Электрическая эмиссия. Эмиссия электронов из металла

Электроны проводника свободно перемещаются в пределах его границ, а при поглощении достаточной энергии могут и выходить наружу, преодолев стенку потенциальной ямы у поверхности тела (рис. 10.6). Это явление называется эмиссией электронов (в отдельном атоме аналогичное явление называется ионизацией).

При Т = 0 энергия, необходимая для эмиссии, определяется разностью между уровнями W = 0 и уровнем Ферми Е Р (рис. 10.6) и называется работой выхода. Источником энергии могут быть фотоны (см. параграф 9.3), вызывающие фотоэмиссию (фотоэффект).

Рис. 10.6

Причиной термоэлектронной эмиссии является нагревание металла. При искажении функции распределения электронов (см. рис. 10.5, б) се «хвост» может выйти за пределы среза потенциальной ямы, т.с. у некоторых электронов хватает энергии, чтобы покинуть металл. Обычно этим пользуются для поставки электронов в вакуум.

Простейший прибор, использующий термоэмиссию, - электровакуумный диод (рис. 10.7, а). Его катод К накаляется от источника ЭДС ? и и испускает электроны, которые создают ток иод действием электрического ноля между анодом и катодом. Электровакуумный диод отличается от фотодиода в основном источником энергии, вызвавшей эмиссию электронов, поэтому их вольтамперные характеристики похожи. Чем больше напряжение U a между анодом и катодом, тем большую часть электронов из их облака у катода вытягивает электрическое поле в единицу времени. Поэтому с ростом напряжения U a ток I растет. При некоторых напряжениях ноле вытягивает уже все электроны, покидающие катод, и дальнейший рост напряжения к росту тока нс приводит - происходит насыщение.


Рис. 10.7

ВОПРОС. Почему ток насыщения при Т, больше, чем при Г, (рис. 10.7, б)? ОТВЕТ. При Т 2 > Г, больше электронов покидает катод в единицу времени.

При обратной полярности приложенного напряжения («минус» подключен к аноду, а «плюс» - к катоду) электроны не ускоряются, а тормозятся, поэтому электровакуумный диод способен пропускать ток только в одну сторону, т.е. он обладает односторонней проводимостью. Это позволяет применять его для выпрямления тока (рис. 10.7, в): во время действия положительной полуволны напряжения диод пропускает ток, а во время отрицательной - нет.

В 1907 г. американец Ли де Форест дополнил диод третьим электродом- сеткой, который позволил усиливать электрические сигналы. Такой триод стали затем дополнять и другими электродами, что позволило создавать разного рода усилители, генераторы и преобразователи. Это обусловило бурное развитие электротехники, радиотехники и электроники. Далее эстафету подхватили полупроводниковые приборы, вытеснившие электровакуумные лампы, но в ЭЛТ, рентгеновских трубках, электронных микроскопах и некоторых вакуумных лампах термоэмиссия ио-нрежнему актуальна.

Еще одним источником эмиссии электронов может быть бомбардировка поверхности материала различными частицами. Вторичная электрон-эле- ктронная эмиссия возникает в результате ударов внешних электронов, передающих часть своей энергии электронам вещества. Такую эмиссию используют, например, в фотоэлектронном умножителе (ФЭУ) (рис. 10.8, а). Его фотокатод 1 испускает электроны под действием света. Их ускоряют в направлении электрода (динода) 2, из которого они выбивают вторичные электроны, те ускоряются к диноду 3 и т.д. В результате первичный фототок умножается до такой степени, что ФЭУ способен регистрировать даже отдельные фотоны.

Рис. 10.8

Тот же принцип применили и в ЭОП (см. параграф 9.3) нового поколения. Он содержит сотни тысяч ФЭУ (по числу пикселей, формирующих изображения объектов), каждый из которых представляет собой металлизированный микроканал шириной ~ 10 мкм. По этому каналу так же зигзагообразно, как свет в оптоволокне и как электроны в ФЭУ, движутся электроны, размножаясь при каждом соударении со стенками канала вследствие вторичной эмиссии. Поскольку траектория электронов пренебрежимо мало отличается от прямолинейной (лишь в пределах ширины канала), то пакет таких каналов, расположенный между фотокатодом и экраном (рис. 10.8, б), избавляет от необходимости фокусировки фотоэлектронов (сравните с рис. 9.4). Каждый канал осуществляет не только размножение электронов, но и перенос их в требуемую точку, что обеспечивает четкость изображения.

При вторичной ионно-электронной эмиссии первичными частицами - носителями энергии являются ионы. В газоразрядных приборах они обеспечивают воспроизводство электронов из катода, которые затем размножаются путем ионизации молекул газа (см. параграф 5.9).

