Как находить точки максимума функции. Значения функции и точки максимума и минимума

Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.

Вконтакте

Что такое экстремум?

В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.

Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:

  • статистика;
  • машинное управление;
  • эконометрика.

Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.

Экстремумы производной функции

Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.

Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.

Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.

Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.

Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.

Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:

  1. Нахождение точной области определения на графике.
  2. Поиск производной функции и точки экстремума.
  3. Решать стандартные неравенства на область нахождения аргумента.
  4. Уметь доказывать, в каких функциях точка на графике определена и непрерывна.

Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.

Необходимое условие экстремума функции

Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.

Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.

Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.

Полное исследование значения Построение графика значения
1. Определение точек возрастания и убывания значений.

2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.

3. Процесс определения изменений положения на графике.

4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.

5. Создание сводной таблицы исследования с точки зрения определения ее координат.

6. Нахождение промежутков возрастания и убывания крайних и острых точек.

7. Определение выпуклости и вогнутости кривой.

8. Построение графика с учетом исследования позволяет найти минимум либо максимум.

Основным элементом при необходимости работы с экстремумами является точное построение его графика.

Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.

Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.

Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.

Здравствуйте! Ударим по приближающемуся ЕГЭ качественной систематической подготовкой, и упорством в измельчении гранита науки!!! В конце поста имеется конкурсная задача, будьте первым! В одной из статей данной рубрики мы с вами , в которых был дан график функции, и ставились различные вопросы, касающиеся экстремумов, промежутков возрастания (убывания) и прочие.

В этой статье рассмотрим задачи входящие в ЕГЭ по математике, в которых дан график производной функции, и ставятся следующие вопросы:

1. В какой точке заданного отрезка функция принимает наибольшее (или наименьшее) значение.

2. Найти количество точек максимума (или минимума) функции, принадлежащих заданному отрезку.

3. Найти количество точек экстремума функции, принадлежащих заданному отрезку.

4. Найти точку экстремума функции, принадлежащую заданному отрезку.

5. Найти промежутки возрастания (или убывания) функции и в ответе указать сумму целых точек, входящих в эти промежутки.

6. Найти промежутки возрастания (или убывания) функции. В ответе указать длину наибольшего из этих промежутков.

7. Найти количество точек, в которых касательная к графику функции параллельна прямой вида у = kx + b или совпадает с ней.

8. Найти абсциссу точки, в которой касательная к графику функции параллельна оси абсцисс или совпадает с ней.

Могут стоять и другие вопросы, но они не вызовут у вас затруднений, если вы поняли и (ссылки указаны на статьи, в которых представлена необходимая для решения информация, рекомендую повторить).

Основная информация (кратко):

1. Производная на интервалах возрастания имеет положительный знак.

Если производная в определённой точке из некоторого интервала имеет положительное значение, то график функции на этом интервале возрастает.

2. На интервалах убывания производная имеет отрицательный знак.

Если производная в определённой точке из некоторого интервала имеет отрицательное значение, то график функции на этом интервале убывает.

3. Производная в точке х равна угловому коэффициенту касательной, проведённой к графику функции в этой же точке.

4. В точках экстремума (максимума-минимума) функции производная равна нулю. Касательная к графику функции в этой точке параллельна оси ох.

Это нужно чётко уяснить и помнить!!!

Многих график производной «смущает». Некоторые по невнимательности принимают его за график самой функции. Поэтому в таких зданиях, где видите, что дан график, сразу же акцентируйте своё внимание в условии на том, что дано: график функции или график производной функции?

Если это график производной функции, то относитесь к нему как бы к «отражению» самой функции, которое просто даёт вам информацию об этой функции.

Рассмотрим задание:

На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–2;21).


Ответим на следующие вопросы:

1. В какой точке отрезка функция f (х) принимает наибольшее значение.

На заданном отрезке производная функции отрицательна, значит функция на этом отрезке убывает (она убывает от левой границы интервала к правой). Таким образом, наибольшее значение функции достигается на левой границе отрезка, т. е. в точке 7.

Ответ: 7

2. В какой точке отрезка функция f (х)

По данному графику производной можем сказать следующее. На заданном отрезке производная функции положительна, значит функция на этом отрезке возрастает (она возрастает от левой границы интервала к правой). Таким образом, наименьшее значение функции достигается на левой границе отрезка, то есть в точке х = 3.

Ответ: 3

3. Найдите количество точек максимума функции f (х)

Точки максимума соответствуют точкам смены знака производной с положительного на отрицательный. Рассмотрим, где таким образом меняется знак.

На отрезке (3;6) производная положительна, на отрезке (6;16) отрицательна.

