Функции и строение нейрона.

С моим видением того как работает мозг и каковы возможные пути создания искусственного интеллекта. За прошедшее с тех пор время удалось существенно продвинуться вперед. Что-то получилось глубже понять, что-то удалось смоделировать на компьютере. Что приятно, появились единомышленники, активно участвующие в работе над проектом.

В настоящем цикле статей планируется рассказать о той концепции интеллекта над которой мы сейчас работаем и продемонстрировать некоторые решения, являющиеся принципиально новыми в сфере моделирования работы мозга. Но чтобы повествование было понятным и последовательным оно будет содержать не только описание новых идей, но и рассказ о работе мозга вообще. Какие-то вещи, особенно в начале, возможно покажутся простыми и общеизвестными, но я бы советовал не пропускать их, так как они во многом определяют общую доказательность повествования.

Общее представление о мозге

Нервные клетки, они же нейроны, вместе со своими волокнами, передающими сигналы, образуют нервную систему. У позвоночных основная часть нейронов сосредоточена в полости черепа и позвоночном канале. Это называется центральной нервной системой. Соответственно, выделяют головной и спинной мозг как ее составляющие.

Спинной мозг собирает сигналы от большинства рецепторов тела и передает их в головной мозг. Через структуры таламуса они распределяются и проецируются на кору больших полушарий головного мозга.

Кроме больших полушарий обработкой информации занимается еще и мозжечок, который, по сути, является маленьким самостоятельным мозгом. Мозжечок обеспечивает точную моторику и координацию всех движений.

Зрение, слух и обоняние обеспечивают мозг потоком информации о внешнем мире. Каждая из составляющих этого потока, пройдя по своему тракту, также проецируется на кору. Кора – это слой серого вещества толщиной от 1.3 до 4.5 мм, составляющий наружную поверхность мозга. За счет извилин, образованных складками, кора упакована так, что занимает в три раза меньшую площадь, чем в расправленном виде. Общая площадь коры одного полушария – приблизительно 7000 кв.см.

В итоге все сигналы проецируются на кору. Проекция осуществляется пучками нервных волокон, которые распределяются по ограниченным областям коры. Участок, на который проецируется либо внешняя информация, либо информация с других участков мозга образует зону коры. В зависимости от того, какие сигналы на такую зону поступают, она имеет свою специализацию. Различают моторную зону коры, сенсорную зону, зоны Брока, Вернике, зрительные зоны, затылочную долю, всего около сотни различных зон.




В вертикальном направлении кору принято делить на шесть слоев. Эти слои не имеют четких границ и определяются по преобладанию того или иного типа клеток. В различных зонах коры эти слои могут быть выражены по-разному, сильнее или слабее. Но, в общем и целом, можно говорить о том, что кора достаточно универсальна, и предполагать, что функционирование разных ее зон подчиняется одним и тем же принципам.


Слои коры

По афферентным волокнам сигналы поступают в кору. Они попадают на III, IV уровень коры, где распределяются по близлежащим к тому месту, куда попало афферентное волокно, нейронам. Большая часть нейронов имеет аксонные связи в пределах своего участка коры. Но некоторые нейроны имеют аксоны, выходящие за ее пределы. По этим эфферентным волокнам сигналы идут либо за пределы мозга, например, к исполнительным органам, или проецируются на другие участки коры своего или другого полушария. В зависимости от направления передачи сигналов эфферентные волокна принято делить на:

  • ассоциативные волокна, которые связывают отдельные участки коры одного полушария;
  • комиссуральные волокна, которые соединяют кору двух полушарий;
  • проекционные волокна, которые соединяют кору с ядрами низших отделов центральной нервной системы.
Если взять направление, перпендикулярное поверхности коры, то замечено, что нейроны, располагающиеся вдоль этого направления, реагируют на схожие стимулы. Такие вертикально расположенные группы нейронов, принято называть кортикальными колонками.

Можно представить себе кору головного мозга как большое полотно, раскроенное на отдельные зоны. Картина активности нейронов каждой из зон кодирует определенную информацию. Пучки нервных волокон, образованные аксонами, выходящими за пределы своей зоны коры, формируют систему проекционных связей. На каждую из зон проецируется определенная информация. Причем на одну зону может поступать одновременно несколько информационных потоков, которые могут приходить как с зон своего, так и противоположного полушария. Каждый поток информации похож на своеобразную картинку, нарисованную активностью аксонов нервного пучка. Функционирование отдельной зоны коры – это получение множества проекций, запоминание информации, ее переработка, формирование собственной картины активности и дальнейшая проекция информации, получившейся в результате работы этой зоны.

Существенный объем мозга – это белое вещество. Оно образовано аксонами нейронов, создающими те самые проекционные пути. На рисунке ниже белое вещество можно увидеть как светлое заполнение между корой и внутренними структурам мозга.


Распределение белого вещества на фронтальном срезе мозга

Используя диффузную спектральную МРТ, удалось отследить направление отдельных волокон и построить трехмерную модель связанности зон коры (проект Connectomics (Коннектом)).

Представление о структуре связей хорошо дают рисунки ниже (Van J. Wedeen, Douglas L. Rosene, Ruopeng Wang, Guangping Dai, Farzad Mortazavi, Patric Hagmann, Jon H. Kaas, Wen-Yih I. Tseng, 2012).


Вид со стороны левого полушария


Вид сзади


Вид справа

Кстати, на виде сзади отчетливо видна асимметрия проекционных путей левого и правого полушария. Эта асимметрия во многом и определяет различия в тех функциях, которые приобретают полушария по мере их обучения.

Нейрон

Основа мозга – нейрон. Естественно, что моделирование мозга с помощью нейронных сетей начинается с ответа на вопрос, каков принцип его работы.