Существует и весьма экзотичный вид эмиссии, происхождение которого объясняется принципом неопределенности Гейзенберга. Если у поверхности металла есть электрическое поле, ускоряющее электроны, то на потенциальный уступ 1 накладывается прямая еЕх (2 на рис. 10.6), и уступ превращается в барьер 3. Если полная энергия электрона равна W, т.е. на АW меньше высоты барьера, то по классическим представлениям «взять» его, т.е. выйти наружу, он не может. Однако по квантовым представлениям электрон - это еще и волна, которая не только отражается от оптически более плотной среды, но и преломляется. При этом наличие функции у внутри барьера означает конечную вероятность обнаружить там электрон. На «классический» взгляд, это невозможно, так как полная энергия электрона W, а ее составляющая - потенциальная энергия - равна в этой области W + AVK, т.е. часть оказывается больше целого! В то же время существует некоторая неопределенность AVK энергии, которая зависит от времени At пребывания электрона внутри барьера: AWAt >h. С уменьшением At: неопределенность AW может достичь требуемой величины, и решение уравнения Шредингера дает конечные значения | р | 2 с внешней стороны барьера, т.е. существует вероятность того, что электрон выйдет наружу, не перепрыгивая через барьер! Она тем выше, чем меньше AW п At.

Эти выводы подтверждаются па практике наличием туннельного, или подбарьерного, эффекта. Он даже находит применение, обеспечивая эмиссию электронов из металла в полях напряженностью ~10 6 -10 7 В/см. Поскольку такая эмиссия происходит без нагревания, облучения или бомбардировки частицами, ее называют автоэлектронной. Обычно она происходит со всевозможных остриев, выступов и т.и., где напряженность ноля резко возрастает. Она может привести и к электрическому пробою вакуумного промежутка.

В 1986 г. Нобелевской премией по физике отмечено основанное на туннельном эффекте изобретение сканирующего электронного микроскопа. Ее лауреаты - немецкие физики Э. Руска и Г. Бинниг и швейцарский физик Г. Рорер. В этом приборе тонкая игла сканирует вдоль поверхности на малом от нее расстоянии. Возникающий при этом туннельный ток несет информацию об энергетических состояниях электронов. Таким образом удается получить изображение поверхности с атомной точностью, что особенно важно в микроэлектронике.

Туннельный эффект ответствен за рекомбинацию при ионно-электронной эмиссии (см. выше), за электризацию трением, при которой электроны из атомов одного материала туннелируют к атомам другого. Он определяет и обобществление электронов при ковалентной связи, ведущей к расщеплению энергетических уровней (см. рис. 10.5, а).

Ноттингема эффект –выделение теплоты на катоде при автоэлектронной эмиссии и поглощение теплоты при термоавтоэлектронной эмиссии, обусловленной разностью между средней энергией электронов, подходящих к поверхности катода и покидающих его. При низкой температуре (при автоэлектронной эмиссии) распределение электронов по энергиям практически не отличается от распределения Ферми при абсолютном нуле. Поэтому сквозь потенциальный барьер в вакуум уходят электроны, энергия которых несколько ниже уровня Ферми. При этом происходит нагревание эмиттера за счет энергии электронов, приходящих из электрической цепи на освобождающиеся уровни. В случае термоавтоэлектронной эмиссии (при высокой температуре) электроны уходят с уровней, лежащих выше уровня Ферми. Заполнение этих уровней электронами, приходящими из цепи, приводит к охлаждению эмиттера. Открыт У. Б. Ноттингемом в 1941 г. .

Эффект Малтера – эмиссия электронов в вакуум из тонкого диэлектрического слоя на проводящей подложке при наличии сильного электрического поля в слое. Открыт американским радиоинженером Л. Малтером в 1936 г. в слое А1 2 О 3 + Cs 2 O на А1. эмиссионный ток быстро растет с ростом анодного напряжения. Эффект Малтера обусловлен наличием сильного электрического поля в слое, что приводит к автоэлектронной эмиссии из подложки в слой .

При контакте тел с вакуумом или газами наблюдается электронная эмиссия – выпускание электронов телами под влиянием внешних воздействий: нагревания (теплоэлектронная эмиссия ) потока фотонов (фотоэмиссия ), потока электронов (вторичная эмиссия ), потока ионов, сильного электрического поля (автоэлектронная или холодная эмиссия ), механических или других "портящих структуру" воздействий (автоэлектронная эмиссия ).

Во всех видах эмиссий, кроме автоэлектронной, роль внешних воздействий сводится к увеличению энергии части электронов или отдельных электронов тела до значения, позволяющего им преодолеть потенциальный порог на границе тела с последующим выходом и вакуум или другую среду.