На отрезке (16;18) производная положительна, на отрезке (18;20) отрицательна.

Таким образом, на заданном отрезке функция имеет две точки максимума х = 6 и х = 18.

Ответ: 2

4. Найдите количество точек минимума функции f (х) , принадлежащих отрезку .

Точки минимума соответствуют точкам смены знака производной с отрицательного на положительный. У нас на интервале (0;3) производная отрицательна, на интервале (3;4) положительна.

Таким образом, на отрезке функция имеет только одну точку минимума х = 3.

*Будьте внимательны при записи ответа – записывается количество точек, а не значение х, такую ошибку можно допустит из-за невнимательности.

Ответ: 1

5. Найдите количество точек экстремума функции f (х) , принадлежащих отрезку .

Обратите внимание, что необходимо найти количество точек экстремума (это и точки максимума и точки минимума).

Точки экстремума соответствуют точкам смены знака производной (с положительного на отрицательный или наоборот). На данном в условии графике это нули функции. Производная обращается в нуль в точках 3, 6, 16, 18.

Таким образом, на отрезке функция имеет 4 точки экстремума.

Ответ: 4

6. Найдите промежутки возрастания функции f (х)

Промежутки возрастания данной функции f (х) соответствуют промежуткам, на которых ее производная положительна, то есть интервалам (3;6) и (16;18). Обратите внимание, что границы интервала не входят в него (круглые скобки – границы не включены в интервал, квадратные – включены). Данные интервалы содержат целые точки 4, 5, 17. Их сумма равна: 4 + 5 + 17 = 26

Ответ: 26

7. Найдите промежутки убывания функции f (х) на заданном интервале. В ответе укажите сумму целых точек, входящих в эти промежутки.

Промежутки убывания функции f (х) соответствуют промежуткам, на которых производная функции отрицательна. В данной задаче это интервалы (–2;3), (6;16), (18;21).

Данные интервалы содержат следующие целые точки: –1, 0, 1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20. Их сумма равна:

(–1) + 0 + 1 + 2 + 7 + 8 + 9 + 10 +

11 + 12 + 13 + 14 + 15 + 19 + 20 = 140

Ответ: 140

*Обращайте внимание в условии: включены ли границы в интервал или нет. Если границы будут включены, то и в рассматриваемых в процессе решения интервалах эти границы также необходимо учитывать.

8. Найдите промежутки возрастания функции f (х)

Промежутки возрастания функции f (х) соответствуют промежуткам, на которых производная функции положительна. Мы уже указывали их: (3;6) и (16;18). Наибольшим из них является интервал (3;6), его длина равна 3.

Ответ: 3

9. Найдите промежутки убывания функции f (х) . В ответе укажите длину наибольшего из них.

Промежутки убывания функции f (х) соответствуют промежуткам, на которых производная функции отрицательна. Мы уже указывали их, это интервалы (–2;3), (6;16), (18;21), их длины соответственно равны 5, 10, 3.

Длина наибольшего равна 10.

Ответ: 10

10. Найдите количество точек, в которых касательная к графику функции f (х) параллельна прямой у = 2х + 3 или совпадает с ней.

Значение производной в точке касания равно угловому коэффициенту касательной. Так как касательная параллельна прямой у = 2х + 3 или совпадает с ней, то их угловые коэффициенты равны 2. Значит, необходимо найти количество точек, в которых у′(х 0) = 2. Геометрически это соответствует количеству точек пересечения графика производной с прямой у = 2. На данном интервале таких точек 4.

Ответ: 4

11. Найдите точку экстремума функции f (х) , принадлежащую отрезку .

Точка экстремума функции это такая точка, в которой её производная равна нулю, при чём в окрестности этой точки производная меняет знак (с положительного на отрицательный или наоборот). На отрезке график производной пересекает ось абсцисс, производная меняет знак с отрицательного на положительный. Следовательно, точка х = 3 является точкой экстремума.

Ответ: 3

12. Найдите абсциссы точек, в которых касательные к графику у = f (x) параллельны оси абсцисс или совпадают с ней. В ответе укажите наибольшую из них.

Касательная к графику у = f (x) может быть параллельна оси абсцисс или совпадать с ней, только в точках, где производная равна нулю (это могут быть точки экстремума или стационарные точки, в окрестностях которых производная свой знак не меняет). По данному графику видно, что производная равна нулю в точках 3, 6, 16,18. Наибольшая равна 18.

