Дегидрирование этанола реакция. Каталитическое дегидрирование спиртов

Реакции дегидрирования спиртов необходимы для получения альдегидов и кетонов. Кетоны получаются из вторичных спиртов, а альдегиды из первичных спиртов. Катализаторами в процессах служат медь, серебро, хромиты меди, оксид цинка и т.д. Стоит отметить, что по сравнению с медными катализаторами оксид цинка является более стойким и не теряет активность в ходе процесса, однако может провоцировать реакцию дегидратации. В общем виде реакции дегидрирования спиртов могут быть представлены следующим образом:

В промышленности дегидрированием спиртов получают такие соединения, как ацетальдегид, ацетон, метилэтилкетон и циклогексанон. Процессы протекают в токе водяного пара. Наиболее распространенными процессами являются:

1. осуществляется на медном или серебряном катализаторе при температуре 200 - 400 °С и атмосферном давлении. Катализатор представляет собой какой-либо носитель Al 2 O 3 , SnO 2 или углеродное волокно, на который нанесены компоненты серебра или меди. Данная реакция является одной из составляющих процесса Вакера, который является промышленным методом получения уксусного альдегида из этанола путем его дегидрирования или окисления кислородом.

2. может протекать по-разному, в зависимости от структурной формулы его исходного вещества. 2-пропанол, который является вторичным спиртом дегидрируется до ацетона, а 1-пропанол, будучи первичным спиртом, дегидрируется до пропаналя при атмосферном давлении и температуре процесса 250 - 450 °С.

3. так же зависит от структуры исходного соединения, которая влияет на конечный продукт (альдегид или кетон).

4. Дегидрирование метанола . Данный процесс не является до конца изученным, но большинство исследователей выделяет его как перспективный процесс синтеза формальдегида, не содержащего воды. Предлагаются разные параметры процесса: температура 600 - 900 °С, активный компонент катализатора цинк или медь, носитель оксид кремния, возможность инициирования реакции перекисью водорода и т.д. На данный момент большую часть формальдегида в мире получают окислением метанола.

Гидратация алкенов Наиболее важное промышленное значение имеет гидратация олефинов. Присоединение воды к олефинам может проводиться в присутствии серной кислоты - сернокислотная гидратация или при пропускании смеси олефина с водяным паром над фосфатным катализатором Н3Р04 на алюмосиликате...
(ОРГАНИЧЕСКАЯ ХИМИЯ)
  • (ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Окисление спиртов
    При горении спиртов образуются двуокись углерода и вода: При действии обычных окислителей - хромовой смеси, пермангата калия окислению подвергается в первую очередь атом углерода, при котором находится гидроксильная группа. Первичные спирты дают при окислении альдегиды, которые легко переходят...
    (ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Окисление этилового спирта до уксусной кислоты.
    Этиловый спирт окисляется до уксусной кислоты под влиянием уксуснокислых бактерий родов Gluconobacter и Acetobacter. Это грамотрицательные хемоорганогетеротрофные, не образующие спор, палочковидные организмы, подвижные или неподвижные. Уксуснокислые бактерии указанных родов различаются между собой по...
    (ОСНОВЫ МИКРОБИОЛОГИИ)
  • Каталитическое дегидрирование спиртов
    Превращение спиртов в альдегиды и кетоны можно осуществить также дегидрированием - пропусканием паров спирта над нагретым катализатором - медью или серебром при 300 °С: Взаимодействие спиртов с магнийорганическими соединениями (реактивами Гриньяра) приводит к образованию предельных углеводородов: Эта...
    (ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Спирт и спиртосодержащая продукция
    К подакцизным товарам относится только этиловый спирт (спирт-сырец и ректифицированный), независимо от вида сырья, из которого он произведен (пищевого или непищевого). Технический спирт (это не этиловый) не является акцизным товаром, его получают из древесины или нефтепродуктов. Для производства акцизного...
    (Налогообложение коммерческой деятельности)
  • Принципиальной проблемой, которая возникает при окислении спиртов до альдегидов, является то, что альдегиды очень легко подвергаются дальнейшему окислению по сравнению с исходными спиртами. По сути альдегиды являются активными органическими восстановителями. Так, при окислении первичных спиртов бихроматом натрия в серной кислоте (смесь Бекмана), альдегид, который образуется, необходимо защитить от дальнейшего окисления до карбоновой кислоты. Можно, например, удалять альдегид из реакционной смеси. И это широко применяется, так как температура кипения альдегида как правило ниже, чем температура кипения исходного спирта. Таким путем могут быть получены, в первую очередь, низкокипящие альдегиды, например, уксусный, пропионовый, изомасляный:

    Рисунок 1.

    Лучшие результаты можно получить, если вместо серной кислоты использовать ледяную уксусную кислоту.