Эффект Малтера применяется:

Способ контроля глубины нарушенного поверхностного слоя полупроводниковых пластин, отличающихся тем, что с целью обеспечения возможности автоматизации и упрощения процесса контроля, пластину нагревают до температуры,соответствующей максимуму экзоэлектронной эмиссии , которую контролируют одним из известных способов, а по положению пика эмиссии определяют глубину нарушенного слоя;

Электронная турбина, содержащая помещенные в вакуумный баллон катод и анод и размещенный между ними ротор с лопастями, отличающийся тем, что с целью увеличения крутящегося момента на валу турбины ее ротор выполнен в виде набора соосных цилиндров с лопастями, между цилиндрами роторов установлены неподвижные направляющие лопатки имеют покрытие, обеспечивающее вторичную электронную эмиссию, например, сурьмяно-цезиевое. В случае автоэлектронной эмиссии внешнее электрическое поле превращают потенциальный порог на границе тела в барьер конечной ширины и уменьшает его высоту относительно высоты первоначального порога, вследствие чего становиться возможным квантовомеханическое тунелирование электронов сквозь барьер. При этом эмиссия происходит без затраты энергии электрическим полем;

Способ измерения объемной концентрации углеводородов в вакуумных системах путем термического разложения углеводородов на нагретом острийном автокатоде и регистрации времени накопления пиролетического углерода до одной из эталонных концентраций, отличающихся тем, что с целью повышения точности измерения время накопления углерода регистрируют по изменению значения автоэлектронного тока. Наличие на поверхности металла тонких диэлектрических пленок в сильных полях не мешает походу электронов через потенциальный барьер. Это явление называется эффектом Молтера ;

Электронно-лучевая запоминающая трубка с экранными сетками, отличающаяся тем, что с целью хранения записи неограниченно долгое время одна из экранных сеток, служащая потенциалоносителем, изготовлена из металлов, излучающих вторично-электронную эмиссию, покрытых пленкой диаэлектрика и обладающих эффектом.

Туннелирование электронов по потенциальным барьерам широко используется в специальных полупроводниковых приборах – туннельных диодах . На высоту туннельного барьера можно влиять не только электрическим полем, но и другими воздействиями.

Так же это используется в устройстве позволяющем обнаруживать магнитные домены с внутренним диаметром не более 1 мк, основано на определении изменения уровня Ферми исследуемого электрода по изменению высоты туннельного барьера и по его воздействию на величину сопротивления, туннельного перехода. Устройство применимо в магнитных долговременных и оперативных запоминающих устройствах.

А так же в устройстве для измерения контактного давления ленты на магнитную головку, содержащее упругие элементы и датчики, отличающиеся тем, что с целью осуществления одновременно интегрального и дискретного измерения указанного давления, устройство измерения выполнено в виде полуцилиндра, состоящего из упругих элементов, образующих на корпусе магнитной головки, при этом другой край полуцилиндра выполнен свободным, а под каждой полосой гребенки установлен датчик, например, с туннельным эффектом.

Туннельный эффект – преодоление микрочастицей потенциального барьера в случае, когда ее полная энергия меньше высоты барьера. Вероятность прохождения сквозь барьер – главных фактор, определяющий физические характеристики туннельного эффекта. Эта вероятность тем больше, чем меньше масса частицы, чем уже потенциальный барьер и чем меньше энергии недостает частице, чтобы достичь высоты барьера. В случае одномерного потенциального барьера характеристикой служит коэффициент прозрачности барьера, равный отношению потока прошедших сквозь него частиц к подающему на барьер потоку. Аналог туннельного эффекта в волновой оптике: проникновение световой волны внутрь отражающего покрытия в условиях, когда с точки зрения геометрической оптики происходит полное внутреннее отражение .

Применение: в радиоэлементах, основанных на туннельном эффекте – туннельных диодах.

Термоэлектронная Эммисия – испускание электронов нагретыми телами в вакууме или других средах. Выйти из тела могут только те электроны, энергия которые больше энергии, покоящегося электрона вне тела. Число таких электронов при Т-300 К очень мало и экспоненциально возрастает с температурой. Поэтому ток термоэлектронной эмиссии заметен только для нагретых тел. При отсутствии "отсасывающего" электрического поля вылетевшие электроны образуют вблизи поверхности эмиттера отрицательный пространственный заряд, ограничивающий ток термоэлектронной эмиссии.

Термоэлектронная эмиссия лежит в основе работы термоэлектрических катодов, применяющихся во многих электровакуумных и газоразрядных приборах.