Можно построить рассуждение таким образом:

Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна оси абсцисс или совпадает с ней, её угловой коэффициент равен 0 (действительно тангенс угла в ноль градусов равен нулю). Следовательно, мы ищем точку, в которой угловой коэффициент, равен нулю, а значит, и производная равна нулю. Производная равна нулю в той точке, в которой её график пересекает ось абсцисс, а это точки 3, 6, 16,18.

Ответ: 18

На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–8;4). В какой точке отрезка [–7;–3] функция f (х) принимает наименьшее значение.


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–7;14). Найдите количество точек максимума функции f (х) , принадлежащих отрезку [–6;9].


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–18;6). Найдите количество точек минимума функции f (х) , принадлежащих отрезку [–13;1].


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–11; –11). Найдите количество точек экстремума функции f (х) , принадлежащих отрезку [–10; –10].


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–7;4). Найдите промежутки возрастания функции f (х) . В ответе укажите сумму целых точек, входящих в эти промежутки.


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–5;7). Найдите промежутки убывания функции f (х) . В ответе укажите сумму целых точек, входящих в эти промежутки.


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–11;3). Найдите промежутки возрастания функции f (х) . В ответе укажите длину наибольшего из них.


F На рисунке изображен график

Условие задачи то же (которую мы рассматривали). Найдите сумму трёх чисел:

1. Сумма квадратов экстремумов функции f (х).

2. Разность квадратов суммы точек максимума и суммы точек минимума функции f (х).

3. Количество касательных к f (х), параллельных прямой у = –3х + 5.

Первый, кто даст верный ответ, получит поощрительный приз – 150 рублей. Ответы пишите в комментариях. Если это ваш первый комментарий на блоге, то сразу он не появится, чуть позже (не беспокойтесь, время написания комментария регистрируется).

Успеха вам!

С уважением, Александр Крутицих.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

С помощью данного сервиса можно найти наибольшее и наименьшее значение функции одной переменной f(x) с оформлением решения в Word . Если же задана функция f(x,y) , следовательно, необходимо найти экстремум функции двух переменных . Также можно найти интервалы возрастания и убывания функции .

Найти наибольшее и наименьшее значение функции

y =

на отрезке [ ;]

Включать теорию

Правила ввода функций :

Необходимое условие экстремума функции одной переменной

Уравнение f" 0 (x *) = 0 - это необходимое условие экстремума функции одной переменной, т.е. в точке x * первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки x с, в которых функция не возрастает и не убывает.

Достаточное условие экстремума функции одной переменной

Пусть f 0 (x) дважды дифференцируемая по x , принадлежащему множеству D . Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) > 0

То точка x * является точкой локального (глобального) минимума функции.

Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) < 0

То точка x * - локальный (глобальный) максимум.

Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке .
Решение.

Критическая точка одна x 1 = 2 (f’(x)=0). Эта точка принадлежит отрезку . (Точка x=0 не является критической, так как 0∉).
Вычисляем значения функции на концах отрезка и в критической точке.
f(1)=9, f(2)= 5 / 2 , f(3)=3 8 / 81
Ответ: f min = 5 / 2 при x=2; f max =9 при x=1

Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) .
Решение.
Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π / 3 +2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π / 3 +2πk, k∈Z – точки минимума функции; , значит x=- π / 3 +2πk, k∈Z – точки максимума функции.

Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x 0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.

Приращения функции к приращению аргумента, который стремится к нулю. Для ее нахождения воспользуйтесь таблицей производных. Например, производная функции y = x3 будет равна y’ = x2.

Приравняйте данную производную к нулю (в данном случае x2=0).

Найдите значение переменной данного . Это будут те значения, при данная производная будет равна 0. Для этого подставьте в выражение произвольные цифры вместо x, при которых все выражение станет нулевым. Например:

2-2x2= 0
(1-x)(1+x) = 0
x1= 1, x2 = -1

Полученные значения нанесите на координатную прямую и высчитайте знак производной для каждого из полученных . На координатной прямой отмечаются точки, которые принимаются за начало отсчета. Чтобы высчитать значение на промежутках подставьте произвольные значения, подходящие по критериям. Например, для предыдущей функции до промежутка -1 можно выбрать значение -2. На от -1 до 1 можно выбрать 0, а для значений больше 1 выберите 2. Подставьте данные цифры в производную и выясните знак производной. В данном случае производная с x = -2 будет равна -0,24, т.е. отрицательно и на данном промежутке будет знак минус. Если x=0, то значение будет равно 2, а на данном промежутке ставится знак. Если x=1, то производная также будет равна -0,24 и ставится минус.

