов используют методы раздражения, удаления, пересадки органов, фистул.

Отцом физиологии является Сеченов (перенос газов по крови, теории утомления, активный отдых, центральное торможение, рефлекторная деятельность головного мозга).

Разделы физиологии:


1. медицинская

2. возрастная (геронтология)

3. физиология труда

4. физиология спорта

5. физиология питания

6. физиология экстремальных условий

7. патофизиология


Основными методами физиологии являются: эксперимент и наблюдение. Эксперимент (опыт) может быть острым, хроническим и без оперативного вмешательства.

1. Острый – вивексия (живосечение) – Гарвей 1628 год. От руки экспериментаторов гибло около 200 млн. подопытных животных.

2. Хронический – Басов 1842 год – длительное время изучают функцию организма. Впервые выполнен на собаке (желудочная фистула).

3. Без оперативного вмешательства – 20 век – регистрация электрических потенциалов работающих органов. Получение информации одновременно от многих органов.

Указанные разделы изучают здорового человека – нормальная анатомия и физиология .

Человек – биосоциальное существо. Организм – биологическая система, наделенная разумом. Человеку присущи закономерности жизни (самообновление, самовоспроизведение, саморегуляция). Эти закономерности реализуются с помощью процессов обмена веществ и энергии, раздражимости, наследственности и гомеостаза – относительно динамическое постоянство внутренней среды организма. Организм человека является многоуровневым:

· молекулярный

· клеточный

· тканевой

· органный

· системный

Взаимосвязь в организме достигается путем нервной и гуморальной регуляции. У человека постоянно возникают новые потребности. Способы их удовлетворения: самоудовлетворение или с посторонней помощью.

Механизмы самоудовлетворения:

· врожденные (изменение метаболизма, работа внутренних органов)

· приобретенные (сознательное поведение, психические реакции)

Структуры удовлетворения потребностей:

1. исполнительные (дыхательная, пищеварительная, выделительная)

2. регуляторные (нервная и эндокринная)

Тело человека делят на части:

· туловище

· конечности

Система органов – группа органов, сходных по происхождению, строению и выполняемым функциям. Органы располагаются в полостях, заполненных жидкостью. Они сообщаются с внешней средой. Совокупность анатомических терминов, определяющих положение органов в теле и их направление – анатомическая номенклатура.

В теле человека условно проводят линии и плоскости:

  1. фронтальная (параллельно линии лба)
  2. сагиттальная (перпендикулярная линии лба)
  3. медиальная (проходит через середину тела)

Органы характеризуют по отношению к осям и плоскостям:


1. проксимальный (верхний)

2. дистальный (нижний)

3. вентральный (задний)

4. дорсальный (задняя, спинная)

5. медиальный (ближе к срединной линии)


Типы телосложения:

· брахиморфное – невысокие и широкие люди, сердце большое, легкие широкие, диафрагма стоит высоко

· долихоморфное – длинные кости, сердце стоит вертикально, легкие длинные, диафрагма расположена низко

Врачевание возникло раньше, чем появились первые сведения о строении тела человека и животных. В древние времена вскрытие животных производилось при жертвоприношениях и приготовлении пищи, вскрытие человека при бальзамировании. Медицина в античной Греции достигла небывалых успехов для того времени. Впервые точные сведения о строении тела появились у врача и философа Гиппократа. Аристотель впервые назвал сердце главным органом, приводящим в движение кровь. Большое значение на развитие медицины и анатомии имела Александрийская школа, т.к. ее врачам разрешалось вскрывать трупы с научной целью. К началу нашей эры была подготовлена почва для развития медицины.

Клавдий Гален создал первую теорию кровообращения: печень – центральный кроветворный орган, а сердце – главный циркулятор в организме. В странах запада и востока господствовали религиозные запреты, которые тормозили развитие медицины. Абу – Али – Ибн - Сина (Авиценна) - таджикский ученый – собрал все известные сведения о медицине того времени в книгу «Введение в анатомию и физиологию». Выделились специальные школы во Франции и Италии. Основоположником современной анатомии считают бельгийского ученого того времени Андреаса Везалия (1514 – 1564). Он, рискуя жизнью, добывал трупы для изучения на кладбищах и на основе собственного препарирования создал труд «семь книг о строении тела человека». Дедушкой анатомии считают Гиппократа. Сервет и Гарвей опровергнули теорию Галена о кровообращении. Сервет правильно описал малый круг кровообращения, Гарвей – большой. Для утверждения данных теорий важное значение имело открытие Мальпиги капилляров (1661). Азелио описал лимфатические сосуды в брыжейке собаки. Очень важным для развития физиологии явилось открытие в 1 половине 18 века рефлекса французским физиологом Рене Декартом и теория Дарвина о том, что организмы развиваются в процессе эволюции под действием борьбы за существование, естественного отбора и наследственности. В 1839 году Шванн открыл клеточную теорию организмов, в которой доказал, что новые клетки образуются путем деления материнских, животные клетки отличаются от растительных… В 17 веке в Москве создается первая медицинская школа при аптекарском приказе. Основатель первой анатомической школы – Загорский, его ученик – Буяльский – профессор кафедры анатомии – предложили метод бальзамирования трупов. Основоположник топографической анатомии – Пирогов Н.И. – разработал метод последовательных распилов замороженных трупов для изучения топографии органов. Развитию анатомии способствовали труды Мечникова, Бехтерева, Тимирязева, Северцова, Воробьева, Стефаниса, Зернова.

Воробьев разработал метод исследования нервной системы при помощи бинокулярной лупы с предварительной обработкой материала растворами слабых кислот.

Збарский вместе с Зерновым разработали метод бальзамирования (Ленин). Тонков вместе с учениками проводили опыты и исследования сосудистой системы. Изучением кровеносных сосудов и периферических нервов занимался Шевкуненко. Достижения в изучении лимфатической системы связаны с именами Иосифова, Стефаниса, Жданова.

Значительные результаты были получены благодаря открытию новых методик электрической регистрации деятельности органов. Изучение нервной регуляции явилось одним из самых крупных достижений физиологии 19 века (Сеченов – процесс торможения, 1862 год). В начале 20 века И.П.Павловым было создано учение о ВНД и о двух сигнальных системах. Посников открыл причины смерти на органном уровне. Клод Бернар – о внутренней среде организма (pH)., Овсянников – с/с центр, Сеченов – перенос газов кровью, утомление, активный отдых, центр торможения, рефлекторная деятельность головного мозга, Введенский – регистрация биопотенциалов, парабиоз. 1889 год – Лунин – открытие витаминов, Анохин – функциональные системы.

Огромны заслуги Павлова и в изучении физиологии кровообращения и пищеварения. Им и его учениками был разработан метод физиологической хирургии. В настоящее время больших успехов достигло исследование физиологических процессов, происходящих в в отдельных клетках и их структурных элементах. Успехи электрофизиологии тесно связаны с использованием электроники и радиотехники. Электрофизиологические исследования получили большое значение в медицине (электрокардиография, электроэнцефалография).

Лекция №2. «Основы цитологии – клетка».

Организм многоклеточных состоит из клеток и межклеточного вещества. Клетка является элементарной единицей живого. Это основа строения, развития и жизнедеятельности. Шванн в 1839 году открыл клеточную теорию (размножаются делением, если клетка теряет ядро, то теряет способность к делению – эритроцит). В состав клеток входят белки, углеводы, липиды, соли, ферменты и вода. В клетке выделяют цитоплазму и ядро. Цитоплазма включает в себя гиалоплазму , органеллы и включения. Ядро расположено в центре клетки и отделено двуслойной оболочкой. Имеет шаровидную или вытянутую форму. Оболочка – кариолемма – имеет поры, необходимые для обмена веществ между ядром и цитоплазмой. Содержимое ядра жидкое – кариоплазма, в которой содержатся плотные тельца – ядрышки. В них выделяется зернистость – рибосомы. Основная масса ядра – ядерные белки – нуклеопротеиды, в ядрышках – рибонуклеопротеиды, а в кариоплазме – дезоксирибонуклеопротеиды. Клетка покрыта клеточной оболочкой, которая состоит из белковых и липидных молекул, имеющих мозаичную структуру. Оболочка обеспечивает обмен веществ между клеткой и межклеточной жидкостью.

ЭПС – система канальцев и полостей, на стенках которых располагаются рибосомы, обеспечивающие синтез белка. Рибосомы могут и свободно располагаться в цитоплазме.

Митохондрии – двумембранные органоиды, внутренняя мембрана которых имеет выросты – кристы. Содержимое полостей – матрикс. Митохондрии содержат большое количество липопротеидов и ферментов. Это энергетические станции клетки.

Аппарат Гольджи (1898) – система трубочек, выполняет выделительную функцию в клетке.

Клеточный центр – шаровидное плотное тело – центросфера – внутри которой имеются 2 тельца – центриоли, соединенные перемычкой. Участвует в делении клеток.

Лизосомы – круглые или овальные образования с тонкозернистым содержимым. Выполняют пищеварительную функцию.

Основная часть цитоплазмы – гиалоплазма.

Внутриклеточные включения – это белки, жиры, гликоген, витамины и пигменты.

Основные свойства клетки:

· обмен веществ

· чувствительность

· способность к размножению

Клетка живет во внутренней среде организма – кровь, лимфа и тканевая жидкость. Основными процессами в клетке являются окисление, гликолиз – расщепление углеводов без кислорода. Проницаемость клетки избирательна. Она определяется реакцией на высокую или низкую концентрацию солей, фаго- и пиноцитоз. Секреция – образование и выделение клетками слизеподобных веществ (муцин и мукоиды), защищающие от повреждения и участвующие в образовании межклеточного вещества.