Термоэлектронный преобразователь энергии – устройство преобразования тепловой энергии в электрическую на основе вышеописанного явления. Его действие основано на следующем процессе: с катода (поверхность горячего металла с большой работай выхода) "испаряются" электроны, которые пролетев межэлектродный промежуток, "конденсируются" на аноде (холодный метал); во внешней цепи течет ток КПД его превышает 20 % .

Ионно-электронная эмиссия – испускание электронов поверхностью твердого тела в вакуум при бомбардировке поверхности ионами; Коэффициент ионно-электронной эмиссии у равен отношению числа эмитированных электронов n i к числу падающих на поверхность ионов n j . Для медленных ионов у практически не зависит от энергии и массы mj, но зависит от их заряда (для однозарядных ионов у ≈ 0,2, для многозарядных у может превышать единицу).

Ионно-электронная эмиссия зависит также от энергии ионизации и возбуждения ионов от работы выхода вещества мишени. Когда скорость ионов достигает 6-7-10 6 см/с, характер ее резко изменяется.

Вначале у растет пропорционально ej, затем как (si)" 2 , при Vj = 10 8 - 10 9 см/с достигается максимум, затем идет спад.

Если к поверхности твердого тела подходит медленный ион, то электрон твердого тела может перейти к иону и нейтрализовать его. Такой переход сопровождается выделением энергии и часть электронов, получивших ее, может покинуть тело. При бомбардировке быстрыми ионами происходит интенсивный электрообмен, при котором электрон вылетает в вакуум .

ЭЛЕКТРОННАЯ ЭМИССИЯ – испускание электронов поверхностью твердого тела или жидкости. Чтобы электрон покинул конденсированную среду в вакууме или газе, должна быть затрачена энергия, которую называют работой выхода. Зависимость потенциальной энергии электрона от координаты на границе эмиттера и вакуума (или иной среды) называют потенциальным барьером. Его и должен преодолеть электрон, выходя из эмиттера.

Поддерживать эмиссию можно при выполнении двух условий. Первое – подвод к электронам энергии, обеспечивающей преодоление потенциального барьера, либо создание такого сильного внешнего поля, что потенциальный барьер делается тонким и становится существенен туннельный эффект (автоэлектронная эмиссия), квантовое проникновение электронов сквозь потенциальный барьер, т.е. эмиссия электронов, имеющих энергию меньше работы выхода. Передача энергии бомбардирующими тело фотонами приводит к фотоэмиссии, бомбардировка электронами вызывает вторичную электронную эмиссию, ионами – ион-электронную эмиссию. Эмиссия может быть вызвана внутренними полями – эмиссия горячих электронов. Все эти механизмы могут действовать и одновременно (например – термоавтоэмиссия, фотоавтоэмиссия).

Второе условие – создание внешнего электрического поля, обеспечивающего увод от тела испускаемых электронов, для этого, в частности, нужно к эмиттеру подвести электроны, чтобы он не заряжался. Если внешнее поле, обеспечивающее увод эмитированных электронов, недостаточно для автоэлектронной эмиссии, но достаточно для понижения потенциального барьера, становится заметен эффект Шоттки – зависимость эмиссии от внешнего поля. В случае, когда эмитирующая поверхность неоднородна и на ней есть «пятна» с различной работой выхода, над ее поверхностью возникает электрическое «поле пятен». Это поле тормозит электроны, вылетающие из участков катода с меньшей, чем у соседних, работой выхода. Внешнее электрическое поле складывается с полем пятен и, возрастая, устраняет тормозящее действие пятен. Вследствие этого эмиссионный ток из неоднородного эмиттера растет при увеличении поля быстрее, чем в случае однородного эмиттера (аномальный эффект Шоттки).

Термоэлектронная эмиссия . В середине 19 в. было известно, что вблизи нагретых твердых тел воздух становится проводником электричества, однако причина этого явления оставалась неясной. В результате проведенных опытов Ю.Эльстер и Г.Гейтель установили, что при пониженном давлении окружающего воздуха раскаленная добела поверхность металла приобретает положительный заряд. Протекание тока в вакууме между накаленным электродом и положительно заряженным электродом было открыто Т.Эдисоном (1884), объяснено испусканием электронов (отрицательно заряженных частиц) Дж.Томсоном (1887), теорию термоэлектронной эмиссии разработал О.Ричардсон (1902, иногда ему приписывается открытие и самого эффекта). Односторонняя проводимость была обнаружена Дж.Флемингом (1904, иногда это приписывается Эдисону), хотя его диод был не вполне вакуумным, а с частичной компенсацией пространственного заряда. Ток термоэлектронной эмиссии определяется температурой катода, (т.е. энергией электронов) и работой выхода. Максимальный ток эмиссии определяется отношением работы выхода к температуре, он называется током насыщения. Температура катода ограничивается, в свою очередь, испарением материала катода (т.е. сроком службы).