Если при прохождении через точку на координатной прямой производная меняет свой знак с минуса на плюс, то это точка минимума, а если с плюса на минус, то это точка максимума.

Видео по теме

Полезный совет

Для нахождения производной существуют онлайн-сервисы, которые подсчитывают нужные значения и выводят результат. На таких сайтах можно найти производную до 5 порядка.

Источники:

  • Один из сервисов вычисления производных
  • точку максимума функции

Точки максимума функции наряду с точками минимума называются точками экстремума. В этих точках функция меняет характер поведения. Экстремумы определяются на ограниченных числовых интервалах и всегда являются локальными.

Инструкция

Процесс нахождения локальных экстремумов называется функции и выполняется путем анализа первой и второй производной функции. Перед началом исследования убедитесь, что заданный интервал значений аргумента принадлежит к допустимым значениям. Например, для функции F=1/x значение аргумента х=0 недопустимо. Или для функции Y=tg(x) аргумент не может иметь значение х=90°.

Убедитесь, что функция Y дифференцируема на всем заданном отрезке. Найдите первую производную Y". Очевидно, что до достижения точки локального максимума функция возрастает, а при переходе через максимум функция становится убывающей. Первая производная по своему физическому смыслу характеризует скорость изменения функции. Пока функция возрастает, скорость этого процесса является величиной положительной. При переходе через локальный максимум функция начинает убывать, и скорость процесса изменения функции становится отрицательной. Переход скорости изменения функции через ноль происходит в точке локального максимума.

Например, функция Y=-x²+x+1 на отрезке от -1 до 1 имеет непрерывную производную Y"=-2x+1. При х=1/2 производная равна нулю, причем при переходе через эту точку производная меняет знак с «+» на «-». Вторая производная функции Y"=-2. Постройте по точкам график функции Y=-x²+x+1 и проверьте, является ли точка с абсциссой х=1/2 локальным максимумом на заданном отрезке числовой оси.

77419.Найдите точку максимума функции у=х 3 –48х+17

Найдем нули производной:

Получим корни:

Определим знаки производной функции подставляя значения из интервалов в полученную производную, и изобразим на рисунке поведение функции:

Получили, что в точке –4 производная меняет свой знак в положительного на отрицательный. Таким образом, точка х=–4 это искомая точка максимума.

Ответ: –4

77423. Найдите точку максимума функции у=х 3 –3х 2 +2

Найдём производную заданной функции:

Приравняем производную к нулю и решим уравнение:

В точке х=0 производная меняет знак с положительного на отрицательный, значит это есть точка максимума.

77427. Найдите точку максимума функции у=х 3 +2х 2 +х+3

Найдём производную заданной функции:

При равняем производную к нулю и решим уравнение:

Определим знаки производной функции и изобразим на рисунке интервалы возрастания и убывания функции подставляя значения из каждого интервала в выражение производной:


В точке х=–1 производная меняет знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: –1

77431. Найдите точку максимума функции у=х 3 –5х 2 +7х–5

Найдём производную функции:

Найдем нули производной:

3х 2 – 10х + 7 = 0

3∙0 2 – 10∙0 + 7 = 7 > 0

3∙2 2 – 10∙2 + 7 = – 1< 0

3∙3 2 – 10∙3 + 7 = 4 > 0

В точке х = 1 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

77435. Найдите точку максимума функции у=7+12х–х 3

Найдём производную функции:

Найдем нули производной:

12 – 3х 2 = 0

Решая квадратное уравнение получим:

*Это точки возможного максимума (минимума) функции.

Построим числовую ось, отметим нули производной. Определим знаки производной, подставляя произвольное значение из каждого интервала в выражение производной функции и схематично изобразим возрастание и убывание на интервалах:

12 – 3∙(–3) 2 = –15 < 0

12 – 3∙0 2 = 12 > 0

12 – 3∙3 2 = –15 < 0

В точке х = 2 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

*Для этой же функции точкой минимума является точка х = – 2.

77439. Найдите точку максимума функции у=9х 2 –х 3

Найдём производную функции:

Найдем нули производной:

18х –3х 2 = 0

3х(6 – х) = 0

Решая уравнение получим:

*Это точки возможного максимума (минимума) функции.

Построим числовую ось, отметим нули производной. Определим знаки производной, подставляя произвольное значение из каждого интервала в выражение производной функции и схематично изобразим возрастание и убывание на интервалах:

18 (–1) –3 (–1) 2 = –21< 0

18∙1 –3∙1 2 = 15 > 0

18∙7 –3∙7 2 = –1 < 0

В точке х=6 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

*Для этой же функции точкой минимума является точка х = 0.