Виды движений клетки:

1. амебоидное (ложноножки) – лейкоциты и макрофаги.

2. скользящее – фибробласты

3. жгутиковый тип – сперматозоиды (реснички и жгутики)

Деление клеток.

1. непрямое (митоз, кариокинез, мейоз)

2. прямое (амитоз)

При митозе ядерное вещество распределяется равномерно между дочерними клетками, т.к. хроматин ядра концентрируется в хромосомах, которые расщепляются на две хроматиды, расходящиеся в дочерние клетки.

Фазы митоза:

1. Профаза (хромосомы в ядре в виде округлых телец, клеточный центр увеличивается и концентрируется возле ядра, формируются хромосомы и растворяются ядрышки)

2. Метафаза (расщепляются хромосомы, растворяется ядерная оболочка, клеточный центр переходит в веретено деления, хромосомы образуют на экваторе экваториальную пластинку, на них образуются продольные нити)

3. Анафаза (дочерние хромосомы расходятся к полюсам, происходит деление цитоплазмы в экваториальной плоскости)

4. Телофаза (образуются дочерние клетки)

При созревании половых клеток хромосомный набор уменьшается вдвое, а при оплодотворении восстанавливается вновь. Сокращенное число – гаплоидное, полное – диплоидное. Человек имеет 46 – 2n. Дочерние клетки приобретают набор хромосом, идентичный материнскому. Процессы наследственности связаны с молекулами ДНК. Прямое деление (амитоз) – деление путем перешнуровки. Сначала делится на 2 ядро, затем цитоплазма.

Цитология - наука о закономерностях строения, развития и жизнедеятельности клетки. В последние годы широкое распространение получил близкий по смыслу термин «биология клетки», который особенно часто используют в тех случаях, когда речь идет об изучении фундаментальных закономерностей жизнедеятельности клетки. Термин «цитология» стал использоваться более ограниченно для обозначения прикладных, в частности, диагностических исследований клеточного материала. В отечественной научной и учебной литературе термин «цитология» часто используется в обоих указанных значениях. Цитологию подразделяют на общую и частную. Общая цитология изучает наиболее общие структурнофункциональные свойства, присущие всем клеткам организма. Как правило, ее изучение предшествует освоению курса гистологии. Частная цитология рассматривает специфические характеристики клеток конкретных тканей и органов, обусловленные особенностями их развития, жизнедеятельности и выполняемых функций. Обычно изучение вопросов частной цитологии включено в материал соответствующих разделов частной гистологии.

Клетка - элементарная структурная, функциональная и генетическая единица в составе всех растительных и животных организмов. Организм взрослого человека состоит примерно из 1013 клеток, которые подразделяют более чем на 200 типов, существенно различающихся своими структурными и функциональными особенностями. Вместе с тем, клетки всех типов характеризуются сходством общей организации и строения важнейших компонентов.

На светооптическом уровне клетки обычно изучают после их фиксации и окрашивания - в исследуемом цитологическом материале (мазках, отпечатках) или на гистологических срезах тканей и органов (рис. 1 и 2). Фиксация обеспечивает сохранность различных структур клетки, окрашивание способствует их выявлению благодаря неодинаковому

сродству данных структур к гистологическим красителям. Наиболее распространенная общеобзорная окраска сочетает основной краситель гематоксилин с кислым красителем эозином (см. рис. 1 и 2). Гематоксилин, как и другие основные красители, связывается со структурами, содержащими кислоты, которые именуются базофильными. К ним относятся ядро (вследствие высокого содержания ДНК и РНК), а также цитоплазма - при высоком содержании в ней рибосом или гранулярной эндоплазматической сети. Эозин, подобно другим кислым красителям, окрашивает различные структуры, содержащие основные вещества (оксифильные, или ацидофильные) - цитоплазму клеток (в особенности, при высоком содержании в ней митохондрий и некоторых белковых секреторных гранул), а также отдельные компоненты межклеточного вещества (например, коллагеновые волокна). Оценить способность тех или иных компонентов клетки связываться с определенными красителями можно, сопоставляя клетки на срезах, окрашенных различными способами (см. рис. 2).

Компоненты клетки. Каждая клетка состоит из двух основных компонентов - ядра и цитоплазмы (см. рис. 1). Ядро отделено от цитоплазмы ядерной оболочкой; при световой микроскопии в неделящейся (интерфазной) клетке в нем выявляются темно окрашенный (гетеро-)хроматин, ядрышко в виде темной крупной гранулы и бесструктурная кариоплазма (см. рис. 1). Более мелкие структурные детали ядра не определяются.

Цитоплазма отделена от внешней (для данной клетки) среды плазмолеммой (клеточной мембраной) и содержит органеллы и включения (рис. 10), погруженные в неструктурированную прозрачную гиалоплазму. Органеллы - постоянно присутствующие в цитоплазме структуры, выполняющие определенные функции в клетке. Включения - временные компоненты цитоплазмы, образующиеся в результате накопления продуктов метаболизма клеток.

СТРУКТУРЫ ЦИТОПЛАЗМЫ, ВЫЯВЛЯЕМЫЕ ПРИ СВЕТОВОЙ МИКРОСКОПИИ

Структуры цитоплазмы, выявляемые при световой микроскопии, сравнительно немногочисленны. С помощью специальных методов окраски в ней можно выявить лишь отдельные виды

органелл, в частности, митохондрии (рис. 3) и комплекс Гольджи (рис. 4 и 101). Большинство же органелл выявляются лишь при использовании электронной микроскопии (рис. 10-16).

С помощью гистохимических методов на уровне светового микроскопа в цитоплазме клеток можно выявить разнообразные по своему химическому составу в ключения, в частности, гранулы гликогена (рис. 5) и липидные капли (рис. 6 и 7). Секреторные включения (секреторные гранулы) отчетливо выявляются в апикальной части клеток концевых отделов поджелудочной железы

(панкреатоцитов) и с помощью стандартных методов окраски препаратов (рис. 8). Пигментные включения цитоплазмы определяются благодаря их собственной окраске (рис. 9); ядро на этом препарате выделено с помощью дополнительной окраски (как и на препаратах, представленных на рис. 4-6) для оценки его расположения, формы и размеров.

СТРУКТУРЫ ЦИТОПЛАЗМЫ, ВЫЯВЛЯЕМЫЕ ПРИ ЭЛЕКТРОННОЙ МИКРОСКОПИИ

Структуры цитоплазмы, выявляемые при электронной микроскопии, в обобщенном виде представлены на объемной схеме ультраструктурной организации клетки, которая демонстрирует также и ультраструктуру клеточного ядра (см. рис. 10). На этой схеме показана плазмолемма (клеточная мембрана), которая занимает в клетке пограничное положение и обеспечивает многообразные процессы взаимодействия клетки с окружающей ее средой (другими клетками, межклеточным веществом). Поверхность клетки, покрытая плазмолеммой, имеет различный рельеф: на одних участках она может быть сравнительно гладкой, на других - содержит зоны специализированных межклеточных соединений (на латеральных участ ках), на третьих (на апикальном полюсе) - покрывает микроворсинки и реснички (на рис. 10 последние не показаны) - специализированные выпячивания цитоплазмы, основу которых образуют высоко организованные элементы цитоскелета. На рис. 10 показано также участие плазмолеммы в процессах эндоцитоза и экзоцитоза. Отдельные органеллы и их группы далее более детально изображены на рисунках, сделанных с электронных микрофотографий (рис. 11-16).

Митохондрии - мембранные органеллы длиной 2-10 мкм и диаметром 0,2-2 мкм, обеспечивающие клетку энергией, которая генерируется благодаря процессам окисления и аккумулируется в виде фосфатных связей АТФ. Митохондрии также участвуют в биосинтезе стероидов, окислении жирных кислот и синтезе нуклеиновых кислот. Наиболее типичное строение имеют митохондрии с ламеллярными кристами - пластинчатыми складками внутренней митохондриальной мембраны. Кристы обращены в митохондриальный матрикс - зернистое вещество умеренной плотности, заполняющее полость митохондрии (см. рис. 11) и содержащее множество ферментов, крупные митохондриальные гранулы (с ионами Са2+ и Mg2+), а также (не видны на рисунке) митохондриальные рибосомы и митохондриальную

ДНК. Реже встречаются митохондрии с тубулярно-везикулярными кристами, которые совместно с гладкой эндоплазматической сетью принимают участие в синтезе стероидов (см. рис. 12). Митохондрии располагаются в тех участках цитоплазмы, где происходит активное потребление энергии, например, в области органелл, участвующих в синтезе белков (см. рис. 11).

Рибосомы - мелкие (диаметр - 15-30 нм) плотные немембранные органеллы, состоящие из двух асимметричных субъединиц и обеспечивающие синтез белка из аминокислот (в особенности, молекул, которые после синтеза остаются в гиалоплазме). Они образуют цепочки (полирибосомы, или полисомы), свободно располагающиеся в гиалоплазме или связанные с поверхностью мембран эндоплазматической сети.

Эндоплазматическая сеть - органелла, обеспечивающая синтез углеводов, липидов и белков, а также начальные посттрансляционные изменения последних. Она имеет мембранное строение и состоит из системы уплощенных, удлиненных, трубчатых и везикулярных образований.