    Для получения высококипящих альдегидов из соответствующих первичных спиртов в качестве окислителя используют трет-бутиловый эфир хроматной кислоты:

    Рисунок 2.

    При окислении трет-бутилхроматом ненасыщенных спиртов (в апротонных неполярных растворителях) кратные связи не занимаются, и ненасыщенные альдегиды образуются с высокими выходами.

    Достаточно селективным является метод окисления, в котором используют диоксид марганца в органическом растворителе, пентан или хлористый метилен. Например, алил- и бензил- спирты таким образом можно окислять в соответствующие альдегиды. Выходные спирты мало растворимые в неполярных растворителях, а альдегиды, которые образуются в результате окисления, значительно лучше растворимые в пентан или хлористый метилен. Поэтому карбонильные соединения переходят в слой растворителя и таким образом можно предотвратить контакт с окислителем и дальнейшем окислению:

    Рисунок 3.

    Проводить окисление вторичных спиртов в кетоны значительно проще, чем первичных спиртов в альдегиды. Выходы здесь выше, так как, во-первых, реакционная способность вторичных спиртов выше, чем первичных, а, во-вторых, кетоны, которые образуются значительно более стойки к действию окислителей чем альдегиды.

    Окислители для окисления спиртов

    Для окисления спиртов в качестве окислителей наиболее широкое применение нашли реагенты на основе переходных металлов - производные шестивалентного хрома, четырех и семи валентного марганца.

    Для селективного окисления первичных спиртов до альдегидов в настоящее время лучшими реагентами считается комплекс $CrO_3$ с пиридином - $CrO_{3^.} 2C_5H_5N$ (реагент Саррета-Коллинза), также широко применяется реагент Кори - хлорхромат пиридиния $CrO_3Cl^-C_5H_5N^+H$ в хлористом метилене. Комплекс $CrO_{3^.} 2C_5H_5N$ красного цвета получается при медленном взаимодействии $CrO_{3^.}$ с пиридином при 10-15 $^\circ$С. Оранжевый хлорхромат пиридиния получают при добавлении пиридина к раствору оксида хрома (IV) в 20%-й соляной кислоте. Оба этих реагента растворимы в $CH_2Cl_2$ или $CHCl_3$:

    Рисунок 4.

    Эти реагенты обеспечивают очень высокие выходы альдегидов, однако хлорхромат пиридиния имеет важное преимущество в том отношении, что этот реагент не затрагивает двойную или тройную связи в исходных спиртах и поэтому особенно эффективен для получения ненасыщенных альдегидов.

    Для получения $α¸β$-ненасыщенных альдегидов окислением замещенных аллильных спиртов универсальным окислителем является оксид марганца (IV) $MnO_2$

    Примеры реакций спиртов с этими окислителями приведены ниже:

    Каталитическое дегидрирование спиртов

    Собственно говоря, окисление спиртов до карбонильных соединений сводится к отщеплению водорода от молекулы исходного спирта. Такое отщепление можно осуществить не только с помощью рассмотренных ранее методов окисления, а и используя каталитическое дегидрирование. Каталитическое дегидрирование - процесс отщепления водорода от спиртов в присутствии катализатора (медь, серебро, оксид цинка, смесь оксидов хрома и меди) как с участием кислорода, так и без него. Реакция дегидрирования в присутствии кислорода называется реакцией окислительного дегидрирования.

    В качестве катализаторов чаще всего используют тонкодисперсные медь и серебро, а также оксид цинка. Каталитическое дегидрирование спиртов особенно удобно использовать для синтеза альдегидов, которые очень легко окисляются до кислот.

    Вышеупомянутые катализаторы наносят в высокодисперсном состоянии на инертные носители, с развитой поверхностью, например, асбест, пемза. Равновесие реакции каталитического дегидрирования устанавливается при температуре 300-400 $^\circ$С. Чтобы предотвратить дальнейшее преобразование продуктов дегидрирования, реакционные газы необходимо быстро охлаждать. Дегидрирования очень эндотермических реакцией ($\triangle H$ = 70-86 кДж / моль). Водород, образующийся можно сжигать, если добавлять в реакционную смесь воздуха, тогда суммарная реакция будет сильно экзотермической ($\triangle H$ = -(160-180) кДж / моль). Такой процесс называется окислительное дегидрирование или аутотермичное дегидрирования. Хотя дегидрирование используется главным образом в промышленности, этот метод можно применять также и в лаборатории для препаративного синтеза.

    Дегидрирование насыщения спиртов алифатического ряда происходит с хорошими выходами:

    Рисунок 9.

