Как разложить выражение на множители. Использование сразу нескольких способов

Разложение многочлена на множители. Часть 1

Разложение на множители - это универсальный прием, помогающий решить сложные уравнения и неравенства. Первая мысль, которая должна прийти в голову при решении уравнений и неравенств, в которых в правой части стоит ноль - попробовать разложить левую часть на множители.

Перечислим основные способы разложения многочлена на множители :

  • вынесение общего множителя за скобку
  • использование формул сокращенного умножения
  • по формуле разложения на множители квадратного трехчлена
  • способ группировки
  • деление многочлена на двучлен
  • метод неопределенных коэффициентов

В этой статье мы остановимся подробно на первых трех способах, остальные рассмотрим в следующих статьях.

1. Вынесение общего множителя за скобку.

Чтобы вынести за скобку общий множитель надо сначала его найти. Коэффициент общего множителя равен наибольшему общему делителю всех коэффициентов.

Буквенная часть общего множителя равна произведению выражений, входящих в состав каждого слагаемого с наименьшим показателем степени.

Схема вынесения общего множителя выглядит так:

Внимание!
Количество членов в скобках равно количеству слагаемых в исходном выражении. Если одно из слагаемых совпадает с общим множителем, то при его делении на общий множитель, получаем единицу.

Пример 1.

Разложить на множители многочлен:

Вынесем за скобки общий множитель. Для этого сначала его найдем.

1.Находим наибольший общий делитель всех коэффициентов многочлена, т.е. чисел 20, 35 и 15. Он равен 5.

2. Устанавливаем, что переменная содержится во всех слагаемых, причем наименьший из её показателей степени равен 2. Переменная содержится во всех слагаемых, и наименьший из её показателей степени равен 3.

Переменная содержится только во втором слагаемом, поэтому она не входит в состав общего множителя.

Итак, общий множитель равен

3. Выносим за скобки множитель пользуясь схемой, приведенной выше:

Пример 2. Решить уравнение:

Решение. Разложим левую часть уравнения на множители. Вынесем за скобки множитель :

Итак, получили уравнение

Приравняем каждый множитель к нулю:

Получаем - корень первого уравнения.

Корни :

Ответ: -1, 2, 4

2. Разложение на множители с помощью формул сокращенного умножения.

Если количество слагаемых в многочлене, который мы собираемся разложить на множители меньше или равно трех, то мы пытаемся применить формулы сокращенного умножения.

1. Если многочлен представляет собой разность двух слагаемых , то пытаемся применить формулу разности квадратов :

или формулу разности кубов :

Здесь буквы и обозначают число или алгебраическое выражение.

2. Если многочлен представляет собой сумму двух слагаемых, то, возможно, его можно разложить на множители с помощью формулы суммы кубов :

3. Если многочлен состоит из трех слагаемых, то пытаемся применить формулу квадрата суммы :

или формулу квадрата разности :

Или пытаемся разложить на множители по формуле разложения на множители квадратного трехчлена :

Здесь и - корни квадратного уравнения

Пример 3. Разложить на множители выражение:

Решение. Перед нами сумма двух слагаемых. Попытаемся применить формулу суммы кубов. Для этого нужно сначала каждое слагаемое представить в виде куба какого-то выражения, а затем применить формулу для суммы кубов:

Пример 4. Разложить на множители выражение:

Рещение. Перед нами разность квадратов двух выражений. Первое выражение: , второе выражение:

Применим формулу для разности квадратов:

Раскроем скобки и приведем подобные члены, получим:

Разложить на множители большое число – нелегкая задача. Большинство людей затрудняются раскладывать четырех- или пятизначные числа. Для упрощения процесса запишите число над двумя колонками.

  • Разложим на множители число 6552.
  • Разделите данное число на наименьший простой делитель (кроме 1), на который данное число делится без остатка. Запишите этот делитель в левой колонке, а в правой колонке запишите результат деления. Как отмечалось выше, четные числа легко раскладывать на множители, так как их наименьшим простым множителем всегда будет число 2 (у нечетных чисел наименьшие простые множители различны).