Гранулярная эндоплазматическая сеть обеспечивает биосинтез и начальное гликозилирование мембранных белков и белков, предназначенных для экспорта из клетки. Она образована уплощенными мембранными цистернами и трубочками, на наружной поверхности которых располагаются рибосомы и полисомы, придающие мембранам зернистый (гранулярный) вид (см. рис. 11).

Агранулярная эндоплазматическая сеть представляет собой трехмерную систему мембранных анастомозирующих трубочек, канальцев, цистерн и пузырьков, на поверхности которых рибосомы отсутствуют (см. рис. 12). Агранулярная эндоплазматическая сеть участвует в синтезе липидов (в частности, стероидов - совместно с митохондриями с тубулярно-везикулярными кристами, с которыми она обычно соседствует), гликогена, обеспечивает детоксикацию различных веществ и накопление ионов Са2+.

Комплекс Гольджи совместно с рибосомами и эндоплазматической сетью образует синтетический аппарат клетки. Это - сложно организованная поляризованная мембранная органелла, которая представлена тремя основными элементами: (1) стопкой изогнутых уплощенных, расширяющихся по краям мешочков (цистерн), (2) пузырьками и (3) крупными вакуолями, или секреторными пузырьками (см. рис. 13). В комплексе Гольджи выделяют две поверхности, обладающие структурными и функциональными различиями: (а) цис-поверхность (незрелую, формирующуюся) - выпуклой формы, обращенную к эндоплазматической сети; (б) транс-поверхность (зрелую) - вогнутой формы, обращенную к плазмолемме и связанную с отделяющимися от цистерн вакуолями. Функции комплекса Гольджи: синтез полисахаридов и гликопротеинов (гликокаликса, слизи); химические изменения (процессинг) молекул, транспортируемых из гранулярной эндоплазматической сети, конденсация секреторного продукта и образование секреторных гранул; обеспечение новообразованных гранул мембраной и упаковка в нее секреторных продуктов; сортировка белков на транс-поверхности перед их окончательным транспортом.

Эндосомы и лизосомы образуют аппарат внутриклеточного переваривания, функция которого состоит в регулируемом внутриклеточном расщеплении макромолекул внеклеточного и внутриклеточного происхождения.

Эндосомы - мембранные пузырьки с постепенно закисляющимся содержимым (pH 6,0-5,5), которые обеспечивают перенос макромолекул с поверхности клетки в лизосомы и их частичный или полный гидролиз на стадиях, предшествующих лизосомальному уровню деградации.

Лизосомы - мембранные органеллы диаметром 0,1-2 мкм, активно участвующие в завершающих этапах процесса полного внутриклеточного переваривания захваченных клеткой макромолекул посредством широкого спектра литических ферментов при низких значениях рН (5,0 и ниже). Лизосомы, не способные полностью переварить находящиеся в них молекулы, преобразуются в остаточные тельца, которые могут долго находиться в цитоплазме или выделять свое содержимое за пределы клетки. Распространенным типом остаточных телец в организме человека являются липофусциновые гранулы - мембранные пузырьки, содержащие труднорастворимый коричневый эндогенный пигмент липофусцин (см. рис. 12), который рассматривают как «пигмент старения» или «изнашивания».

Пероксисомы (микротельца) - мембранные пузырьки диаметром 0,05-1,5 мкм с умеренно плотным однородным или мелкозернистым матриксом,

содержащим многочисленные ферменты, катализирующие окислительно-восстановительные реакции, и каталазу. В матриксе иногда выявляется более плотная кристаллоидная сердцевина (нуклеоид), (см. рис. 14) - область конденсации ферментов. Пероксисомы участвуют в расщеплении жирных кислот и других метаболических реакциях (обмен аминокислот, оксалата и полиаминов, синтез некоторых фосфолипидов). Они защищают клетку от действия перекиси водорода, оказывающей сильный повреждающий эффект, а также разрушают ряд токсических веществ.

Цитоскелет представляет собой сложную динамичную систему микротрубочек, микрофиламентов и промежуточных филаментов. Эти компоненты цитоскелета являются немембранными органеллами, образующими в клетке трехмерные сети. Они входят также в состав ряда других более сложно организованных органелл (ресничек, жгутиков, микроворсинок, клеточного центра) и клеточных соединений (десмосом, полудесмосом, опоясывающих десмосом).

Микротрубочки - наиболее крупные компоненты цитоскелета (диаметр около 24-25 нм) - полые цилиндрические образования длиной до нескольких микрометров (см. рис. 15).

Их стенка состоит из димерами из белковых молекул α- и β-тубулина. Важнейшие функции микротрубочек: поддержание формы и полярности клетки, обеспечение внутриклеточного транспорта, движения ресничек и хромосом в митозе (формируют ахроматиновое веретено, необходимое для клеточного деления). Микротрубочки в цитоплазме образуют сети, либо располагаются в виде пучков, например, в отростках нейронов, в составе митотического веретена (см. рис. 15).

Микротрубочки образуют основу других органелл (центриолей, ресничек, жгутиков), частично сливаясь друг с другом с формированием пар, или дублетов (в аксонеме ресничек и жгутиков - см. рис. 37), и триплетов (в базальном тельце и центриоли).

Центриоль (см. рис. 16) - цилиндрическая структура длиной 0,3-0,5 мкм и диаметром 0,15- 0,2 мкм из девяти триплетов частично слившихся микротрубочек, объединенных поперечными белковыми мостиками («ручками»). С каждым триплетом посредством ножек связаны сателлиты - глобулярные белковые тельца, которые являются центрами образования микротрубочек. В клеточном центре содержатся две центриоли, которые располагаются во взаимно перпендикулярных плоскостях.

Микрофиламенты - тонкие нити диаметром 5-7 нм, образованные преимущественно белком актином, лежат в цитоплазме поодиночке, в виде

сетей или пучками. В большинстве клеток концентрируются в области кортикальной (терминальной) сети под плазмолеммой. Взаимодействуя с другими белками, обладают сократимостью, в частности, они обеспечивают сократимость мышечных клеток, процессы экзо- и эндоцитоза, образование псевдоподий и миграцию клеток. Микрофиламенты участвуют в организации структуры некоторых межклеточных соединений (опоясывающих десмосом), образуют основу («каркас») некоторых органелл, например, микроворсинок (рис. 35), стереоцилий.

Промежуточные филаменты - белковые нити толщиной около 10 нм, располагающиеся в цитоплазме в виде трехмерной сети, окружающей ядро. Они обеспечивают распределение органелл по определенным участкам цитоплазмы клетки, участвуют в образовании рогового вещества в эпителии, входят в состав десмосом и полудесмосом.

В клетках различных тканей промежуточные филаменты различаются по своей химической природе и молекулярной массе.

Ядро клетки. При исследовании клеток под электронным микроскопом в ядре (рис. 17) обнаруживаются многие структурные детали, которые не выявляются под световым микроскопом (ср. с рис. 1).

Ядерная оболочка, которая практически не определяется под световым микроскопом, имеет сложную ультраструктурную организацию: она состоит из двух ядерных мембран (наружной и внутренней), разделенных узким перинуклеарным пространством и содержит ядерные поры, через которые осуществляется обмен молекулами между ядром и цитоплазмой. На поверхности наружной ядерной мембраны имеются рибосомы, к внутренней ядерной мембране прилегает часть скоплений хроматина.

Хроматин состоит из комплекса ДНК и белка и соответствует хромосомам, которые в интерфазном ядре представлены длинными, тонкими нитями и неразличимы как индивидуальные структуры. Выделяют эу- и гетерохроматин.

Эухроматин - деспирализованные и практически не окрашенные участки хромосом, которые активно участвуют в транскрипции. Гетерохроматин соответствует конденсированным интенсивно окрашенным участкам хромосом, не участвующим в транскрипции. Скопления гетерохроматина располагаются под ядерной оболочкой и вокруг ядрышка, более мелкие глыбки разбросаны по всему ядру.

Ядрышко образовано специализированными участками хромосом - ядрышковыми организаторами. Функции ядрышка заключаются в синтезе рибосомальной РНК и ее сборке в предшественники субъединиц рибосом. В интерфазном ядре на светооптическом уровне оно выявляется как мелкая плотная базофильная гранула (см. рис. 1). Под электронным микроскопом обнаруживается сложная структурная организация ядрышка, в частности, выявляется образующая его плотная

широкопетлистая сеть - нуклеолонема (ядрышковая нить), которая состоит из волокнистой части (молекул рибосомальной РНК) и гранулярной части (субъединиц рибосом).

Нуклеоплазма (кариоплазма) - жидкий, не окрашивающийся компонент ядра, в котором располагаются хроматин и ядрышко. Она содержит воду и ряд растворенных и взвешенных в ней молекул.

Клеточный цикл - совокупность явлений между двумя последовательными делениями клетки или между ее образованием и гибелью. Он обеспечивает функцию воспроизведения и передачи генетической информации. Клеточный цикл включает собственно митоз, или фазу М (митотическое деление), и интерфазу - промежуток между делениями.

Интерфаза значительно более длительна, чем митоз (обычно занимает не менее 90% всей продолжительности клеточного цикла) и подразделяется на три части (рис. 18): постмитотический интервал (G1), фазу синтеза ДНК (S) и премитотический интервал (G2).

Переход от одного периода интерфазы к другому (в особенности, от G1 к S), а также вступление клетки в митоз регулируются сложными молекулярными механизмами и опосредуются специальными факторами.