В основе работы реального нейрона лежат химические процессы. В состоянии покоя между внутренней и внешней средой нейрона существует разность потенциалов – мембранный потенциал, составляющий около 75 милливольт. Он образуется за счет работы особых белковых молекул, работающих как натрий-калиевые насосы. Эти насосы за счет энергии нуклеотида АТФ гонят ионы калия внутрь, а ионы натрия - наружу клетки. Поскольку белок при этом действует как АТФ-аза, то есть фермент, гидролизующий АТФ, то он так и называется - «натрий-калиевая АТФ-аза». В результате нейрон превращается в заряженный конденсатор с отрицательным зарядом внутри и положительным снаружи.


Схема нейрона (Mariana Ruiz Villarreal)

Поверхность нейрона покрыта ветвящимися отростками – дендритами. К дендритам примыкают аксонные окончания других нейронов. Места их соединений называются синапсами. Посредством синаптического взаимодействия нейрон способен реагировать на поступающие сигналы и при определенных обстоятельствах генерировать собственный импульс, называемый спайком.

Передача сигнала в синапсах происходит за счет веществ, называемых нейромедиаторами. Когда нервный импульс по аксону поступает в синапс, он высвобождает из специальных пузырьков молекулы нейромедиатора, характерные для этого синапса. На мембране нейрона, получающего сигнал, есть белковые молекулы – рецепторы. Рецепторы взаимодействуют с нейромедиаторами.


Химический синапс

Рецепторы, расположенные в синаптической щели, являются ионотропными. Это название подчеркивает тот факт, что они же являются ионными каналами, способными перемещать ионы. Нейромедиаторы так воздействуют на рецепторы, что их ионные каналы открываются. Соответственно, мембрана либо деполяризуется, либо гиперполяризуется – в зависимости от того, какие каналы затронуты и, соответственно, какого типа этот синапс. В возбуждающих синапсах открываются каналы, пропускающие катионы внутрь клетки, - мембрана деполяризуется. В тормозных синапсах открываются каналы, проводящие анионы, что приводит к гиперполяризации мембраны.

В определенных обстоятельствах синапсы могут менять свою чувствительность, что называется синаптической пластичностью. Это приводит к тому, что синапсы одного нейрона приобретают различную между собой восприимчивость к внешним сигналам.

Одновременно на синапсы нейрона поступает множество сигналов. Тормозящие синапсы тянут потенциал мембраны в сторону накопления заряда внутри клети. Активирующие синапсы, наоборот, стараются разрядить нейрон (рисунок ниже).


Возбуждение (A) и торможение (B) ганглиозной клетки сетчатки (Николлс Дж., Мартин Р., Валлас Б., Фукс П., 2003)

Когда суммарная активность превышает порог инициации, возникает разряд, называемый потенциалом действия или спайком. Спайк – это резкая деполяризация мембраны нейрона, которая и порождает электрический импульс. Весь процесс генерации импульса длится порядка 1 миллисекунды. При этом ни продолжительность, ни амплитуда импульса не зависят от того, насколько были сильны вызвавшие его причины (рисунок ниже).


Регистрация потенциала действия ганглиозной клетки (Николлс Дж., Мартин Р., Валлас Б., Фукс П., 2003)

После спайка ионные насосы обеспечивают обратный захват нейромедиатора и расчистку синаптической щели. В течение рефрактерного периода, наступающего после спайка, нейрон не способен порождать новые импульсы. Продолжительность этого периода определяет максимальную частоту генерации, на которую способен нейрон.

Спайки, которые возникают как следствие активности на синапсах, называют вызванными. Частота следования вызванных спайков кодирует то, насколько хорошо поступающий сигнал соответствует настройке чувствительности синапсов нейрона. Когда поступающие сигналы приходятся именно на чувствительные синапсы, активирующие нейрон, и этому не мешают сигналы, приходящие на тормозные синапсы, то реакция нейрона максимальна. Образ, который описывается такими сигналами, называют характерным для нейрона стимулом.

Конечно, представление о работе нейронов не стоит излишне упрощать. Информация между некоторыми нейронами может передаваться не только спайками, но и за счет каналов, соединяющих их внутриклеточное содержимое и передающих электрический потенциал напрямую. Такое распространение называется градуальным, а само соединение называется электрическим синапсом. Дендриты в зависимости от расстояния до тела нейрона делятся на проксимальные (близкие) и дистальные (удаленные). Дистальные дендриты могут образовывать секции, работающие как полуавтономные элементы. Помимо синаптических путей возбуждения есть внесинаптические механизмы, вызывающие метаботропные спайки. Кроме вызванной активности существует еще и спонтанная активность. И наконец, нейроны мозга окружены глиальными клетками, которые также оказывают существенное влияние на протекающие процессы.

Долгий путь эволюции создал множество механизмов, которые используются мозгом в своей работе. Некоторые из них могут быть поняты сами по себе, смысл других становится ясен только при рассмотрении достаточно сложных взаимодействий. Поэтому не стоит воспринимать сделанное выше описание нейрона как исчерпывающее. Чтобы перейти к более глубоким моделям, нам необходимо сначала разобраться с «базовыми» свойствами нейронов.

В 1952 году Аланом Ллойдом Ходжкином и Эндрю Хаксли были сделаны описания электрических механизмов, которые определяют генерацию и передачу нервного сигнала в гигантском аксоне кальмара (Hodgkin, 1952). Что было оценено Нобелевской премией в области физиологии и медицины в 1963 году. Модель Ходжкина – Хаксли описывает поведение нейрона системой обыкновенных дифференциальных уравнений. Эти уравнения соответствуют автоволновому процессу в активной среде. Они учитывают множество компонент, каждая из которых имеет свой биофизический аналог в реальной клетке (рисунок ниже). Ионные насосы соответствуют источнику тока I p . Внутренний липидный слой клеточной мембраны образует конденсатор с емкостью C m . Ионные каналы синаптических рецепторов обеспечивают электрическую проводимость g n , которая зависит от подаваемых сигналов, меняющихся со временем t, и общей величины мембранного потенциала V. Ток утечки мембранных пор создает проводник g L . Движение ионов по ионным каналам происходит под действием электрохимических градиентов, которым соответствуют источники напряжения с электродвижущей силой E n и E L .