Фотоэлектронная эмиссия – испускание электронов твердыми телами и жидкостями под действием электромагнитного излучения (фотонов), при этом количество испускаемых электронов пропорционально интенсивности излучения. Для каждого вещества существует порог – минимальная частота (максимальная длина волны) излучения, ниже которой эмиссия не возникает, максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой излучения и не зависит от его интенсивности. Фотоэмиссия чувствительна к работе выхода поверхности. Увеличения квантового выхода и сдвига порога фотоэмиссии достигают покрытием поверхности металла моноатомным слоем электроположительных атомов Cs (цезия) или Rb (рубидия), снижающих работу выхода для большинства металлов до 1,4–1,7 эв. Фотоэмиссия была открыта Густавом Герцем (1887), обнаружившим, что освещение ультрафиолетовым светом электродов искрового промежутка, находящегося под напряжением, облегчает пробой. Систематические исследования провели В.Гальвакс, А.Риги, А.Г.Столетов (1885) и показали, что в опыте Герца дело сводится к освобождению зарядов под действием света. То, что это именно электроны, lоказали Ф.Ленард и Дж.Томсон (1898).

Фотоэмиссия из полупроводников и диэлектриков определяется сильным поглощением электромагнитного излучения.

Автоэлектронная эмиссия (полевая эмиссия, электростатическая эмиссия, туннельная эмиссия) – испускание электронов проводящими твердыми и жидкими телами под действием внешнего электрического поля высокой напряженности, ее открыл Р.Вуд (1897) при исследовании вакуумного разряда. Автоэлектронная эмиссия объясняется туннельным эффектом и происходит без затрат энергии на возбуждение электронов, необходимых для электронной эмиссии иных видов. При автоэлектронной эмиссии электроны преодолевают потенциальный барьер, не проходя над ним за счет кинетической энергии теплового движения (как при термоэлектронной эмиссии), а путем туннельного просачивания сквозь барьер, сниженный и суженный электрическим полем.

Автоэмиссия существенно зависит от поля и работы выхода и слабо зависит от температуры. Отбор тока при низких температуpax приводит к нагреванию эмиттера, т.к. уходящие электроны уносят энергию, в среднем меньшую, чем энергия Ферми, с возрастанием температуры нагрев сменяется охлаждением – эффект меняет знак, проходя через «температуру инверсии», соответствующую симметричному относительно уровня Ферми распределению вышедших электронов по полным энергиям. Особенности автоэлектронной эмиссии из полупроводников связаны с проникновением электрического поля в эмиттер, меньшей концентрацией электронов и наличием поверхностных состояний. Максимальные плотности тока, которые могут быть получены в режиме автоэмиссии, ограничены джоулевым разогревом эмиттера протекающим через него током и разрушением эмиттера электрическим полем. В режиме автоэмиссии получают токи порядка 10 7 А/см 2 (на поверхности эмиттера) в стационарном и 10 9 А/см 2 в импульсном режимах. При попытке в стационарном режиме получить больший ток эмиттер разрушается. В импульсном режиме при попытке увеличить ток эмиттер начинает работать в ином режиме, так называемом «режиме взрывной эмиссии».

Сильная зависимость автоэмиссии от работы выхода влечет за собой нестабильность работы автокатода. Работа выхода поверхности зависит как от процессов, происходящих на поверхности в высоком вакууме, так и от влияния недостаточно высокого вакуума: диффузии, миграции, перестройки поверхности, сорбции остаточных газов. Чаще всего применяемый материал – вольфрам – хорошо сорбирует газы. Это вызвало многочисленные попытки применения металлов, не так хорошо сорбирующих газы, например, рения или еще более пассивного углерода, имеющего, однако, большое сопротивление. Предлагалось покрывать металл пленкой углерода. Уменьшать сорбцию газа на поверхности можно постоянным небольшим нагревом автоэмиттера или периодическим сильным импульсным нагревом для очистки поверхности. В целом, для стабильной работы современных автокатодов требуется вакуум, на один-три порядка более высокий, чем тот, который нужен для термокатодов.

Второй после работы выхода параметр, от которого сильно зависит автоэмиссия – напряженность электрического поля на эмиттере, которая, в свою очередь, зависит от среднего поля в приборе (отношение внешнего напряжения к величине зазора) и геометрии эмиттера, ибо для увеличения поля на эмиттере применяются, как правило, «острые» формы – выступы, нити, острия, лезвия, торцы трубок или их системы – пучки нитей, пакеты лезвий, углеродные нанотрубки и т.п. Для отбора относительно больших токов используют многоострийные системы, многоэмиттерные системы на краях пленок и фольг и т.п. То, что в качестве эмиттеров используются острия, имеет следствием непараллельность траекторий электронов, причем компонента скорости, лежащая параллельно плоскости эмитирующего электрода, может быть сравнима с продольной компонентой. Пучок получается расширяющимся, веерным, а если катод многоострийный или многолезвийный, то не ламинарным.