Митотическое деление клеток (митоз, или непрямое деление) является универсальным механизмом деления клеток. Оно следует за G2-интервалом и завершает клеточный цикл, обеспечивая равномерное распределение генетического материала в дочерние клетки. Митоз включает 4 основные фазы: профазу, метафазу, анафазу и телофазу

Профаза начинается с конденсации хромосом, которые становятся видимыми как нитевидные структуры. Ядрышко и ядерная оболочка к концу профазы исчезают, кариоплазма смешивается с цитоплазмой. Центриоли мигрируют к противопо-

ложным полюсам клетки и дают начало волокнам митотического (ахроматинового) веретена, часть которых прикрепляются к хромосомам.

Метафаза соответствует максимальному уровню конденсации хромосом, которые выстраиваются в области экватора митотического веретена, образуя картину экваториальной (метафазной) пластинки (вид сбоку) или материнской звезды (вид со стороны полюсов).

Анафаза начинается с синхронного расщепления всех хромосом на сестринские хроматиды и движения дочерних хромосом к противоположным полюсам клетки. Она завершается скоплением на полюсах клетки двух идентичных наборов хромосом, которые образуют картины звезд (стадия дочерних звезд).

Телофаза - конечная стадия митоза, в течение которой реконструируются ядра дочерних клеток и завершается их разделение. Вокруг конденсированных хромосом дочерних клеток восстанавливается кариолемма, вновь появляются ядрышки. Хромосомы прогрессивно деспирализуются и исчезают, замещаясь картиной хроматина интерфазного ядра. Одновременно происходит перешнуровка цитоплазмы с формированием двух дочерних клеток, между которыми осуществляется равномерное распределение органелл.

Гибель клеток, наряду с их размножением и дифференцировкой, является одним из ключевых процессов и факторов в обеспечении нормальной жизнедеятельности различных тканей. При гибели клеток могут наблюдаться два главных принципиально различных вида морфологических изменений, которые соответствуют различным механизмам ее развития - некроз и апоптоз.

Некроз возникает под действием резко выраженных повреждающих факторов (перегревания, переохлаждения, недостатка кислорода, нарушения кровоснабжения, химических препаратов, механической травмы и др.). Он охватывает различные по численности группы клеток, сопровождается набуханием цитоплазмы и отдельных органелл, обширными повреждениями мембран, уплотнением,

сморщиванием, распадом и лизисом ядра. Выделяющиеся при разрыве плазмолеммы продукты распада клетки привлекают лейкоциты и макрофаги, способствуя воспалительной реакции.

Апоптоз - физиологическая (запрограммированная) гибель клеток - активный, регулируемый генетической программой процесс, который запускается внешними факторами. Он обычно протекает асинхронно в отдельных клетках или мелких клеточных группах, разделенных численно превосходящими жизнеспособными клетками. Апоптоз наблюдается в различных тканях человека и животных в норме, патологии, эмбриональном развитии и у взрослого, являясь одним из фундаментальных и универсальных биологических механизмов тканевого гомеостаза. Апоптоз развивается под влиянием физиологических активаторов (индукторов апоптоза), разнообразных повреждающих физических и химических факторов, нарушения баланса регуляторных воздействий, некоторых микробов (в особенности, вирусов).

Морфологические проявления апоптоза обладают характерными особенностями (рис. 20). На ранних стадиях процесса происходит утрата клетками специализированных структур на их поверхности (например, межклеточных соединений), их отделение от соседних. Происходят уплотнение ядра (с периферическим отложением гетерохроматина в виде крупных полулуний) и конденсация цитоплазмы, которая приводит ко все более компактному расположению органелл, сохраняющих свою целостность. Нарастающая конденсация цитоплазмы сочетается с изменением формы клетки - она образует многочисленные крупные вздутия и выпячивания; ядро окончательно уплотняется, сморщивается (кариопикноз) и распадается на фрагменты, окруженные мембраной. Выпячивания клетки, содержащие органеллы и фрагменты ядра, отшнуровываются, формируя крупные окруженные мембраной фрагменты - апоптотические тельца. Последние быстро захватываются и перевариваются соседними клетками или местными фагоцитами; воспалительная реакция при этом не развивается.

Рис. 1. Строение клетки по данным световой микроскопии

(на примере нервной клетки чувствительного узла спинномозгового нерва)

Окраска: гематоксилин-эозин

1 - ядро: 1.1 - ядерная оболочка (кариолемма), 1.2 - хроматин, 1.3 - ядрышко, 1.4 - кариоплазма;

2 - цитоплазма


Рис. 2. Клетки на гистологических срезах, окрашенных различными способами:

А - неокрашенный срез; Б - срез, окрашенный гематоксилином; В - срез, окрашенный эозином; Г - срез, окрашенный гематоксилином и эозином: 1 - ядро; 2 - цитоплазма

СТРУКТУРЫ ЦИТОПЛАЗМЫ (выявляемые при световой микроскопии)


Рис. 3. Митохондрии

(в эпителиальных клетках почечного канальца)

1 - цитоплазма клетки почечного канальца: 1.1 - апикальная часть, 1.2 - базальная часть, 1.2.1 - митохондрии; 2 - ядро


Рис. 4. Комплекс Гольджи

(в фолликулярных клетках щитовидной

железы - тироцитах)

Окраска: азотнокислое серебро-гематоксилин

1 - цитоплазма тироцита: 1.1 - апикальная часть, 1.1.1 - комплекс Гольджи, 1.2 - базальная часть;


Рис. 5. Включения гликогена

Окраска: ШИК-реакция и гематоксилин

1 - цитоплазма гепатоцита: 1.1 - гранулы гликогена;


Рис. 6. Липидные включения

(в клетках печени - гепатоцитах)

Окраска: судан черный-сафранин

1 - цитоплазма гепатоцита: 1.1 - липидные капли;


Рис. 7. Липидные включения

(в жировых клетках - адипоцитах)

Окраска: судан III

1 - цитоплазма адипоцита: 1.1 - липидная капля, занимающая большую часть цитоплазмы; 2 - область расположения ядра


Рис. 8. Секреторные включения

(в клетках концевых отделов поджелудочной

железы - панкреатоцитах)

Окраска: гематоксилин-эозин

1 - цитоплазма панкреатоцита: 1.1 - апикальная часть, 1.1.1 - гранулы секрета, 1.2 - базальная часть; 2 - ядро


Рис. 9. Пигментные включения

(в пигментных клетках кожи аксолотля):

плоскостной (пленочный) препарат

Окраска ядра: кармин

1 - цитоплазма пигментной клетки: 1.1 - отростки, 1.2 - гранулы пигмента (меланина); 2 - ядро

СТРУКТУРЫ ЦИТОПЛАЗМЫ (выявляемые при электронной микроскопии)

Рис. 10. Объемная схема ультраструктурной организации клетки:

1 - плазмолемма: 1.1 - участки межклеточных соединений на латеральной поверхности, 1.2 - эндоцитозные пузырьки на базальной поверхности, 1.3 - микроворсинки на апикальной поверхности, 1.4 - участок выделения секрета; 2 - ядро: 2.1 - ядерная оболочка, 2.1.1. - ядерные поры, 2.1.2 - рибосомы на поверхности ядерной оболочки, 2.2 - хроматин, 2.3 - ядрышко; 3 - цитоплазма: 3.1 - гранулярная эндоплазматическая сеть, 3.2 - комплекс Гольджи, 3.3 - митохондрии, 3.4 - лизосомы, 3.5 - клеточный центр, 3.6 - микротрубочки, 3.7 - секреторные гранулы

Рис. 11. Митохондрия с ламеллярными кристами и гранулярная эндоплазматическая сеть

Рисунок с электронной микрофотографии (ЭМФ)

1 - митохондрия: 1.1 - наружная митохондриальная мембрана, 1.2 - внутренняя митохондриальная мембрана, 1.2.1 - кристы, 1.3 - митохондриальный матрикс, 1.4 - митохондриальные гранулы; 2 - гранулярная эндоплазматическая сеть: 2.1 - цистерны, 2.1.1 - мембрана, 2.1.2- просвет цистерны, 2.1.3 - рибосомы; 3 - гиалоплазма


Рис. 12. Митохондрия с тубулярно-везикулярными кристами, агранулярная эндоплазматическая сеть, липофусциновая гранула и гранулы гликогена

Рисунок с ЭМФ

1 - митохондрия: 1.1 - наружная митохондриальная мембрана, 1.2 - внутренняя митохондриальная мембрана, 1.2.1 - кристы, 1.3 - митохондриальный матрикс, 1.4 - митохондриальные гранулы; 2 - агранулярная эндоплазматическая сеть: 2.1 - цистерна, 2.1.1 - мембрана, 2.1.2 - просвет цистерны; 3 - липофусциновая гранула; 4 - гранулы гликогена; 5 - гиалоплазма


Рис. 13. Комплекс Гольджи

Рисунок с ЭМФ

1 - цис-поверхность; 2 - транс-поверхность; 3 - цистерны (мешочки); 4 - пузырьки; 5 - вакуоли


Рис. 14. Пероксисома

Рисунок с ЭМФ

1 - мембрана; 2 - матрикс: 2.1 - кристаллоидная сердцевина (нуклеоид)


Рис. 15. Микротрубочки митотического веретена

Рисунок с ЭМФ

1 - продольный срез; 2 - поперечный срез

Рис. 16. Центриоль:

А - общий вид (объемная реконструкция); Б - поперечный срез (рисунок с ЭМФ)

1 - триплеты микротрубочек; 2 - центриолярные сателлиты (центры организации микротрубочек)

ЯДРО, ДЕЛЕНИЕ И ГИБЕЛЬ КЛЕТКИ


Рис. 17. Ультраструктурная организация ядра клетки

Рисунок с ЭМФ

1 - ядерная оболочка: 1.1 - наружная ядерная мембрана, 1.1.1 - рибосомы, 1.2 - внутренняя ядерная мембрана, 1.3 - перинуклеарное пространство, 1.4 - ядерные поры; 2 - нуклеоплазма (кариоплазма); 3 - хроматин; 4 - ядрышко


Рис. 18. Клеточный цикл (схема):

М - митоз (фаза М) Периоды (части) интерфазы:

G1-период, или фаза G1 (постмитотический интервал), наступает сразу после митотического деления клетки, характеризуется активным ее ростом, восстановлением необходимого набора органелл и синтезом «запускающих» белков-активаторов S-периода.