Основные компоненты модели Ходжкина - Хаксли

Естественно, что при создании нейронных сетей возникает желание упростить модель нейрона, оставив в ней только самые существенные свойства. Наиболее известная и популярная упрощенная модель – это искусственный нейрон Маккалока - Питтса, разработанный в начале 1940-х годов (Маккалох Дж., Питтс У., 1956).


Формальный нейрон Маккалока - Питтса

На входы такого нейрона подаются сигналы. Эти сигналы взвешенно суммируются. Далее к этой линейной комбинации применяется некая нелинейная функция активации, например, сигмоидальная. Часто как сигмоидальную используют логистическую функцию:


Логистическая функция

В этом случае активность формального нейрона записывается как

В итоге такой нейрон превращается в пороговый сумматор. При достаточно крутой пороговой функции сигнал выхода нейрона – либо 0, либо 1. Взвешенная сумма входного сигнала и весов нейрона – это свертка двух образов: образа входного сигнала и образа, описываемого весами нейрона. Результат свертки тем выше, чем точнее соответствие этих образов. То есть нейрон, по сути, определяет, насколько подаваемый сигнал похож на образ, записанный на его синапсах. Когда значение свертки превышает определенный уровень и пороговая функция переключается в единицу, это можно интерпретировать как решительное заявление нейрона о том, что он узнал предъявляемый образ.

Реальные нейроны действительно неким образом похожи на нейроны Маккалока - Питтса. Амплитуды их спайков не зависит от того, какие сигналы на синапсах их вызвали. Спайк, либо есть, либо его нет. Но реальные нейроны реагируют на стимул не единичным импульсом, а импульсной последовательностью. При этом частота импульсов тем выше, чем точнее узнан характерный для нейрона образ. Это означает, что если мы построим нейронную сеть из таких пороговых сумматоров, то она при статичном входном сигнале хотя и даст какой-то выходной результат, но этот результат будет далек от воспроизведения того, как работают реальные нейроны. Для того чтобы приблизить нейронную сеть к биологическому прототипу, нам понадобится моделировать работу в динамике, учитывая временные параметры и воспроизводя частотные свойства сигналов.

Но можно пойти и другим путем. Например, можно выделить обобщенную характеристику активности нейрона, которая соответствует частоте его импульсов, то есть количеству спайков за определенный промежуток времени. Если перейти к такому описанию, то можно представить нейрон как простой линейный сумматор.


Линейный сумматор

Сигналы выхода и, соответственно, входа для таких нейронов уже не являются дихатомичными (0 или 1), а выражаются некой скалярной величиной. Функция активации тогда записывается как

Линейный сумматор не стоит воспринимать как что-то принципиально иное по сравнению с импульсным нейроном, просто он позволяет при моделировании или описании перейти к более длинным временным интервалам. И хотя импульсное описание более корректно, переход к линейному сумматору во многих случаях оправдан сильным упрощением модели. Более того, некоторые важные свойства, которые трудно разглядеть в импульсном нейроне, вполне очевидны для линейного сумматора.

Нервная система контролирует, координирует и регулирует согласованную работу всех систем органов, поддержание постоянства состава его внутренней среды (благодаря этому организм человека функционирует как единое целое). При участии нервной системы осуществляется связь организма с внешней средой.

Нервная ткань

Нервная система образована нервной тканью , которая состоит из нервных клеток - нейронов и мелких клеток спутников (глиальных клеток ), которых примерно в 10 раз больше, чем нейронов.

Нейроны обеспечивают основные функции нервной системы: передачу, переработку и хранение информации. Нервные импульсы имеют электрическую природу и распространяются по отросткам нейронов.

Клетки спутники выполняют питательную, опорную и защитную функции, способствуя росту и развитию нервных клеток.

Строение нейрона

Нейрон - основная структурная и функциональная единица нервной системы.

Структурно-функциональной единицей нервной системы является нервная клетка – нейрон . Его основными свойствами являются возбудимость и проводимость.

Нейрон состоит из тела и отростков .

Короткие, сильно ветвящиеся отростки - дендриты , по ним нервные импульсы поступают к телу нервной клетки. Дендритов может быть один или несколько.

Каждая нервная клетка имеет один длинный отросток - аксон , по которому импульсы направляются от тела клетки . Длина аксона может достигать нескольких десятков сантиметров. Объединяясь в пучки, аксоны образуют нервы .

Длинные отростки нервной клетки (аксоны) покрыты миелиновой оболочкой . Скопления таких отростков, покрытых миелином (жироподобным веществом белого цвета), в центральной нервной системе образуют белое вещество головного и спинного мозга.

Короткие отростки (дендриты) и тела нейронов не имеют миелиновой оболочки, поэтому они серого цвета. Их скопления образуют серое вещество мозга.

Нейроны соединяются друг с другом таким образом: аксон одного нейрона присоединяется к телу, дендритам или аксону другого нейрона. Место контакта одного нейрона с другим называется синапсом . На теле одного нейрона насчитывается 1200–1800 синапсов.

Синапс - пространство между соседними клетками, в котором осуществляется химическая передача нервного импульса от одного нейрона к другому.

Каждый синапс состоит из трёх отделов :

  1. мембраны, образованной нервным окончанием (пресинаптическая мембрана );
  2. мембраны тела клетки (постсинаптическая мембрана );
  3. синаптической щели между этими мембранами

В пресинаптической части синапса содержится биологически активное вещество (медиатор ), которое обеспечивает передачу нервного импульса с одного нейрона на другой. Под влиянием нервного импульса медиатор выходит в синаптическую щель, действует на постсинаптическую мембрану и вызывает возбуждение в теле клетки следующего нейрона. Так через синапс передается возбуждение от одного нейрона к другому.

Распространение возбуждения связано с таким свойством нервной ткани, как проводимость .