Вторичная электронная эмиссия (открытая Л.Остин и Г.Штарке, 1902) – испускание электронов поверхностью твердого тела при ее бомбардировке электронами. Электроны, бомбардирующие тело (называемые первичными), частично отражаются телом без потери энергии (упруго отраженные электроны), остальные – с потерями энергии (неупругое отражение). Если энергия и импульс получивших энергию электронов оказываются достаточными для преодоления потенциального барьера на поверхности тела, то электроны покидают поверхность тела (вторичные электроны). В тонких пленках вторичная электронная эмиссия наблюдается не только с той поверхности, которая подвергается бомбардировке (эмиссия на отражение), но и с противоположной поверхности (эмиссия на прострел). Количественно вторичная электронная эмиссия характеризуется «коэффициентом вторичной эмиссии» (КВЭ) – отношением тока вторичных электронов к току первичных, коэффициентом упругого и неупругого отражения электронов, а также коэффициентом эмиссии вторичных электронов (отношения токов соответствующих электронов к току первичных). Все коэффициенты зависят как от энергии первичных электронов, так и от угла их падения, химического состава и рельефа поверхности образца. В металлах, где плотность электронов проводимости велика, вероятность того, что образовавшиеся вторичные электроны могут выйти наружу, мала. В диэлектриках с малой концентрацией электронов вероятность выхода вторичных электронов больше. Вероятность выхода электронов зависит от высоты потенциального барьера на поверхности.

В результате у ряда неметаллических веществ (окислы щелочноземельных металлов, щелочногалоидные соединения) КВЭ > 1, у специально изготовленных эффективных эмиттеров (см. ниже ) КВЭ >> 1, у металлов и полупроводников обычно КВЭ < 2. С увеличением энергии первичных электронов КВЭ сначала возрастает с ростом количества возбужденных электронов, а потом начинает убывать, поскольку существенная часть их рождается на большей глубине и число электронов, выходящих наружу, уменьшается. Аналогично объясняется зависимость КВЭ от угла падения первичных электронов. Монокристаллы анизотропны по отношению к движению электронов, рассеяние, ионизация и дифракция зависят от направления движения, поэтому для них зависимость КВЭ от угла падения первичных электронов становится сложной.

Создание в диэлектрике сильного электрического поля (10 5 –10 6 в/см) приводит к увеличению КВЭ до 50–100 (вторичная эмиссия, усиленная полем). В этой ситуации КВЭ начинает зависеть от пористости слоя – наличие пор увеличивает эффективную поверхность эмиттера, а поле вытягивает из них вторичные электроны, которые, ударяясь о стенки пор, могут вызвать, в свою очередь, эмиссию с КВЭ > 1 и возникновение электронных лавин. Это может приводить к самоподдерживающейся холодной эмиссии, продолжающейся (при подводе заряда к эмиттеру) и после прекращения бомбардировки электронами.

Основными областями применения вторично-электронных катодов являются вторично-электронные (ВЭУ) и фотоэлектронные (ФЭУ) умножители, ЭВП М-типа (в которых электроны двигаются во взаимно-перпендикулярных электрическом и магнитном полях) и приемно-усилительные лампы со вторичной эмиссией. Для всех применений наиболее существенными вторично-эмиссионными параметрами являются: коэффициент вторичной эмиссии КВЭ в области малых энергий первичных электронов, обычно характеризуемый энергией, при которой КВЭ = 1, максимальной величиной КВЭ и энергией первичных электронов, когда КВЭ достигает максимума.

Ион-электронная эмиссия – испускание электронов под действием ионов. Известны два механизма ион-электронной эмиссии: потенциальный – вырывание электронов из тела полем подлетающего иона и кинетический – выбивание электронов из тела за счет кинетической энергии иона. Коэффициент потенциальной эмиссии увеличивается с увеличением энергии ионизации иона и уменьшением работы выхода мишени, и для пар Ne+/W (неон/вольфрам), He+/W (гелий/вольфрам), Ar+/W (аргон/вольфрам) составляет, например, 0,24, 0,24 и 0,1 соответственно, и слабо зависит от энергии ионов. Для Мо (молибденовой) мишени и тех же ионов эти коэффициенты примерно на 10% больше.