G g -период(фаза G0) - репродуктивный покой. Часто это период гетеросинтеза, когда клетка дифференцируется и выполняет свои специфические функции вплоть до своей гибели (D). При стимуляции некоторые клетки способны возвращаться в G1-период.

S-период, или фаза синтеза ДНК, характеризуется репликацией (удвоением) содержания ДНК и синтезом белков, обеспечивающих упаковку вновь синтезируемой ДНК. Удваивается число центриолей. G2-период, или фаза G2 (премитотический интервал), продолжается до начала митоза. В течение этого времени в клетке происходит подготовка к делению: созревание центриолей, накопление энергии, синтез РНК и белков, необходимых для процесса деления


Рис. 19. Митотическое деление животных клеток

Окраска: железный гематоксилин

1 - клетка в интерфазе: 1.1 - ядро, 1.1.1 - ядерная оболочка, 1.1.2 - хроматин, 1.1.3 - ядрышко, 1.2 - цитоплазма, 1.3 - плазмолемма; 2 - митотически делящиеся клетки: 2.1 - профаза, 2.2 - метафаза: 2.2.1 - метафазная (экваториальная) пластинка, 2.2.2 - «материнская звезда», 2.3 - анафаза: 2.3.1 - ранняя, 2.3.2 - поздняя, 2.4 - телофаза


Рис. 20. Апоптоз. Морфологические изменения клеток при апоптозе (схема):

А1 - начало апоптоза: утрата клеткой соединений с соседними интактными клетками и ее отделение от них. А2 - сжатие и уплотнение цитоплазмы и ядра, изменение формы клетки, распределение гетерохроматина в виде полулуний под кариолеммой. A3 - нарастающее сжатие и уплотнение клетки, образование вздутий и выростов на ее поверхности, кариопикноз. А4 - распад клетки на фрагменты, окруженные плазмолеммой (апоптотические тельца), и их фагоцитоз соседними интактными клетками

Цитология — наука о клетке. Наука о клетке называется цитологией (греч. «цитос» — клетка, «логос» — наука). Предмет цитологии — клетки многоклеточных животных и растений, а также одноклеточных организмов, к числу которых относятся бактерии, простейшие и одноклеточные водоросли. Цитология изучает строение и химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Современная цитология - наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой. Цитология — одна из относительно молодых биологических наук, ее возраст около 100 лет. Возраст же термина "клетка " насчитывает свыше 300 лет. Впервые это название в середине XVII в. применил Р. Гук. Рассматривая тонкий срез пробки с помощью микроскопа, Гук увидел, что пробка состоит из ячеек — клеток.

В середине XIX столетия на основе уже многочисленных знаний о клетке Т. Шванн сформулировал клеточную теорию (1838) . Он обобщил имевшиеся знания о клетке и показал, что клетка представляет основную единицу строения всех живых организмов, что клетки животных и растений сходны по своему строению. Эти положения явились важнейшими доказательствами единства происхождения всех живых организмов, единство всего органического мира. Т. Шван внес в науку правильное понимание клетки как самостоятельной единицы жизни, наименьшей единицы живого: вне клетки нет жизни.

Изучение химической организации клетки привело к выводу, что именно химические процессы лежат в основе ее жизни, что клетки всех организмов сходны по химическому составу, у них однотипно протекают основные процессы обмена веществ. Данные о сходстве химического состава клеток еще раз подтвердили единство всего органического

Современная клеточная теория включает следующие положения: клетка основная единица строения и развития всех живых организмов, наименьшая единица живого; клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ; размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки; в сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.

Изучение клеток разнообразных одноклеточных и многоклеточных организмов с помощью светооптического и электронного микроскопов показало, что по своему строению они разделяются на две группы. Одну группу составляют бактерии и сине-зеленые водоросли. Эти организмы имеют наиболее простое строение клеток. Их называют доеденными (прокариотами), так как у них нет оформленного ядра (греч. «картон» - ядро) и нет многих структур, которые называют органоидами. Другую группу составляют все остальные организмы: от одноклеточных зеленых водорослей и простейших до высших цветковых растений, млекопитающих, в том числе и человека. Они имеют сложно устроенные клетки, которые называют ядерными (эукариотическими). Эти клетки имеют ядро и органоиды, выполняющие специфические функции.

Особую, неклеточную форму жизни составляют вирусы, изучением которых занимается вирусология.

Строение и функции оболочки клетки Клетка любого организма, представляет собой целостную живую систему. Она состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и ядра. Оболочка клетка осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).

Оболочка клеток. Оболочка клеток имеет сложное строение. Она состоит из наружного слоя и расположенной под ним плазматической мембраны. Клетки животных и растений различаются по строению их наружного слоя. У растений, а также у бактерий, сине-зеленых водорослей и грибов на поверхности клеток расположена плотная оболочка, или клеточная стенка. У большинства растений она состоит из клетчатки. Клеточная стенка играет исключительно важную роль: она представляет собой внешний каркас, защитную оболочку, обеспечивает тургор растительных клеток: через клеточную стенку проходит вода, соли, молекулы многих органических веществ.

Наружный слой поверхности клеток животных в отличие от клеточных стенок растений очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток получил название гликокаликс.

Гликокаликс выполняет прежде всего функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами. Имея незначительную толщину (меньше 1 мкм), наружный слой клетки животных не выполняет опорной роли, какая свойственна клеточным стенкам растений. Образование гликокаликса, так же как и клеточных стенок растений, происходит благодаря жизнедеятельности самих клеток.

Плазматическая мембрана. Под гликокаликсом и клеточной стенкой растений расположена плазматическая мембрана (лат. «мембрана» — кожица, пленка), граничащая непосредственно с цитоплазмой. Толщина плазматической мембраны около 10 нм, изучение ее строения и функций возможно только с помощью электронного микроскопа.

В состав плазматической мембраны входят белки и липиды. Они упорядочено расположены и соединены друг с другом химическими взаимодействиями. По современным представлениям молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной слой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину.

Молекулы белка и липидов подвижны, что обеспечивает динамичность плазматической мембраны.

Плазматическая мембрана выполняет много важных функций, от которых завидят жизнедеятельность клеток. Одна из таких функций заключается в том, что она образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды. Но между клетками и внешней средой постоянно происходит обмен веществ. Из внешней среды в клетку поступает вода, разнообразные соли в форме отдельных ионов, неорганические и органические молекулы. Они проникают в клетку через очень тонкие каналы плазматической мембраны. Во внешнюю среду выводятся продукты, образованные в клетке. Транспорт веществ — одна из главных функций плазматической мембраны. Через плазматическую мембрану из клети выводятся продукты обмена, а также вещества, синтезированные в клетке. К числу их относятся разнообразные белки, углеводы, гормоны, которые вырабатываются в клетках различных желез и выводятся во внеклеточную среду в форме мелких капель.

Клетки, образующие у многоклеточных животных разнообразные ткани (эпителиальную, мышечную и др.), соединяются друг с другом плазматической мембраной. В местах соединения двух клеток мембрана каждой из них может образовывать складки или выросты, которые придают соединениям особую прочность.

Соединение клеток растений обеспечивается путем образования тонких каналов, которые заполнены цитоплазмой и ограничены плазматической мембраной. По таким каналам, проходящим через клеточные оболочки, из одной клетки в другую поступают питательные вещества, ионы, углеводы и другие соединения.

На поверхности многих клеток животных, например, различных эпителиев, находятся очень мелкие тонкие выросты цитоплазмы, покрытые плазматической мембраной, микроворсинки. Наибольшее количество микроворсинок находится на поверхности клеток кишечника, где происходит интенсивное переваривание и всасывание переваренной пищи.

Крупные молекулы органических веществ, например белков и полисахаридов, частицы пищи, бактерии поступают в клетку путем фагоцита (греч. "фагео " — пожирать). В фагоците непосредственное участие принимает плазматическая мембрана. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в "мембранной упаковке " погружается внутрь клетки. Образуется пищеварительная вакуоль и в ней перевариваются поступившие в клетку органические вещества.

Отграниченная от внешней среды плазматической мембраной, цитоплазма представляет собой внутреннюю полужидкую среду клеток. В цитоплазму эукариотических клеток располагаются ядро и различные органоиды. Ядро располагается в центральной части цитоплазмы. В ней сосредоточены и разнообразные включения — продукты клеточной деятельности, вакуоли, а также мельчайшие трубочки и нити, образующие скелет клетки. В составе основного вещества цитоплазмы преобладают белки. В цитоплазме протекают основные процессы обмена веществ, она объединяет в одно целое ядро и все органоиды, обеспечивает их взаимодействие, деятельность клетки как единой целостной живой системы.

Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети.

Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа — гранулярная и гладкая. На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец — рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности.

Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети — участие в синтезе белка, который осуществляется в рибосомах.

На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются в каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. Эндоплазматическая сеть связывает между собой основные органоиды клетки.

Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15 - 20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.|enter||enter|

В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом — это синтез белка. Синтез белка сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляютя. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.

В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0, 2 - 7 мкм) — митохондрии (греч. «митос» — нить, «хондрион» — зерно, гранула).

Митохондрии хорошо видны в световой микроскоп, с помощью которого можно рассмотреть их форму, расположение, сосчитать количество. Внутреннее строение митохондрий изучено с помощью электронного микроскопа. Оболочка митохондрии состоит из двух мембран — наружной и внутренней. Наружная мембрана гладкая, она не образует никаких складок и выростов. Внутренняя мембрана, напротив, образует многочисленные складки, которые направлены в полость митохондрии. Складки внутренней мембраны называют кристами (лат. «криста» — гребень, вырост) Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен, причем особенно много крист в митохондриях активно функционирующих клеток, например мышечных.

Митохондрии называют «силовыми станциями» клеток, так как их основная функция синтез аденозинтрифосфорной кислоты (АТФ). Эта кислота синтезируется в митохондриях клеток всех организмов и представляет собой универсальный источник энергии, необходимый для осуществления процессов жизнедеятельности клетки и целого организма.

Новые митохондрии образуются делением уже существующих в клетке митохондрий.

В цитоплазме клеток всех растений находятся пластиды. В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые — хлоропласты; красные, оранжевые и желтые — хромопласты; бесцветные — лейкопласты.

Эти органоиды содержатся в клетках листьев и других зеленых органов растений, а также у разнообразных водорослей. Размеры хлоропластов 4 - 6 мкм, наиболее часто они имеют овальную форму. У высших растений в одной клетке обычно бывает несколько десятков хлоропластов. Зеленый цвет хлоропластов зависит от содержания в них пигмента хлорофилла. Xлоропласт — основной органоид клеток растений, в котором происходит фотосинтез, т.е. образование органических веществ (углеводов) из неорганических (СО2 и Н2О) при использовании энергии солнечного света.

По строению хлоропласты сходны с митохондриями. От цитоплазмы хлоропласт отграничен двумя мембранами - наружной и внутренней. Наружная мембрана гладкая, без складок и выростов, а внутренняя образует много складчатых выростов, направленных внутрь хлоропласта. Поэтому внутри хлоропласта сосредоточено большое количество мембран, образующих особые структуры - граны. Они сложены наподобие стопки монет.

В мембранах гран располагаются молекулы хлорофилла, потому именно здесь происходит фотосинтез. В хлоропластах синтезируется и АТФ. Между внутренними мембранами хлоропласта содержатся ДНК, РНК и рибосомы. Следовательно, в хлоропластах, так же как и в митохондриях, происходит синтез белка, необходимого для деятельности этих органоидов. Хлоропласты размножаются делением.

Хромопласты находятся в цитоплазме клеток разных частей растений: в цветках, плодах, стеблях, листьях. Присутствием хромопластов объясняется желтая, оранжевая и красная окраска венчиков цветков, плодов, осенних листьев.

Лейкопласты находятся в цитоплазме клеток неокрашенных частей растений, например в стеблях, корнях, клубнях. Форма лейкопластов разнообразна.

Хлоропласты, хромопласты и лейкопласты способны клетка взаимному переходу. Так при созревании плодов или изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут превращаться в хлоропласты, например, при позеленении клубней картофеля.

Во многих клетках животных, например, в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.

В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5 - 10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.

Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки — белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.

Лизосомы представляют собой небольшие округлые тельца. От Цитоплазмы каждая лизосома отграничена мембраной. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты.

К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом. Вещества, образовавшиеся в результате переваривания пищевой частицы, поступают в цитоплазму и используются клеткой.

Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов. Образование новых лизосом происходит в клетке постоянно. Ферменты, содержащиеся в лизосомах, как и всякие другие белки, синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к аппарату Гольджи, в полостях которого формируются лизосомы. В таком виде лизосомы поступают в цитоплазму.

В клетках животных вблизи ядра находится органоид, который называют клеточным центром. Основную часть клеточного центра составляют два маленьких тельца — центриоли, расположенные в небольшом участке уплотненной цитоплазмы. Каждая центриоль имеет форму цилиндра длиной до 1 мкм. Центриоли играют важную роль при делении клетки; они участвуют в образовании веретена деления.

К клеточным включениям относятся углеводы, жиры и белки. Все эти вещества накапливаются в цитоплазме клетки в виде капель и зерен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ.

Каждая клетка одноклеточных и многоклеточных животных, а также растений содержит ядро. Форма и размеры ядра зависят от формы и размера клеток. В большинстве клеток имеется одно ядро, и такие клетки называют одноядерными. Существуют также клетки с двумя, тремя, с несколькими десятками и даже сотнями ядер. Это многоядерные клетки.

наука о клетках - структурных и функциональных единицах почти всех живых организмов. В многоклеточном организме все сложные проявления жизни возникают в результате координированной активности составляющих его клеток. Задача цитолога - установить, как построена живая клетка и как она выполняет свои нормальные функции. Изучением клеток занимаются также патоморфологи, но их интересуют изменения, происходящие в клетках во время болезни или после смерти. Несмотря на то что учеными давно уже было накоплено немало данных о развитии и строении животных и растений, только в 1839 были сформулированы основные концепции клеточной теории и началось развитие современной цитологии.

Клетки - это самые мелкие единицы живого, о чем наглядно свидетельствует способность тканей распадаться на клетки, которые затем могут продолжать жить в «тканевой» или клеточной культуре и размножаться подобно крошечным организмам. Согласно клеточной теории, все организмы состоят из одной или многих клеток. Из этого правила есть несколько исключений. Например, в теле слизевиков (миксомицетов) и некоторых очень мелких плоских червей клетки не отделены друг от друга, а образуют более или менее слитную структуру - т.н. синцитий. Однако можно считать, что такое строение возникло вторично в результате разрушения участков клеточных мембран, имевшихся у эволюционных предков этих организмов. Многие грибы растут, образуя длинные нитевидные трубки, или гифы. Эти гифы, часто разделенные перегородками - септами - на сегменты, тоже можно рассматривать как своеобразные вытянутые клетки. Из одной клетки состоят тела протистов и бактерий.

Между бактериальными клетками и клетками всех других организмов существует одно важное различие: ядра и органеллы («маленькие органы») бактериальных клеток не окружены мембранами, и поэтому эти клетки называют прокариотическими («доядерными»); все другие клетки называют эукариотическими (с «настоящими ядрами»): их ядра и органеллы заключены в мембраны. В этой статье рассматриваются только эукариотические клетки.

См. также КЛЕТКА. Открытие клетки . Изучение мельчайших структур живых организмов стало возможным лишь после изобретения микроскопа, т.е. после 1600. Первое описание и изображения клеток дал в 1665 английский ботаник Р.Гук: рассматривая тонкие срезы высушенной пробки, он обнаружил, что они «состоят из множества коробочек». Каждую из этих коробочек Гук назвал клеткой («камерой»). Итальянский исследователь М.Мальпиги (1674), голландский ученый А. ван Лёвенгук, а также англичанин Н.Грю (1682) вскоре привели множество данных, демонстрирующих клеточное строение растений. Однако ни один из этих наблюдателей не понял, что действительно важным веществом был наполнявший клетки студенистый материал (впоследствии названный протоплазмой), а казавшиеся им столь важными «клетки» были просто безжизненными целлюлозными коробочками, в которых содержалось это вещество. До середины 19 в. в трудах ряда ученых уже просматривались зачатки некой «клеточной теории» как общего структурного принципа. В 1831 Р.Броун установил существование в клетке ядра, но не сумел оценить всю важность своего открытия. Вскоре после открытия Броуна несколько ученых убедились в том, что ядро погружено в полужидкую протоплазму, заполняющую клетку. Первоначально основной единицей биологической структуры считали волокно. Однако уже в начале 19 в. почти все стали признавать непременным элементом растительных и животных тканей структуру, которую называли пузырьком, глобулой или клеткой. Создание клеточной теории . Количество прямых сведений о клетке и ее содержимом чрезвычайно возросло после 1830, когда появились усовершенствованные микроскопы. Затем в 1838-1839 произошло то, что называют «завершающим мазком мастера». Ботаник М.Шлейден и анатом Т.Шванн практически одновременно выдвинули идею клеточного строения. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу. Согласно клеточной теории, все растения и животные состоят из сходных единиц - клеток, каждая из которых обладает всеми свойствами живого. Эта теория стала краеугольным камнем всего современного биологического мышления. Открытие протоплазмы . Сначала незаслуженно большое внимание уделяли стенкам клетки. Однако еще Ф.Дюжарден (1835) описал живой студень у одноклеточных организмов и червей, назвав его «саркодой» (т.е. «похожим на мясо»). Эта вязкая субстанция была, по его мнению, наделена всеми свойствами живого. Шлейден тоже обнаружил в растительных клетках мелкозернистое вещество и назвал его «растительной слизью» (1838). Спустя 8 лет Г.фон Моль воспользовался термином «протоплазма» (примененным в 1840 Я.Пуркинье для обозначения субстанции, из которой формируются зародыши животных на ранних стадиях развития) и заменил им термин «растительная слизь». В 1861 М.Шультце обнаружил, что саркода содержится также в тканях высших животных и что это вещество идентично как структурно, так и функционально т.н. протоплазме растений. Для этой «физической основы жизни», как определил ее впоследствии Т.Гексли, был принят общий термин «протоплазма». Концепция протоплазмы в свое время сыграла важную роль; однако уже давно стало ясно, что протоплазма не однородна ни по своему химическому составу, ни по структуре, и этот термин постепенно вышел из употребления. В настоящее время главными компонентами клетки обычно считают ядро, цитоплазму и клеточные органеллы. Сочетание цитоплазмы и органелл практически соответствует тому, что имели в виду первые цитологи, говоря о протоплазме. Основные свойства живых клеток . Изучение живых клеток пролило свет на их жизненно важные функции. Было установлено, что последние можно разбить на четыре категории: подвижность, раздражимость, метаболизм и размножение.