Типы нейронов

Нейроны различаются по форме

В зависимости от выполняемой функции выделяют следующие типы нейронов:

  • Нейроны, передающие сигналы от органов чувств в ЦНС (спинной и головной мозг), называют чувствительными . Тела таких нейронов располагаются вне ЦНС, в нервных узлах (ганглиях). Нервный узел представляет собой скопление тел нервных клеток за пределами центральной нервной системы.
  • Нейроны, передающие импульсы от спинного и головного мозга к мышцам и внутренним органам называют двигательными . Они обеспечивают передачу импульсов от ЦНС к рабочим органам.
  • Связь между чувствительными и двигательными нейронами осуществляется с помощью вставочных нейронов через синаптические контакты в спинном и головном мозге. Вставочные нейроны лежат в пределах ЦНС (т.е. тела и отростки этих нейронов не выходят за пределы мозга).

Скопление нейронов в центральной нервной системе называется ядром (ядра головного, спинного мозга).

Спинной и головной мозг связаны со всеми органами нервами .

Нервы - покрытые оболочкой структуры, состоящие из пучков нервных волокон, образованных в основном аксонами нейронов и клетками нейроглии.

Нервы обеспечивают связь центральной нервной системы с органами, сосудами и кожным покровом.

Основными функциями ЦНС являются:

  • объединение всех частей организма в единое целое и их регуляция;
  • управление состоянием и поведением организма в соответствии с условиями внешней среды и его потребностями.

У человека ведущим отделом ЦНС является кора больших полушарий. Она управляет наиболее сложными функциями в жизни человека – психическими процессами(сознание, мышление, память, речь и др.).

Основными методами изучения функций ЦНС являются методы удаления и раздражения, регистрации электрических явлений, метод условных рефлексов, компьютерной томографии, тепловидения, магнито-ядерного резонанса.

Основными функциями нейронов являются:

  • восприятие внешних раздражений – рецепторная функция,
  • переработка – интегративная функция
  • передача нервных влияний на другие нейроны или рабочие органы – эффекторная функция.

Тело нейрона называется сома, там происходят процессы переработки информации.

Отростки нейронов дендриты служат входами нейрона. Выходом нейрона является аксон, он передает сигнал дальше – другой нервной клетке или рабочему органу) мышце, железе).

Особенно высокой возбудимостью обладает начальная часть аксона и расширение в месте его выхода из тела клетки – аксонный холмик. Именно здесь возникает нервный импульс.

Нейроны подразделяются на три основные типа:

  • афферентные (чувствительные, или центростремительные) передают информацию от рецепторов в ЦНС. Тела этих нейронов расположены вне ЦНС – в спинномозговых узлах и в узлах черепных нервов. Афферентные нейроны имеют длинный отросток — дендрит, который контактирует на периферии с рецептором или сам образует рецептор, а также второй отросток – аксон – входящий через задние рога в спинной мозг.
  • Эфферентные нейроны(двигательные, центробежные) связаны с передачей нисходящих влияний от вышележащих этажей нервной системы к нижележащим или из ЦНС к рабочим органам. Для эфферентных нейронов характерны разветвленная сеть коротких отростков – дендритов и один длинный отросток – аксон.
  • Промежуточные (ассоциативные, вставочные, интернейроны) – это более мелкие клетки, осуществляющие связь между афферентныим и эфферентныим нейронами. Они передают нервные влияния горизонально и в вертикальном (выше и ниже) направлениях.

Взаимодействие нейронов между собой и с органами происходит через специальные образования — синапсы (контакт).

Они образуются концевыми разветвлениями нейронов на теле или отростках другого нейрона. Чем больше синапсов на нервной клетке, тем больше она воспринимает различных раздражений и, тем шире сфера влияний на ее деятельность и возможность участия в реакциях организма.

В структуре синапса различают 3 элемента:

1) пресинаптическую мембрану, образованную утолщением мембраны конечной веточки аксона;

2) синаптическую щель

3) постсинаптическую мембрану – утолщение, прилегающей поверхности следующего нейрона.

Передача импульса осуществляется 2 путями: химическим и физическим. Химический путь – при помощи медиатора, который может быть возбуждающим (ацетилхолин, норадреналин) или тормозящим (гамма-аминомасляная кислота)

Первая вызывает деполяризацию постсинаптической мембраны и образование возбуждающего постсинаптического потенциала (ВПСП). Для возбуждения нейрона необходимо, чтобы ВПСП достиг порогового уровня (10мВ). Действие медиатора кратковременно(1-2мс), после чего он расщепляется на холин и уксусную кислоту или поглощается обратно. В тормозящих синапсах усиленно выходят на постсинаптическую мембрану ионы калия и увеличивают поляризацию мембраны. При этом регистрируются тормозящий постсинаптический потенциал (ТПСП). В результате клетка оказывается заторможенной. Возбудить ее труднее, чем в исходном состоянии

ПОСМОТРЕТЬ ЕЩЕ:

Главная / Лекции 1 курс / Гистология человека / Вопрос 13. Нервная ткань / 2. Структура нейронов

2. Структура нейронов

Нейроны, или нейроциты, различных отделов нервной системы значительно отличаются друг от друга по функциональному значению и морфологическим особенностям.

В зависимости от функции нейроны делятся на:

    рецепторные (чувствительные, афферентные) - генерируют нервный импульс под влиянием различных воздействий внешней или внутренней среды организма;

    вставочные (ассоциативные) - осуществляют различные связи между нейронами;

    эффекторные (эфферентные, двигательные) - передают возбуждение на ткани рабочих органов, побуждая их к действию.

Характерной чертой для всех зрелых нейронов является наличие у них отростков.

Эти отростки обеспечивают проведение нервного импульса по телу человека из одной его части в другую, подчас весьма удаленную, и потому длина их колеблется в больших пределах - от нескольких микрометров до 1-1,5 м.

По функциональному значению отростки нейронов делятся на два вида. Одни выполняют функцию отведения нервного импульса обычно от тел нейронов и называются аксонами или нейритами.

Нейрит заканчивается концевым аппаратом или на другом нейроне, или на тканях рабочего органана мышцах, железах.

Второй вид отростков нервных клеток называется дендритами. В большинстве случаев они сильно ветвятся, чем и определяется их название. Дендриты проводят импульс к телу нейрона.