При бомбардировке многозарядными ионами ион-электронная эмиссия возрастает – для 2-х, 3-х, 4-х зарядных ионов она больше, чем для однозарядных, примерно в 4, 10, 20 раз соответственно. Потенциальная ион-электронная эмиссия сильно зависит от состояния поверхности, поскольку она определяется работой выхода. Это влечет относительно большой разброс экспериментальных данных.

Кинетической ионно-электронной эмиссии практически нет при энергиях менее 1 кэВ, потом возрастает линейно, потом медленнее, проходит через максимум и убывает, к энергиям в единицы МэВ коэффициент падает примерно до единицы. Ион-электронная эмиссия играет существенную роль в работе ряда электронных газоразрядных приборов, в которых источником электронов является катод, бомбардируемый ионами. В некоторых случаях процесс ионно-электронной эмиссии создает основное количество электронов в объеме прибора.

Эмиссия горячих электронов – это эмиссия за счет «нагрева» электронов, т.е. передачи электронам энергии или воздействии электрическим полем. Если термоэлектронная эмиссия определяется величиной потенциального барьера на выходе из твердого тела и энергией преодолевающих его электронов и для ее получения твердое тело нагревают (простейший способ нагреть электроны), то можно попытаться нагреть электроны и не прибегая к нагреву тела. Поскольку электроны – заряженные частицы, то наиболее простой способ их «нагрева» – воздействие на них электрическим полем. Создание катода с эмиссией горячих электронов – это, прежде всего, создание в проводнике или полупроводнике большого электрического поля. Для этого проводник и полупроводник надо «испортить», уменьшив их проводимость, т.к. иначе через них в этом большом поле пойдет большой ток и катод выйдет из строя.

Один из способов «испортить» металл – это разделить его на отдельные частички. Если зазоры между ними будут невелики, порядка 10 ммк, электроны будут туннелировать (преодолевать потенциальный барьер, сниженный и суженный большим полем) из одной частички в другую, и так будет осуществляться проводимость. Но ток по сравнению с током через монолитный металл сильно уменьшится, т.е. возрастет сопротивление. Это дает возможность увеличить поле. Тогда энергия электронов увеличится настолько, что они окажутся способными эмиттироваться в вакуум. Катоды с эмиссией горячих электронов выполняются в виде диэлектрической подложки, на которую напылена тонкая пленка металла или полупроводника. При малых толщинах пленки обычно получаются «островковые», т.е. состоящие из отдельных маленьких частичек, разделенных зазорами. Для облегчения выхода электронов катод часто покрывают тонкими (примерно моноатомными) пленками веществ, понижающих работу выхода Cs (цезия), BaO. В качестве вещества основной пленки обычно используют Au (золото), SnO 2 , BaO. Лучшие полученные параметры таковы – токоотбор 1 А/см 2 в течение длительного времени и 10 А/см 2 – кратковременно. При этом эффективность (отношение тока эмиссии к току, протекающему через пленку) может приближаться к 100%.

Леонид Ашкинази

В узлах кристаллической решетки металлов находятся положительные ионы, а между ними свободно движутся электроны. Они как бы плавают по всему объему проводника, так как силы притяжения к положительным ионам решетки, действующие на свободные электроны, находящиеся внутри металла, в среднем взаимно уравновешиваются. Действие сил притяжения со стороны положительных ионов на электроны мешает последним выйти за пределы поверхности металла.

Лишь наиболее быстрые электроны могут преодолеть это притяжение и вылететь из металла. Однако совсем покинуть металл электрон не может, так как притягивается положительным поверхностным ионом и тем зарядом, который возник в металле в связи с потерей электрона. Равнодействующая этих сил притяжения не равна нулю, а направлена внутрь металла перпендикулярно его поверхности (рис. 1).

Через некоторое время электрон под действием этих сил может возвратиться в металл. Среди электронов, находящихся вблизи поверхности металла, найдется большое число таких, которые временно будут покидать металл, а затем возвращаться обратно. Этот процесс напоминает испарение жидкости. В конце концов устанавливается динамическое равновесие между покидающими и возвращающимися электронами. Таким образом, на границе металла с вакуумом возникает двойной слой электрических зарядов, поле которого подобно полю плоского конденсатора. Электрическое поле этого слоя можно считать однородным (рис. 2). Разность потенциалов в этом слое называется контактной разностью потенциалов между металлом и вакуумом.

Этот двойной электрический слой не создает поля во внешнем пространстве, но препятствует выходу электронов из металла.

Как показывают расчеты и специально поставленные опыты, толщина этого слоя мала и равна примерно 10 -10 м.