Подвижность проявляется

в различных формах: 1) внутриклеточная циркуляция содержимого клетки; 2) перетекание, обеспечивающее перемещение клеток (например, клеток крови); 3) биение крошечных протоплазматических выростов - ресничек и жгутиков; 4) сократимость, наиболее развитая у мышечных клеток.

Раздражимость выражается в способности клеток воспринимать стимул и реагировать на него импульсом, или волной возбуждения. Эта активность выражена в наивысшей степени у нервных клеток.

Метаболизм включает все превращения вещества и энергии, протекающие в клетках.

Размножение обеспечивается способностью клетки к делению и образованию дочерних клеток. Именно способность воспроизводить самих себя и позволяет считать клетки мельчайшими единицами живого. Однако многие высокодифференцированные клетки эту способность утратили.

ЦИТОЛОГИЯ КАК НАУКА В конце 19 в. главное внимание цитологов было направлено на подробное изучение строения клеток, процесса их деления и выяснение их роли как важнейших единиц, обеспечивающих физическую основу наследственности и процесса развития. Развитие новых методов . Вначале при изучении деталей строения клеток приходилось полагаться главным образом на визуальное исследование мертвого, а не живого материала. Необходимы были методы, которые позволяли бы сохранять протоплазму, не повреждая ее, изготавливать достаточно тонкие срезы ткани, проходящие и через клеточные компоненты, а также окрашивать срезы, чтобы выявлять детали клеточного строения. Такие методы создавались и совершенствовались в течение всей второй половины 19 в. Совершенствовался и сам микроскоп. К числу важных достижений в его устройстве следует отнести: осветитель, расположенный под столиком, для фокусировки пучка света; апохроматический объектив для корректировки недостатков окрашивания, искажающих изображение; иммерсионный объектив, дающий более четкое изображение и увеличение в 1000 раз и более.

Было также обнаружено, что основные красители, например гематоксилин, обладают сродством к содержимому ядра, а кислотные красители, например эозин, окрашивают цитоплазму; это наблюдение послужило основой для создания разнообразных методов контрастного или дифференциального окрашивания. Благодаря этим методам и усовершенствованным микроскопам постепенно накапливались важнейшие сведения о строении клетки, ее специализированных «органах» и различных неживых включениях, которые клетка либо сама синтезирует, либо поглощает извне и накапливает.

Закон генетической непрерывности . Фундаментальное значение для дальнейшего развития клеточной теории имела концепция генетической непрерывности клеток. В свое время Шлейден считал, что клетки образуются в результате своего рода кристаллизации из клеточной жидкости, а Шванн в этом ошибочном направлении пошел еще дальше: по его мнению, клетки возникали из некой «бластемной» жидкости, находящейся вне клеток.

Сначала ботаники, а затем и зоологи (после того как разъяснились противоречия в данных, полученных при изучении некоторых патологических процессов) признали, что клетки возникают только в результате деления уже существующих клеток. В 1858 Р.Вирхов сформулировал закон генетической непрерывности в афоризме «

Omnis cellula e cellula » («Каждая клетка из клетки»). Когда была установлена роль ядра в клеточном делении, В.Флемминг (1882) перефразировал этот афоризм, провозгласив: « Omnis nucleus e nucleo » («Каждое ядро из ядра»). Одним из первых важных открытий в изучении ядра было обнаружение в нем интенсивно окрашивающихся нитей, названных хроматином. Последующие исследования показали, что при делении клетки эти нити собираются в дискретные тельца - хромосомы, что число хромосом постоянно для каждого вида, а в процессе клеточного деления, или митоза, каждая хромосома расщепляется на две, так что каждая клетка получает типичное для данного вида число хромосом. Следовательно, афоризм Вирхова можно распространить и на хромосомы (носители наследственных признаков), поскольку каждая из них происходит от предсуществующей.

В 1865 было установлено, что мужская половая клетка (сперматозоид, или спермий) представляет собой полноценную, хотя и высокоспециализированную клетку, а спустя 10 лет О.Гертвиг проследил путь сперматозоида в процессе оплодотворения яйцеклетки. И наконец, в 1884 Э. ван Бенеден показал, что в процессе образования как сперматозоида, так и яйцеклетки происходит модифицированное клеточное деление (мейоз), в результате которого они получают по одному набору хромосом вместо двух. Таким образом, каждый зрелый сперматозоид и каждая зрелая яйцеклетка содержат лишь половинное число хромосом по сравнению с остальными клетками данного организма, и при оплодотворении происходит просто восстановление нормального числа хромосом. В итоге оплодотворенная яйцеклетка содержит по одному набору хромосом от каждого из родителей, что является основой для наследования признаков и по отцовской, и по материнской линии. Кроме того, оплодотворение стимулирует начало дробления яйцеклетки и развитие нового индивида.

Представление о том, что хромосомы сохраняют свою идентичность и поддерживают генетическую непрерывность от одного поколения клеток к другому, окончательно сформировалось в 1885 (Рабль). Вскоре было установлено, что хромосомы качественно отличаются друг от друга по своему влиянию на развитие (Т.Бовери, 1888). Начали появляться также экспериментальные данные в пользу высказанной ранее гипотезы В.Ру (1883), согласно которой даже отдельные части хромосом влияют на развитие, структуру и функционирование организма.

Таким образом, еще до конца 19 в. было сделано два важных заключения. Одно состояло в том, что наследственность есть результат генетической непрерывности клеток, обеспечиваемой клеточным делением. Другое - что существует механизм передачи наследственных признаков, который находится в ядре, а точнее - в хромосомах. Было установлено, что благодаря строгому продольному расщеплению хромосом дочерние клетки получают совершенно такую же (как качественно, так и количественно) генетическую конституцию, как исходная клетка, от которой они произошли.

Законы наследственности . Второй этап в развитии цитологии как науки охватывает 1900-1935. Он наступил после того, как в 1900 были вторично открыты основные законы наследственности, сформулированные Г.Менделем в 1865, но не привлекшие к себе внимания и надолго преданные забвению. Цитологи, хотя и продолжали заниматься изучением физиологии клетки и такими ее органеллами, как центросома, митохондрии и аппарат Гольджи, основное внимание сосредоточили на строении хромосом и их поведении. Проводившиеся в это же время эксперименты по скрещиванию быстро увеличивали объем знаний о способах наследования, что привело к становлению современной генетики как науки. В результате возник «гибридный» раздел генетики - цитогенетика. ДОСТИЖЕНИЯ СОВРЕМЕННОЙ ЦИТОЛОГИИ Новые методы, особенно электронная микроскопия, применение радиоактивных изотопов и высокоскоростного центрифугирования, появившиеся после 1940-х годов, позволили достичь огромных успехов в изучении строения клетки. В разработке единой концепции физико-химических аспектов жизни цитология все больше сближается с другими биологическими дисциплинами. При этом ее классические методы, основанные на фиксации, окрашивании и изучении клеток под микроскопом, по-прежнему сохраняют практическое значение.

Цитологические методы используются, в частности, в селекции растений для определения хромосомного состава растительных клеток. Такие исследования оказывают большую помощь в планировании экспериментальных скрещиваний и оценке полученных результатов. Аналогичный цитологический анализ проводится и на клетках человека: он позволяет выявить некоторые наследственные заболевания, связанные с изменением числа и формы хромосом. Такой анализ в сочетании с биохимическими тестами используют, например, при амниоцентезе для диагностики наследственных дефектов плода.

См. также ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ; НАСЛЕДСТВЕННОСТЬ.

Однако самое важное применение цитологических методов в медицине - это диагностика злокачественных новообразований. В раковых клетках, особенно в их ядрах, возникают специфические изменения, распознаваемые опытными патоморфологами.

См. также РАК. ЛИТЕРАТУРА Ченцов Ю.С. Общая цитология , 3-е изд. М., 1995
Грин Н., Стаут У., Тейлор Д. Биология , т. 1. М., 1996
В современной науке важную роль занимают новые, молодые дисциплины, сформировавшиеся в самостоятельные разделы в последнее столетие и даже позже. То, что не было доступно для исследований раньше, теперь становится доступным благодаря техническим новшествам и современным научным методам, что позволяет регулярно получать новые результаты. Постоянно в средствах массовой информации мы слышим сообщения о новых открытиях в области биологии, а конкретно генетики и цитологии, эти смежные дисциплины переживают сейчас настоящий расцвет, а множество амбициозных научных проектов постоянно дают новые данные для анализа.

Одной из новых дисциплин чрезвычайно перспективных, является цитология, наука о клетках. Современная цитология – наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой. Цитология – одна из относительно молодых биологических наук, ее возраст около 100 лет, хотя само понятие клетки было введено в обиход учёными гораздо раньше.