По количеству отростков нейроны делятся на три группы:

    униполярные - клетки с одним отростком;

    биполярные - клетки с двумя отростками;

    мультиполярные - клетки, имеющие три и больше отростков.

Мультиполярные клетки наиболее распространены у млекопитающих животных и человека.

Из многих отростков такого нейрона один представлен нейритом, тогда как все остальные являются дендритами.

Биполярные клетки имеют два отростка - нейрит и дендрит. Истинные биполярные клетки в теле человека встречаются редко. К ним относятся часть клеток сетчатки глаза, спирального ганглия внутреннего уха и некоторые другие. Однако по существу своего строения к биполярным клеткам должна быть отнесена большая группа афферентных, так называемых псевдоуниполярных нейронов краниальных и спинальных нервных узлов.

Псевдоуниполярными они называются потому, что нейрит и дендрит этих клеток начинается с общего выроста тела, создающего впечатление одного отростка, с последующим Т-образным делением его.

Истинных униполярных клеток, то есть клеток с одним отростком - нейритом, в теле человека нет.

Нейроны человека в подавляющем большинстве содержат одно ядро, расположенное в центре, реже - эксцентрично.

Двуядерные нейроны и тем более многоядерные встречаются крайне редко, например: нейроны в предстательной железе и шейке матки. Форма ядер нейронов округлая. В соответствии с высокой активностью метаболизма хроматин в их ядрах диспергирован. В ядре имеется 1, а иногда 2 и 3 крупных ядрышка.

В соответствии с высокой специфичностью функциональной активности нейронов они имеют специализированную плазмолемму, их цитоплазма богата органеллами.

В цитоплазме хорошо развита эндоплазматическая сеть, рибосомы, митохондрии, комплекс Гольджи, лизосомы, нейротубулы и нейрофиламенты.

Плазмолемма нейронов, кроме функции, типичной для цитолеммы любой клетки, характеризуется способностью проводить возбуждение. Сущность этого процесса сводится к быстрому перемещению локальной деполяризации плазмолеммы по ее дендритам к перикариону и аксону.

Обилие гранулярной эндоплазматической сети в нейроцитах соответствует высокому уровню синтетических процессов в цитоплазме и, в частности, синтеза белков, необходимых для подержания массы их перикарионов и отростков.

Для аксонов, не имеющих органелл, синтезирующих белок, характерен постоянный ток цитоплазмы от перикариона к терминалям со скоростью 1-3 мм в сутки. Это медленный ток, несущий белки, в частности ферменты, необходимые для синтеза медиаторов в окончаниях аксонов.

Кроме того, существует быстрый ток (5-10 мм в час), транспортирующий главным образом компоненты, необходимые для синаптической функции. Помимо тока веществ от перикариона к терминалям аксонов и дендритов наблюдается и обратный (ретроградный) ток, посредством которого ряд компонентов цитоплазмы возвращается из окончаний в тело клетки.

В транспорте веществ по отросткам нейроцитов участвуют эндоплазматическая сеть, ограниченные мембраной пузырьки и гранулы, микротрубочки и актиномиозиновая система цитоскелета.

Комплекс Гольджи в нервных клетках определяется как скопление различных по форме колечек, извитых нитей, зернышек.

Клеточный центр чаще располагается между ядром и дендритами. Митохондрии расположены как в теле нейрона, так и во всех отростках. Особенно богата митохондриями цитоплазма нейроцитов в концевых аппаратах отростков, в частности в области синапсов.

Нейрофибриллы

При импрегнации нервной ткани серебром в цитоплазме нейронов выявляются нейрофибриллы, образующие плотную сеть в перикарионе клетки и ориентированные параллельно в составе дендритов и аксонов, включая их тончайшие концевые ветвления.

Методом электронной микроскопии установлено, что нейрофибриллам соответствуют пучки нейрофиламентов диаметром 6-10 нм и нейротубул (нейротрубочек) диаметром 20-30 нм, расположенных в перикарионе и дендритах между хроматофильными глыбками и ориентированных параллельно аксону.

Секреторные нейроны

Способность синтезировать и секретировать биологически активные вещества, в частности медиаторы, свойственная всем нейроцитам.

Однако существуют нейроциты, специализированные преимущественно для выполнения этой функции - секреторные нейроны, например клетки нейросекреторных ядер гипоталамической области головного мозга. Секреторные нейроны имеют ряд специфических морфологических признаков:

    секреторные нейроны - это крупные нейроны;

    в цитоплазме нейронов и в аксонах находятся различной величины гранулы секрета - нейросекрета, содержащие белок, а в некоторых случаях липиды и полисахариды;

    многие секреторные нейроны имеют ядра неправильной формы, что свидетельствует об их высокой функциональной активности.

Структура и функции нейронов

Нейроны являются возбудимыми клетками нервной системы. В отличие от глиальных клеток они способны возбуждаться (генерировать потенциалы действия) и проводить возбуждение. Нейроны высокоспециализированные клетки и в течении жизни не делятся.

Каждый нейрон имеет расширенную центральную часть: тело – сому и отростки.

Сома нейрона имеет ядро и клеточные органоиды. Основной функцией сомы является регуляция обмена веществ.

Число отростков у нейронов различно, но по строению и выполняемой функции их делят на два типа. Одни – длинный отросток, проводящий возбуждение от тела клетки к другим нейронам или к периферическим органам, отходит от сомы в месте, которое называется аксонным холмиком .

Здесь генерируется потенциал действия – специфический электрический ответ возбудившейся нервной клетки. По ходу аксона могут образовываться его ответвления – коллатерали.

Часть аксонов центральной нервной системы покрывается специальным электроизолирующим веществом – миелином.

Миелинизацию аксонов осуществляют клетки глии. В центральной нервной системе эту роль выполняют олигодендроциты, в периферической – Шванновские клетки , являющиеся разновидностью олигодендроцитов.