Таким образом, чтобы покинуть металл и уйти в окружающую среду, электрон должен совершить работу A в против сил притяжения со стороны положительного заряда металла и против сил отталкивания от отрицательно заряженного электронного облака. Она приблизительно равна A в = e, где e - заряд электрона. Для этого электрон должен обладать достаточной кинетической энергией.

Минимальную работу A в, которую должен совершить электрон за счет своей кинетической энергии для того, чтобы выйти из металла и не вернуться в него, называют работой выхода .

Работа выхода зависит только от рода металла и его чистоты. Работу выхода принято измерять в электронвольтах (эВ).

Для чистых металлов A в составляет несколько электронвольт. Так, например, для цезия ее значение равно 1,81 эВ, для платины 6,27 эВ.

Выход свободных электронов из металла называется эмиссией электронов . При нормальных внешних условиях электронная эмиссия выражена слабо, так как средняя кинетическая энергия хаотического теплового движения большинства свободных электронов в металлах гораздо меньше работы выхода. Для повышения интенсивности эмиссии следует увеличить кинетическую энергию свободных электронов до значений, равных или больших значения работы выхода. Этого можно достигнуть различными способами. Во-первых, созданием электрического поля очень большой напряженности (E ~ 10 6 В/см), способного вырвать электроны из металла, - холодная эмиссия . Такая эмиссия используется в электронных микропроекторах. Во-вторых, бомбардировкой металла электронами, предварительно разогнанными электрическим полем до очень большой скорости, - вторичная электронная эмиссия . В-третьих, интенсивным освещением поверхности металла - фотоэмиссия . На явлении фотоэмиссии основан внешний фотоэффект и устройство вакуумного фотоэлемента. В-четвертых, нагревание металла - термоэлектронная эмиссия . Электроны, испускаемые нагретым телом, называются термоэлектронами , а само это тело - эмиттером .

Для того чтобы электрон мог преодолеть силы, притягивающие его к ионной решетке металла, т. е. пройти через потенциальный барьер в поверхностном слое и удалиться из металла, необходимо затратить некоторую энергию. Максимальная кинетическая энергия, которую может иметь электрон внутри металла, недостаточна для этого. Поэтому для преодоления потенциального барьера к электрону необходимо приложить внешние силы или же каким-нибудь образом

сообщить ему дополнительное количество энергии. Работа, которая должна быть совершена на освобождение электрона из металла, называется работой выхода и является одной из важных характеристик металла; она связана с электрическим полем в поверхностном слое металла:

где интегрирование (вдоль любой траектории) должно производиться от какой-нибудь точки, взятой внутри металла, до точек, расположенных достаточно далеко от его поверхности. Для чистой поверхности вольфрама эта работа равна 4,5 эВ. У других (чистых) металлов она колеблется в пределах 1,8-5,3 эВ. Если поверхностный слой металла содержит какие-нибудь примеси, то работа выхода уменьшается; например, покрытие поверхности вольфрама тонким слоем цезия уменьшает работу выхода до 1,36 эВ.

В равновесном состоянии металла некоторое количество электронов, участвующих в беспорядочном тепловом движении, ежесекундно выходит за пределы поверхности металла, но затем, под действием указанных выше сил, вновь втягиваются внутрь металла. Эти электроны образуют вблизи поверхности металла так называемое электронное облако, толщина и плотность которого (число электронов в единице объема) увеличиваются с повышением температуры.

Эмиссию («испарение») электронов с поверхности металла можно получить следующими способами:

1) нагреть металл до очень высокой температуры и тем увеличить число электронов, приобретающих при тепловом движении большие скорости. Такие электроны, обладая большой кинетической энергией, могут преодолеть силы, препятствующие их освобождению из металла (термоэлектронная эмиссия);

2) воспользоваться сильным электрическим полем, которое «подхватывало» бы электроны из поверхности металла. Такая эмиссия электронов называется холодной, или автоэлектронной; она может быть вызвана и при низких температурах;

3) произвести облучение поверхности металла световыми, ультрафиолетовыми, рентгеновскими и другими лучами, энергия которых поглощается электронами. Электроны, вылетающие из металла, затрачивают часть полученной энергии на работу выхода, а остальную часть сохраняют в виде кинетической энергии. Такой способ эмиссии электронов называется фотоэлектрическим эффектом (фотоэлектронная эмиссия);

4) произвести бомбардировку поверхности металла электронами, ионами или другими частицами. Если эта бомбардировка производится электронами, то эмиссия обусловлена тем, что число вылетающих электронов больше, чем число бомбардирующих электронов (для чистых поверхностей - в 1,2 - 1,8 раза, а для поверхностей, содержащих примеси и покрытых тонким слоем окислов, - в десятки раз); такой способ вырывания называется вторичной электронной эмиссией.