Мощным стимулом к развитию цитологии послужили разработка и совершенствование установок, приборов и инструментов для исследований. Электронная микроскопия и возможности современных компьютеров наряду с химическими методами дают все последние годы новые материалы для исследований.

Цитология как наука, её становление и задачи

Цитология (от греч. κύτος – пузырьковидное образование и λόγος – слово, наука) – раздел биологии, наука о клетках, структурных единицах всех живых организмов, ставит перед собой задачи изучения строения, свойств, и функционирования живой клетки.

Изучение мельчайших структур живых организмов стало возможным лишь после изобретения микроскопа – в 17 веке. Термин «клетка» впервые предложил 1665 г. английский естествоиспытатель Роберт Гук (1635–1703) для описания ячеистой структуры наблюдаемого под микроскопом среза пробки. Рассматривая тонкие срезы высушенной пробки, он обнаружил, что они «состоят из множества коробочек». Каждую из этих коробочек Гук назвал клеткой («камерой»)». В 1674 году голландский учёный Антони ван Левенгук установил, что вещество, находящееся внутри клетки, определенным образом организовано.

Однако бурное развитие цитологии началось только во второй половине 19 в. по мере развития и усовершенствования микроскопов. В 1831 Р. Броун установил существование в клетке ядра, но не сумел оценить всю важность своего открытия. Вскоре после открытия Броуна несколько ученых убедились в том, что ядро погружено в полужидкую протоплазму, заполняющую клетку. Первоначально основной единицей биологической структуры считали волокно. Однако уже в начале 19 в. почти все стали признавать непременным элементом растительных и животных тканей структуру, которую называли пузырьком, глобулой или клеткой. В 1838–1839 гг. немецкие учёные М. Шлейден (1804–1881) и Т. Шванн (1810–1882) практически одновременно выдвинули идею клеточного строения. Утверждение о том, что все ткани животных и растений состоят из клеток, составляет сущность клеточной теории. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу.

Согласно клеточной теории, все растения и животные состоят из сходных единиц – клеток, каждая из которых обладает всеми свойствами живого. Эта теория стала краеугольным камнем всего современного биологического мышления. В конце 19 в. главное внимание цитологов было направлено на подробное изучение строения клеток, процесса их деления и выяснение их роли. Вначале при изучении деталей строения клеток приходилось полагаться главным образом на визуальное исследование мертвого, а не живого материала. Необходимы были методы, которые позволяли бы сохранять протоплазму, не повреждая ее, изготавливать достаточно тонкие срезы ткани, проходящие и через клеточные компоненты, а также окрашивать срезы, чтобы выявлять детали клеточного строения. Такие методы создавались и совершенствовались в течение всей второй половины 19 в.

Фундаментальное значение для дальнейшего развития клеточной теории имела концепция генетической непрерывности клеток. Сначала ботаники, а затем и зоологи (после того как разъяснились противоречия в данных, полученных при изучении некоторых патологических процессов) признали, что клетки возникают только в результате деления уже существующих клеток. В 1858 Р. Вирхов сформулировал закон генетической непрерывности в афоризме «Omnis cellula e cellula» («Каждая клетка из клетки»). Когда была установлена роль ядра в клеточном делении, В. Флемминг (1882) перефразировал этот афоризм, провозгласив: «Omnis nucleus e nucleo» («Каждое ядро из ядра»). Одним из первых важных открытий в изучении ядра было обнаружение в нем интенсивно окрашивающихся нитей, названных хроматином . Последующие исследования показали, что при делении клетки эти нити собираются в дискретные тельца – хромосомы, что число хромосом постоянно для каждого вида, а в процессе клеточного деления, или митоза, каждая хромосома расщепляется на две, так что каждая клетка получает типичное для данного вида число хромосом.

Таким образом, еще до конца 19 в. было сделано два важных заключения. Одно состояло в том, что наследственность есть результат генетической непрерывности клеток, обеспечиваемой клеточным делением. Другое – что существует механизм передачи наследственных признаков, который находится в ядре, а точнее – в хромосомах. Было установлено, что благодаря строгому продольному расщеплению хромосом дочерние клетки получают совершенно такую же (как качественно, так и количественно) генетическую конституцию, как исходная клетка, от которой они произошли.

Второй этап в развитии цитологии начинается с 1900 гг., когда были ясно сформулированы законы наследственности , открытые австрийским учёным Г.И. Менделем еще в 19 в. В это время из цитологии выделяется отдельная дисциплина – генетика , наука о наследственности и изменчивости, изучающая механизмы наследования и гены, как носители наследственной информации, заключённые в клетках. Основой генетики явилась хромосомная теория наследственности – теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, т.е. преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом.

Новые методы, особенно электронная микроскопия, применение радиоактивных изотопов и высокоскоростного центрифугирования, появившиеся после 1940-х годов, позволили достичь еще больших успехов в изучении строения клетки. На данный момент цитологические методы активно используются в селекции растений, в медицине – например, в изучении злокачественных образований и наследственных заболеваний.

Основные положения клеточной теории

В 1838-1839 гг. Теодор Шванн и немецкий ботаник Маттиас Шлейден сформулировали основные положения клеточной теории:

1. Клетка есть единица структуры. Все живое состоит из клеток и их производных. Клетки всех организмов гомологичны.

2. Клетка есть единица функции. Функции целостного организма распределены по его клеткам. Совокупная деятельность организма есть сумма жизнедеятельности отдельных клеток.

3. Клетка есть единица роста и развития. В основе роста и развития всех организмов лежит образование клеток.

Клеточная теория Шванна–Шлейдена принадлежит к величайшим научным открытиям XIX в. В то же время, Шванн и Шлейден рассматривали клетку лишь как необходимый элемент тканей многоклеточных организмов. Вопрос о происхождении клеток остался нерешенным (Шванн и Шлейден считали, что новые клетки образуются путем самозарождения из живого вещества). Только немецкий врач Рудольф Вирхов (1858-1859 гг.) доказал, что каждая клетка происходит от клетки. В конце XIX в. окончательно формируются представления о клеточном уровне организации жизни. Немецкий биолог Ганс Дриш (1891) доказал, что клетка – это не элементарный организм, а элементарная биологическая система. Постепенно формируется особая наука о клетке – цитология.

Дальнейшее развитие цитологии в XX в. тесно связано с разработкой современных методов изучения клетки: электронной микроскопии, биохимических и биофизических методов, биотехнологических методов, компьютерных технологий и других областей естествознания. Современная цитология изучает строение и функционирование клеток, обмен веществ в клетках, взаимоотношения клеток с внешней средой, происхождение клеток в филогенезе и онтогенезе, закономерности дифференцировки клеток.
В настоящее время принято следующее определение клетки. Клетка – это элементарная биологическая система, обладающая всеми свойствами и признаками жизни. Клетка есть единица структуры, функции и развития организмов.

Единство и разнообразие клеточных типов

Существует два основных морфологических типа клеток, различающиеся по организации генетического аппарата: эукариотический и прокариотический. В свою очередь, по способу питания различают два основных подтипа эукариотических клеток: животную (гетеротрофную) и растительную (автотрофную). Эукариотическая клетка состоит из трех основных структурных компонентов: ядра, плазмалеммы и цитоплазмы. Эукариотическая клетка отличается от остальных типов клеток, в первую очередь, наличием ядра. Ядро – это место хранения, воспроизведения и начальной реализации наследственной информации. Ядро состоит из ядерной оболочки, хроматина, ядрышка и ядерного матрикса.

Плазмалемма (плазматическая мембрана) – это биологическая мембрана, покрывающая всю клетку и отграничивающая её живое содержимое от внешней среды. Поверх плазмалеммы часто располагаются разнообразные клеточные оболочки (клеточные стенки). В животных клетках клеточные оболочки, как правило, отсутствуют. Цитоплазма – это часть живой клетки (протопласта) без плазматической мембраны и ядра. Цитоплазма пространственно разделена на функциональные зоны (компартменты), в которых протекают различные процессы. В состав цитоплазмы входят: цитоплазматический матрикс, цитоскелет, органоиды и включения (иногда включения и содержимое вакуолей к живому веществу цитоплазмы не относят). Все органоиды клетки делятся на немембранные, одномембранные и двумембранные. Вместо термина «органоиды» часто употребляют устаревший термин «органеллы».

К немембранным органоидам эукариотической клетки относятся органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе тубулиновых микротрубочек – клеточный центр (центриоли) и органоиды движения (жгутики и реснички). В клетках большинства одноклеточных организмов и подавляющего большинства высших (наземных) растений центриоли отсутствуют.

К одномембранным органоидам относятся: эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы, сферосомы, вакуоли и некоторые другие. Все одномембранные органоиды связаны между собой в единую вакуолярную систему клетки. В растительных клетках настоящие лизосомы не обнаружены. В то же время в животных клетках отсутствуют настоящие вакуоли.

К двумембранным органоидам относятся митохондрии и пластиды. Эти органоиды являются полуавтономными, поскольку обладают собственной ДНК и собственным белоксинтезирующим аппаратом. Митохондрии имеются практически во всех эукариотических клетках. Пластиды имеются только в растительных клетках.
Прокариотическая клетка не имеет оформленного ядра – его функции выполняет нуклеоид, в состав которого входит кольцевая хромосома. В прокариотической клетке отсутствуют центриоли, а также одномембранные и двумембранные органоиды – их функции выполняют мезосомы (впячивания плазмалеммы). Рибосомы, органоиды движения и оболочки прокариотических клеток имеют специфическое строение.