Аксон не сплошь покрыт миелином. В миелиновой оболочке существуют регулярные перерывы – перехваты Ранвье . Миелиновая оболочка выполняет изолирующую, опорную, барьерную и, возможно, трофическую и транспортную функции.

Другим типом отростков нервных клеток являются дендриты – короткие, сильно ветвящиеся отростки (от слова dendro – дерево, ветвь).

Нервная клетка несет на себе от одного до множества дендритов. Основной функцией дендритов является сбор информации от множества других нейронов. В ЦНС тела нейронов сосредоточены в сером веществе больших полушарий головного мозга, подкорковых ядрах, мозговом стволе, мозжечке и спинном мозге. Миелинизированные волокна образуют белое вещество различных отделов спинного и головного мозга.

Существует несколько классификаций нейронов, основанных на разных признаках: по форме сомы, количеству отростков, функциям и эффектам, которые нейрон оказывает на другие клетки.

В зависимости от формы сомы различают зернистые (ганглиозные) нейроны, у которых сома имеет округлую форму; пирамидные нейроны разных размеров – большие и малые пирамиды; звездчатые нейроны; веретенообразные нейроны.

По количеству отростков выделяют униполярные нейроны, имеющие один отросток, отходящий от сомы клеток; псевдоуниполярные нейроны (такие нейроны имеют Т-образный ветвящийся отросток); биполярные нейроны, имеющие один дендрит и один аксон, и мультиполярные нейроны, которые имеют множество дендритов и один аксон.

По выполняемым функциям нейроны бывают: афферентные (рецепторные или чувствительные), эфферентные (или эффекторные) и вставочные (контактные или промежуточные).

Афферентные нейроны — сенсорные (псевдоуниполярные), их сомы расположены вне центральной нервной системы в ганглиях (спинномозговых или черепно-мозговых). Эти нейроны имеют один дендрит, который подходит к рецепторам (кожи, мышц, сухожилий и т.д.). Эфферентные нейроны регулируют работу эффекторов (мышц, желез и т.д.). Это мультиполярные нейроны. Короткие, обильно ветвящиеся дендриты воспринимают импульсы от других нейронов, а длинные аксоны выходят за пределы центральной нервной системы и в составе нерва идут к эффекторам (рабочим органам), например, к скелетной мышце.

И, наконец, вставочные нейроны , которых огромное количество и они не относятся ни к первому, ни ко второму типу нейронов, составляют основную массу мозга. Они осуществляют связь между афферентными и эфферентными нейронами, перерабатывают информацию, поступающие от рецепторов в центральную нервную систему.

В основном это мультиполярные нейроны звездчатой формы.среди вставочных нейронов различают нейроны с длинными и короткими аксонами.

Предыдущая12345678910111213141516Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Классификация нейронов

Существует несколько типов классификации нейронов.

По строению нейроны делят на три типа: униполярные, биполярные и мультиполярные.

Истинно униполярные нейроны находятся только в ядре тройничного нерва.

Эти нейроны обеспечивают проприоцептивную чувствительность жевательных мышц. Остальные униполярные нейроны называют псевдоуниполярными, поскольку на самом деле они имеют два отростка, один идет с периферии нервной системы, а другой – в структуры центральной нервной системы.

Оба отростка сливаются вблизи тела нервной клетки в один отросток. Такие псевдоуниполярные нейроны располагаются в сенсорных узлах: спинальных, тройничном и др. Они обеспечивают восприятие тактильной, болевой, температурной, проприоцептивной, барорецептивной, вибрационной чувствительности. Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Дендрит биполярного нейрона связан с рецептором, а аксон – с нейроном следующего уровня соответствующей сенсорной системы.

Мультиполярные нейроны имеют несколько дендритов и один аксон; все они являются разновидностями веретенообразных, звездчатых, корзинчатых и пирамидных клеток. Перечисленные типы нейронов можно видеть на слайдах.

В зависимости от природы синтезируемого медиатора нейроны делятся на холинергические, норадреналинергические, ГАМК-ергические, пептидергические, дофамиергические, серотонинергические и др.

Наибольшее число нейронов имеет, по-видимому, ГАМК-ергическую природу – до 30%, холинергические системы объединяют до 10 – 15%.

По чувствительности к действию раздражителей нейроны делят на моно- , би- и полисенсорные . Моносенсорные нейроны располагаются чаще в проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, большая часть нейронов первичной зоны зрительной области коры реагируют только на световое раздражение сетчатки глаза.

Моносенсорные нейроны функционально подразделяются по их чувствительности к разным качествам своего раздражителя. Так, отдельные нейроны слуховой зоны коры большего мозга могут реагировать на предъявления тона частотой 1000 Гц и не реагировать на тоны другой частоты, такие нейроны называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более – полимодальными.

Бисенсорные нейроны обычно располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Наример, нейроны вторичной зоны зрительной области коры реагируют на зрительные и слуховые стимулы.

Полисенсорные нейроны чаще всего располагаются в ассоциативных зонах мозга; они способны реагировать на раздражение слуховой, кожной, зрительной и других сенсорных систем.

По типу импульсации нейроны делятся на фоновоактивные , то есть возбуждающиеся без действия раздражителя и молчащие , которые проявляют импульсную активность только в ответ на раздражение.

Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга; их число увеличивается в состоянии бодрствования. Имеется несколько типов импульсации фоновоактивных нейронов. Непрерывно–аритмичный – если нейрон генерирует импульсы непрерывно с некоторым замедлением или увеличением частоты разрядов. Такие нейроны обеспечивают тонус нервных центров. Пачечный тип импульсации – нейроны такого типа генерируют группу импульсов с коротким межимпульсным интервалом, после этого наступает период молчания и вновь возникает группа, или пачка импульсов.

Межимпульсные интервалы в пачке равны от 1 до 3 мс, а период молчания составляет от 15 до 120 мс. Групповой тип активности характеризуется нерегулярным появлением группы импульсов с межимпульсным интервалом от 3 до 30 мс, после чего наступает период молчания.