    • В нашем примере число 6552 – четное, поэтому 2 является его наименьшим простым множителем. 6552 ÷ 2 = 3276. В левой колонке запишите 2, а в правой - 3276.
  • Далее разделите число в правой колонке на наименьший простой делитель (кроме 1), на который данное число делится без остатка. Запишите этот делитель в левой колонке, а в правой колонке запишите результат деления (продолжите этот процесс до тех пор, пока в правой колонке не останется 1).

    • В нашем примере: 3276 ÷ 2 = 1638. В левой колонке запишите 2, а в правой - 1638. Далее: 1638 ÷ 2 = 819. В левой колонке запишите 2, а в правой - 819.
  • Вы получили нечетное число; для таких чисел найти наименьший простой делитель сложнее. Если вы получили нечетное число, попробуйте разделить его на наименьшие простые нечетные числа: 3, 5, 7, 11.

    • В нашем примере вы получили нечетное число 819. Разделите его на 3: 819 ÷ 3 = 273. В левой колонке запишите 3, а в правой - 273.
    • При подборе делителей опробуйте все простые числа вплоть до квадратного корня из наибольшего делителя, который вы нашли. Если ни один делитель не делит число нацело, то вы, скорее всего, получили простое число и можете прекратить вычисления.
  • Продолжите процесс деления чисел на простые делители до тех пор, пока в правой колонке не останется 1 (если в правой колонке вы получили простое число, разделите его само на себя, чтобы получить 1).

    • Продолжим вычисления в нашем примере:
      • Разделите на 3: 273 ÷ 3 = 91. Остатка нет. В левой колонке запишите 3, а в правой - 91.
      • Разделите на 3. 91 делится на 3 с остатком, поэтому разделите на 5. 91 делится на 5 с остатком, поэтому разделите на 7: 91 ÷ 7 = 13. Остатка нет. В левой колонке запишите 7, а в правой - 13.
      • Разделите на 7. 13 делится на 7 с остатком, поэтому разделите на 11. 13 делится на 11 с остатком, поэтому разделите на 13: 13 ÷ 13 = 1. Остатка нет. В левой колонке запишите 13, а в правой - 1. Ваши вычисления закончены.
  • В левой колонке представлены простые множители исходного числа. Другими словами, при перемножении всех чисел из левой колонки вы получите число, записанное над колонками. Если один множитель появляется в списке множителей несколько раз, используйте показатели степени для его обозначения. В нашем примере в списке множителей 2 появляется 4 раза; запишите эти множители как 2 4 , а не как 2*2*2*2.

    • В нашем примере 6552 = 2 3 × 3 2 × 7 × 13. Вы разложили число 6552 на простые множители (порядок множителей в этой записи не имеет значения).
  • Рассмотрим на конкретных примерах, как разложить многочлен на множители.

    Разложение многочленов будем проводить в соответствии с .

    Разложить многочлены на множители:

    Проверяем, нет ли общего множителя. есть, он равен 7cd. Выносим его за скобки:

    Выражение в скобках состоит из двух слагаемых. Общего множителя уже нет, формулой суммы кубов выражение не является, значит, разложение завершено.

    Проверяем, нет ли общего множителя. Нет. Многочлен состоит из трех слагаемых, поэтому проверяем, нет ли формулы полного квадрата. Два слагаемых являются квадратами выражений: 25x²=(5x)², 9y²=(3y)², третье слагаемое равно удвоенному произведению этих выражений:2∙5x∙3y=30xy. Значит, данный многочлен является полным квадратом. Так как удвоенное произведение со знаком «минус», то это — :

    Проверяем, нельзя ли вынести общий множитель за скобки. Общий множитель есть, он равен a. Выносим его за скобки:

    В скобках — два слагаемых. Проверяем, нет ли формулы разности квадратов или разности кубов. a² — квадрат a, 1=1². Значит, выражение в скобках можно расписать по формуле разности квадратов:

    Общий множитель есть, он равен 5. Выносим его за скобки:

    в скобках — три слагаемых. Проверяем, не является ли выражение полным квадратом. Два слагаемых — квадраты: 16=4² и a² — квадрат a, третье слагаемое равно удвоенному произведению 4 и a: 2∙4∙a=8a. Следовательно, это — полный квадрат. Так как все слагаемые со знаком «+», выражение в скобках является полным квадратом суммы:

    Общий множитель -2x выносим за скобки:

    В скобках — сумма двух слагаемых. Проверяем, не является ли данное выражение суммой кубов. 64=4³, x³- куб x. Значит, двучлен можно разложить по формуле :

    Общий множитель есть. Но, поскольку многочлен состоит из 4 членов, мы будем сначала , а уже потом выносить за скобки общий множитель. Сгруппируем первое слагаемое с четвертым, в второе — с третьим:

    Из первых скобок выносим общий множитель 4a, из вторых — 8b:

    Общего множителя пока нет. Чтобы его получить, из вторых скобок вынесем за скобки «-«, при этом каждый знак в скобках изменится на противоположный:

    Теперь общий множитель (1-3a) вынесем за скобки:

    Во вторых скобках есть общий множитель 4 (этот тот самый множитель, который мы не стали выносить за скобки в начале примера):

    Поскольку многочлен состоит из четырех слагаемых, выполняем группировку. Сгруппируем первое слагаемое со вторым, третье — с четвертым:

    В первых скобках общего множителя нет, но есть формула разности квадратов, во вторых скобках общий множитель -5:

    Появился общий множитель (4m-3n). Выносим его за скобки.

    Разложение многочленов для получения произведения иногда кажется запутанным. Но это не так сложно, если разобраться в процессе пошагово. В статье подробно рассказано, как разложить на множители квадратный трехчлен.

    Многим непонятно, как разложить на множители квадратный трехчлен, и для чего это делается. Сначала может показаться, что это бесполезное занятие. Но в математике ничего не делается просто так. Преобразование нужно для упрощения выражения и удобства вычисления.

    Многочлен, имеющий вид – ax²+bx+c, называется квадратным трехчленом. Слагаемое «a» должно быть отрицательным или положительным. На практике это выражение называется квадратным уравнением. Поэтому иногда говорят и по-другому: как разложить квадратное уравнение.

    Интересно! Квадратным многочлен называют из-за самой его большой степени – квадрата. А трехчленом — из-за 3-х составных слагаемых.

    Некоторые другие виды многочленов:

    • линейный двучлен (6x+8);
    • кубический четырехчлен (x³+4x²-2x+9).

    Разложение квадратного трехчлена на множители

    Сначала выражение приравнивается к нулю, затем нужно найти значения корней x1 и x2. Корней может не быть, может быть один или два корня. Наличие корней определяется по дискриминанту. Его формулу надо знать наизусть: D=b²-4ac.

    Если результат D получается отрицательный, корней нет. Если положительный – корня два. Если в результате получился ноль – корень один. Корни тоже высчитываются по формуле.

    Если при вычислении дискриминанта получается ноль, можно применять любую из формул. На практике формула просто сокращается: -b / 2a.

    Формулы для разных значений дискриминанта различаются.

    Если D положительный:

    Если D равен нулю:

    Онлайн калькуляторы

    В интернете есть онлайн калькулятор. С его помощью можно выполнить разложение на множители. На некоторых ресурсах предоставляется возможность посмотреть решение пошагово. Такие сервисы помогают лучше понять тему, но нужно постараться хорошо вникнуть.

    Полезное видео: Разложение квадратного трехчлена на множители

    Примеры

    Предлагаем просмотреть простые примеры, как разложить квадратное уравнение на множители.

    Пример 1

    Здесь наглядно показано, что в результате получится два x, потому что D положительный. Их и нужно подставить в формулу. Если корни получились отрицательные, знак в формуле меняется на противоположный.

    Нам известна формула разложения квадратного трехчлена на множители: a(x-x1)(x-x2). Ставим значения в скобки: (x+3)(x+2/3). Перед слагаемым в степени нет числа. Это значит, что там единица, она опускается.