    В случае высококипящих спиртов реакцию проводят при пониженном давлении. Ненасыщенные спирты в условиях дегидрирования превращаются в соответствующие насыщенные карбонильные соединения. Гидрирование кратной $C = C$ связи происходит водородом, который образуется в процессе реакции. Чтобы предотвратить эту побочную реакцию и иметь возможность получать каталитическим дегидрированием ненасыщенные карбонильные соединения, процесс проводят в вакууме при 5-20 мм рт. ст. в присутствии паров воды. Такой метод позволяет получать целый ряд ненасыщенных карбонильных соединений:

    Рисунок 10.

    Применение дегидрирования спиртов

    Дегидрирования спиртов является важным промышленным методом синтеза альдегидов и кетонов, например формальдегида, ацетальдегида, ацетона. Эти продуты в больших объемах добывают как дегидрированием, так и окислительным дегидрированием на медном или серебряном катализаторе.

    Общепринятый механизм дегидратации спиртов следующий (для простоты в качестве примера взят этиловый спирт):

    Спирт присоединяет ион водорода стадия (1) с образованием протонированного спирта, который диссоциирует стадия (2), давая молекулу воды и ион карбония; затем ион карбония стадия (3) теряет ион водорода и образуется алкен.

    Таким образом, двойная связь образуется в две стадии: потеря гидроксильной группы в виде [стадия (2)] и потеря водорода (стадия (3)). В этом отличие этой реакции от реакции дегидрогалогенирования, где отщепление водорода и галогена происходит одновременно.

    Первая стадия представляет кислотно-основное равновесие по Бренстеду - Лоури (разд. 1.19). При растворений серной кислоты в воде, например, происходит следующая реакция:

    Ион водорода перешел от очень слабого основания к более сильному основанию с образованием иона оксония основные свойства обоих соединений обусловлены, конечно, неподеленной парой электронов, которая может связывать ион водорода. Спирт также содержит атом кислорода с неподеленной парой электронов и его основность сравнима с основностью воды. Первую стадию предложенного механизма можно наиболее вероятно представить следующим образом:

    Ион водорода перешел от бисульфат-иона к более сильному основанию (этиловому спирту) с образованием замещенного иона оксония протонированного спирта.

    Аналогично стадия (3) является не выталкиванием свободного иона водорода, а его переходом к наиболее сильному из имеющихся оснований, а именно к

    Для удобства этот процесс часто изображают как присоединение или отщепление иона водорода но следует понимать, что во всех случаях на самом деле происходит перенос протона от одного основания к другому.

    Все три реакции приведены как равновесные, поскольку каждая стадия обратима; как будет показано ниже, обратной реакцией является образование спиртов из алкенов (разд. 6.10). Равновесие (1) сдвинуто очень сильно вправо; известно, что серная кислота почти полностью ионизована в спиртовом растворе. Поскольку концентрация имеющихся в каждый момент карбониевых ионов очень мала, равновесие (2) сдвинуто сильно влево. В какой-то момент один из этих немногих карбониевых ионов реагирует по уравнению (3) с образованием алкена. При дегидратации, летучий алкен обычно отгоняется из реакционной смеси, и, таким образом, равновесие (3) сдвигается вправо. В результате вся реакция доходит до конца.

    Карбониевый ион образуется в результате диссоциации протонированного спирта; при этом заряженная частица отделяется от

    нейтральной частицы Очевидно, этот процесс требует значительно меньше энергии, чем образование карбониевого иона из самого спирта, поскольку в этом случае необходимо оторвать положительную частицу от отрицательной. В первом случае слабое основание (вода) отщепляется от иона карбония (кислоты Льюиса) значительно легче, чем очень сильное основание, гидроксил-ион, т. е. вода является лучшей уходящей группой, чем гидроксил-ион. Показано, что гидроксил-ион почти никогда не отщепляется от спирта; реакции расщепления связи в спирте почти во всех случаях требуют кислого катализатора, роль которого, как и в настоящем случае, заключается в протонировании спирта.

    Наконец, следует понимать, что диссоциация протонированного спирта становится возможной только благодаря сольватации карбониевого иона (ср. разд. 5.14). Энергия для разрыва связи углерод - кислород берется за счет образования большого числа ион-дипольных связей между ионом карбония и полярным растворителем.

    Карбониевый ион может вступать в различные реакции; какая из них происходит, зависит от экспериментальных условий. Все реакции карбониевых ионов завершаются одинаково: они приобретают пару электронов для заполнения октета у положительно заряженного атома углерода. В данном случае ион водорода отщепляется от атома углерода, соседнего с положительно заряженным обедненном электронами атомом углерода; пара электронов, прежде осуществлявшая связь с этим водородом, теперь может образовать -связь

    Этот механизм объясняет кислотный катализ при дегидратации. Объясняет ли этот механизм также и тот факт, что легкость дегидратации спиртов уменьшается в ряду третичный вторичный первичный? Прежде чем ответить на этот вопрос, необходимо выяснить, как изменяется устойчивость карбониевых ионов.