Фоновоактивные нейроны делятся на возбуждающиеся и тормозящиеся, которые, соответственно, увеличивают или уменьшают частоту разряда в ответ на раздражение.

Предыдущая123456789101112Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Классификация нейронов по функциям

Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов (билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков.

Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20-30 нм) - состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний.

Нейрофиламенты (Д = 10 нм) - вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) - состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии.

В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные(двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг.

Эффекторные (от лат.

эффектус - действие) - вырабатывают и посылают команды к рабочим органам. Вставочные - осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.

Классификация нейронов по функциям

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Классификация нейронов по функциям:

1. Афферентный (чувствительный, сенсорный или рецепторный) нейрон, к нимотносятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные (эффекторный, двигательный или моторный), к ним относятсяконечные нейроны — ультиматные и предпоследние – неультиматные.

3. Ассоциативные клетки (вставочные или интернейроны) — эта группаосуществляет связь между эфферентными и афферентными, их делят накомисуральные и проекционные (головной мозг).

а) Классификация по морфологии.

Нервные клетки бывают звездчатые иверетенообразные, пирамидные, зернистые, грушевидные и т.д. ок. 60 форм.

б) Классификация по характеру и количеству отростков. Делятся науниполярные, биполярные и Мультиполярные.

б)1. Униполярные — это клетки с одним отростком, делятся на: б.1.1. Истинные, встречаются только у беспозвоночных б.1.2. Ложные (псевдоуниполярные) находятся в спинномозговых узлах, в теле человека и всех высшихпозвоночных.

б)2. Биполярные (с двумя отростками), у них продолговатаяформа.

Один – центральный, второй – периферический.

б)3. Мультиполярные (СО МНОЖЕСТВОМ ОТРОСТКОВ)

Если у биполярных и мультиполярных клеток отростки невозможно дифференцировать, то их называют гетерополярными.

В каждом нейроне различают следующие участки:

а) Тело (сома или перикарион) именно эта часть клетки содержит цитоплазму и ядро.

Сома может лежать прямо по ходу нейрита, как у биполярных клеток или присоединяться к отросткам в стороне, а т.ж. сома может лежать терминально, т.е. ближе к дендритической зоне, а у мультиполярных сома расположена между аксоном и дендритами по центру.

б) Дендритическая зона (периферическая и осевая зона аксона).

Это рецепторная зона, она обеспечивает конвергентную систему сбораинформации через синапсы от других нейронов или из окружающей среды.

Морфологическая характеристика дендритической зоны

Многочисленные, относительно короткие, суживающиеся в периферическом направлении разветвления, отходят под тупым углом в проксимальной (ближе к телу) части дендрита.

Сома располагается вблизи или внутри дендритического разветвления. На дендритах есть шипиковый аппарат. Способ разветвления у различных типов нейронов — сравнительно постоянный.

По структуре дендриты схожи с сомой. Направление движения импульса — целлюлопитально (к телу клетки).

Дендриты отходят от любой части сомы, отход дендрита представляетсобой коническое возвышение, которое продолжается в главный стволовойдендрит, а уже он подразделяется на перифиричные, вторичные, тройничныеветви. Толщина стволовых дендритов у разных нейронов различна.

У пирамидных клеток коры головного мозга главный дендритназывается апикальным, а все остальные – базальными.

Шипиковый аппарат состоит из двух, трех гладких цистерн (ЭПС), по формемогут быть булавообразные, шапочкоподобные или тонкие (в виде нити).

Длина шипиков ок. 2-3 мкм, чаще всего они расположены в утолщенном конусе, у разных клеток количество шипиков различно, больше всего их в клетках

Пуркинье, в пирамидных клетках коры головного мозга, в клетках хвостатогоядра головного мозга.

На площади равной 102 мкм, у дендритов клеток

Пуркинье находиться 15 шипиков. Всего в одной клетке Пуркинье 40000шипиков, а их суммарная поверхность 220000 шипиков. Шипики предположительно увеличивают контактную поверхность.

Нейроны обладают уникальными способностями:

  • приходить в состояние возбуждения (деятельное состояние) под влиянием физического или химического раздражения;
  • принимать, кодировать (шифровать), обрабатывать информацию о состоянии внешней среды и внутренней среды организма;
  • передавать информацию в виде электрических импульсов и другими способами другим нервным клеткам или органам (мышцам, железам, сосудам и т.д.), устанавливая между ними связь;
  • копию информации хранить в своей памяти.

    Способность нервных клеток хранить информацию позволяет мозгу человека (лобные доли) хранить в памяти все, что происходило с организмом за всю его жизнь, а объем памяти таков, что в ней вмещается вся генетическая память предков.

Нервные клетки имеют различные формы и размеры (от 5 до 150 микрон). V каждого нейрона имеются короткие (дендриты) и один длинный (аксон) отростки.

Структура нейрона, его свойства.

Нейроны являются возбудимыми клетками нервной системы. В отличие от глиальных клеток они способны возбуждаться (генерировать потенциалы действия) и проводить возбуждение. Нейроны высокоспециализированные клетки и в течение жизни не делятся.

В нейроне выделяют тело (сому) и отростки. Сома нейрона имеет ядро и клеточные органоиды. Основной функцией сомы является осуществление метаболизма клетки.

Рис.3. Строение нейрона. 1 - сома (тело) нейрона; 2 - дендрит; 3 - тело Швановской клетки; 4 - миелинизированный аксон; 5 - коллатераль аксона; 6 - терминаль аксона; 7 - аксонный холмик; 8 - синапсы на теле нейрона

Число отростков у нейронов различно, но по строению и выполняемой функции их делят на два типа.

1. Одни - короткие, сильно ветвящиеся отростки, которые называются дендритами (от dendro - дерево, ветвь). Нервная клетка несет на себе от одного до множества дендритов. Основной функцией дендритов является сбор информации от множества других нейронов. Ребенок рождается с ограниченным числом дендритов (межнейронных связей), и увеличение массы мозга, которое происходит на этапах постнатального развития, реализуется за счет увеличения массы дендритов и глиальных элементов.