    Пример 2

    Этот пример наглядно показывает, как решать уравнение, имеющее один корень.

    Подставляем получившееся значение:

    Пример 3

    Дано: 5x²+3x+7

    Сначала вычислим дискриминант, как в предыдущих случаях.

    D=9-4*5*7=9-140= -131.

    Дискриминант отрицательный, значит, корней нет.

    После получения результата стоит раскрыть скобки и проверить результат. Должен появиться исходный трехчлен.

    Альтернативный способ решения

    Некоторые люди так и не смогли подружиться с дискриминантом. Можно еще одним способом произвести разложение квадратного трехчлена на множители. Для удобства способ показан на примере.

    Дано: x²+3x-10

    Мы знаем, что должны получиться 2 скобки: (_)(_). Когда выражение имеет такой вид: x²+bx+c, в начале каждой скобки ставим x: (x_)(x_). Оставшиеся два числа – произведение, дающее «c», т. е. в этом случае -10. Узнать, какие это числа, можно только методом подбора. Подставленные числа должны соответствовать оставшемуся слагаемому.

    К примеру, перемножение следующих чисел дает -10:

    • -1, 10;
    • -10, 1;
    • -5, 2;
    • -2, 5.
    1. (x-1)(x+10) = x2+10x-x-10 = x2+9x-10. Нет.
    2. (x-10)(x+1) = x2+x-10x-10 = x2-9x-10. Нет.
    3. (x-5)(x+2) = x2+2x-5x-10 = x2-3x-10. Нет.
    4. (x-2)(x+5) = x2+5x-2x-10 = x2+3x-10. Подходит.

    Значит, преобразование выражения x2+3x-10 выглядит так: (x-2)(x+5).

    Важно! Стоит внимательно следить за тем, чтобы не перепутать знаки.

    Разложение сложного трехчлена

    Если «a» больше единицы, начинаются сложности. Но все не так трудно, как кажется.

    Чтобы выполнить разложение на множители, нужно сначала посмотреть, возможно ли что-нибудь вынести за скобку.

    Например, дано выражение: 3x²+9x-30. Здесь выносится за скобку число 3:

    3(x²+3x-10). В результате получается уже известный трехчлен. Ответ выглядит так: 3(x-2)(x+5)

    Как раскладывать, если слагаемое, которое находится в квадрате отрицательное? В данном случае за скобку выносится число -1. К примеру: -x²-10x-8. После выражение будет выглядеть так:

    Схема мало отличается от предыдущей. Есть лишь несколько новых моментов. Допустим, дано выражение: 2x²+7x+3. Ответ также записывается в 2-х скобках, которые нужно заполнить (_)(_). Во 2-ю скобку записывается x, а в 1-ю то, что осталось. Это выглядит так: (2x_)(x_). В остальном повторяется предыдущая схема.

    Число 3 дают числа:

    • -1, -3;
    • -3, -1;
    • 3, 1;
    • 1, 3.

    Решаем уравнения, подставляя данные числа. Подходит последний вариант. Значит, преобразование выражения 2x²+7x+3 выглядит так: (2x+1)(x+3).

    Другие случаи

    Преобразовать выражение получится не всегда. При втором способе решение уравнения не потребуется. Но возможность преобразования слагаемых в произведение проверяется только через дискриминант.

    Стоит потренироваться решать квадратные уравнения, чтобы при использовании формул не возникало трудностей.

    Полезное видео: разложение трехчлена на множители

    Вывод

    Пользоваться можно любым способом. Но лучше оба отработать до автоматизма. Также научиться хорошо решать квадратные уравнения и раскладывать многочлены на множители нужно тем, кто собирается связать свою жизнь с математикой. На этом строятся все следующие математические темы.

    Частично использовать разложение на множители разность степеней мы уже умеем - при изучении темы «Разность квадратов» и «Разность кубов» мы научились представлять как произведение разность выражений, которые можно представить как квадраты или как кубы некоторых выражений или чисел.

    Формулы сокращенного умножения

    По формулам сокращенного умножения:

    разность квадратов можно представить как произведение разности двух чисел или выражений на их сумму

    Разность кубов можно представить как произведение разности двух чисел на неполный квадрат суммы

    Переход к разности выражений в 4 степени

    Опираясь на формулу разности квадратов, попробуем разложить на множители выражение $a^4-b^4$

    Вспомним, как возводится степень в степень - для этого основание остается прежним, а показатели перемножаются, т. е ${(a^n)}^m=a^{n*m}$

    Тогда можно представить:

    $a^4={{(a}^2)}^2$

    $b^4={{(b}^2)}^2$

    Значит, наше выражение можно представить, как $a^4-b^4={{(a}^2)}^2$-${{(b}^2)}^2$

    Теперь в первой скобке мы вновь получили разность чисел, значит вновь можно разложить на множители как произведение разности двух чисел или выражений на их сумму: $a^2-b^2=\left(a-b\right)(a+b)$.

    Теперь вычислим произведение второй и третьей скобок используя правило произведения многочленов, - умножим каждый член первого многочлена на каждый член второго многочлена и сложим результат. Для этого сначала первый член первого многочлена - $a$ - умножим на первый и второй член второго (на $a^2$ и $b^2$),т.е. получим $a\cdot a^2+a\cdot b^2$, затем второй член первого многочлена -$b$- умножим на первый и второй члены второго многочлена (на $a^2$ и $b^2$),т.е. получим $b\cdot a^2 + b\cdot b^2$ и составим сумму получившихся выражений

    $\left(a+b\right)\left(a^2+b^2\right)=a\cdot a^2+a\cdot b^2+ b \cdot a^2 + b\cdot b^2 = a^3+ab^2+a^2b+b^3$

    Запишем разность одночленов 4 степени с учетом вычисленного произведения:

    $a^4-b^4={{(a}^2)}^2$-${{(b}^2)}^2={(a}^2-b^2)(a^2+b^2)$=$\ \left(a-b\right)(a+b)(a^2+b^2)\ $=

    Переход к разности выражений в 6 степени

    Опираясь на формулу разности квадратов попробуем разложить на множители выражение $a^6-b^6$

    Вспомним, как возводится степень в степень - для этого основание остается прежним, а показатели перемножаются, т. е ${(a^n)}^m=a^{n\cdot m}$

    Тогда можно представить:

    $a^6={{(a}^3)}^2$

    $b^6={{(b}^3)}^2$

    Значит, наше выражение можно представить, как $a^6-b^6={{(a}^3)}^2-{{(b}^3)}^2$

    В первой скобке мы получили разность кубов одночленов, во второй сумму кубов одночленов, теперь вновь можно разложить на множители разность кубов одночленов как произведение разности двух чисел на неполный квадрат суммы $a^3-b^3=\left(a-b\right)(a^2+ab+b^2)$

    Исходное выражение принимает вид

    $a^6-b^6={(a}^3-b^3)\left(a^3+b^3\right)=\left(a-b\right)(a^2+ab+b^2)(a^3+b^3)$

    Вычислим произведение второй и третье скобок используя правило произведения многочленов, - умножим каждый член первого многочлена на каждый член второго многочлена и сложим результат.

    $(a^2+ab+b^2)(a^3+b^3)=a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5$

    Запишем разность одночленов 6 степени с учетом вычисленного произведения:

    $a^6-b^6={(a}^3-b^3)\left(a^3+b^3\right)=\left(a-b\right)(a^2+ab+b^2)(a^3+b^3)=(a-b)(a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5)$

    Разложение на множители разности степеней

    Проанализируем формулы разности кубов, разности $4$ степеней, разности $6$ степеней

    Мы видим, что в каждом из данных разложений присутствует некоторая аналогия, обобщая которую получим:

    Пример 1

    Разложить на множители ${32x}^{10}-{243y}^{15}$

    Решение: Сначала представим каждый одночлен как некоторый одночлен в 5 степени:

    \[{32x}^{10}={(2x^2)}^5\]\[{243y}^{15}={(3y^3)}^5\]

    Используем формулу разности степеней

    Рисунок 1.