2. Другим типом отростков нервных клеток являются аксоны . Аксон в нейроне один и представляет собой более или менее длинный отросток, ветвящийся только на дальнем от сомы конце. Эти ветвления аксона называются аксонными терминалами (окончаниями). Место нейрона, от которого начинается аксон, имеет особое функциональное значение и называется аксонным холмиком . Здесь генерируется потенциал действия - специфический электрический ответ возбудившейся нервной клетки. Функцией же аксона является проведение нервного импульса к аксонным терминалям. По ходу аксона могут образовываться его ответвления.

Часть аксонов центральной нервной системы покрывается специальным электроизолирующим веществом - миелином . Миелинизацию аксонов осуществляют клетки глии . В центральной нервной системе эту роль выполняют олигодендроциты, в периферической - Шванновские клетки, являющиеся разновидностью олигодендроцитов. Олигодендроцит оборачивается вокруг аксона, образуя многослойную оболочку. Миелинизации не подвергается область аксонного холмика и терминали аксона. Цитоплазма глиальной клетки выдавливается из межмембранного пространства в процессе «обертывания». Таким образом, миелиновая оболочка аксона состоит из плотно упакованных, перемежающихся липидных и белковых мембранных слоев. Аксон не сплошь покрыт миелином. В миелиновой оболочке существуют регулярные перерывы - перехваты Ранвье . Ширина такого перехвата от 0,5 до 2, 5 мкм. Функция перехватов Ранвье - быстрое скачкообразное распространение потенциалов действия, осуществляющееся без затухания.

В центральной нервной системе аксоны различных нейронов, направляющиеся к одной структуре, образуют упорядоченные пучки - проводящие пути . В подобном проводящем пучке аксоны направляются «параллельным курсом» и часто одна глиальная клетка образует оболочку нескольких аксонов. Поскольку миелин является веществом белого цвета, то проводящие пути нервной системы, состоящие из плотно лежащих миелинизированных аксонов, образуют белое вещество мозга. В сером же веществе мозга локализуются тела клеток, дендриты и немиелинизированные части аксонов.

Рис.4.Строение миелиновой оболочки 1 - связь между телом клетки глии и миелиновой оболочкой; 2 - олигодендроцит; 3 - гребешок; 4 - плазматическая мембрана; 5 - цитоплазма олигодендроцита; 6 - аксон нейрона; 7 - перехват Ранвье; 8 - мезаксон; 9 - петля плазматической мембраны

Конфигурацию отдельного нейрона выявить очень трудно, поскольку они плотно упакованы. Все нейроны принято делить на несколько типов в зависимости от числа и формы, отходящих от их тела отростков. Различают три типа нейронов: униполярные, биполярные и мультиполярные.

Рис. 5. Виды нейронов. а - сенсорные нейроны: 1 - биполярный; 2 - псевдобиполярный; 3 - псевдоуниполярный; б - двигательные нейроны: 4 - пирамидная клетка; 5 - мотонейроны спинного мозга; 6 - нейрон двойного ядра; 7 - нейрон ядра подъязычного нерва; в - симпатические нейроны: 8 - нейрон звездчатого ганглия; 9 - нейрон верхнего шейного ганглия; 10 - нейрон бокового рога спинного мозга; г - парасимпатические нейроны: 11 - нейрон узла мышечного сплетения кишечной стенки; 12 - нейрон дорсального ядра блуждающего нерва; 13 - нейрон ресничного узла

Униполярные клетки . Клетки, от тела которых отходит только один отросток. На самом деле при выходе из сомы этот отросток разделяется на два: аксон и дендрит. Поэтому правильнее называть их псевдоуниполярными нейронами. Для этих клеток характерна определенная локализация. Они принадлежат неспецифическим сенсорным модальностям (болевая, температурная, тактильная, проприоцептивная).

Биполярные клетки - это клетки, которые имеют один аксон и один дендрит. Они характерны для зрительной, слуховой, обонятельной сенсорных систем.

Мультиполярные клетки имеют один аксон и множество дендритов. К такому типу нейронов принадлежит большинство нейронов ЦНС.

Исходя из особенностей формы этих клеток их делят на веретенообразные, корзинчатые, звездчатые, пирамидные. Только в коре головного мозга насчитывается до 60 вариантов форм тел нейронов.

Сведения о форме нейронов, их местоположении и направлении отростков очень важны, поскольку позволяют понять качество и количество связей, приходящих к ним (структура дендритного дерева), и пункты, в которые они посылают свои отростки.

Нейрон (от греч. neuron - нерв) - это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более 100 миллиардов нейронов.

Функции нейронов Как и другие клетки, нейроны должны обеспечивать поддержание собственной структуры и функций, приспосабливаться к изменяющимся условиям и оказывать регулирующее влияние на соседние клетки. Однако основная функция нейронов - это переработка информации: получение, проведение и передача другим клеткам. Получение информации происходит через синапсы с рецепторами сенсорных органов или другими нейронами, или непосредственно из внешней среды с помощью специализированных дендритов. Проведение информации происходит по аксонам, передача - через синапсы.

Строение нейрона

Тело клетки Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов (билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в них находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Аксон - обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты - как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами. Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии. Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик - образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Синапс Синапс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие - гиперполяризацию; первые являются возбуждающими, вторые - тормозящими. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Структурная классификация нейронов

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.

Биполярные нейроны - нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;

Мультиполярные нейроны - Нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе

Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (т. е. находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация нейронов По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние – неультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - эта группа нейронов осуществляет связь между эфферентными и афферентными, их делят на комиссуральные и проекционные (головной мозг).

Морфологическая классификация нейронов Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

учитывают размеры и форму тела нейрона,

количество и характер ветвления отростков,

длину нейрона и наличие специализированные оболочки.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 см. По количеству отростков выделяют следующие морфологические типы нейронов: - униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге; - псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях; - биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях; - мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона Нейрон развивается из небольшой клетки - предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему. Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона. Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне.

Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки. Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.