Как видят мир насекомые? Как видят мухи человека? Интересные факты о зрении насекомых. У мухи уникальный мозг

И у мух, и у пчел по пять глаз. Три простых глаза расположены в верхней части головы (можно сказать, на темени), а два сложных, или фасеточных - по бокам головы. Сложные глаза мух, пчел (а также бабочек, стрекоз и некоторых других насекомых) - предмет восторженного изучения ученых. Дело в том, что эти органы зрения устроены очень интересно. Они состоят из тысяч отдельных шестиугольников, или, говоря научным языком, фасеток. Каждая из фасеток — это миниатюрный глазок, который дает изображение отдельной части предмета. В сложных глазах комнатной мухи примерно 4000 фасеток, у рабочей пчелы - 5000, у трутня - 8000, у бабочки - до 17 000, у стрекозы - до 30 000. Получается, что глаза насекомых посылают в их мозг несколько тысяч изображений отдельных частей предмета, которые хотя и сливаются в изображение предмета в целом, но все же этот предмет выглядит как бы сложенным из мозаики.

Зачем нужны фасеточные глаза? Считается, что с их помощью насекомые ориентируются в полете. В то время как простые глаза предназначены для рассматривания предметов, находящихся вблизи. Так, если пчеле удалить или заклеить сложные глаза, то она ведет себя как слепая. Если же заклеиваются простые глаза, то кажется, что у насекомого замедленная реакция.

1,2 - Фасеточные (сложные) глаза пчелы или мухи
3
- три простых глаза пчелы или мухи

Пять глаз позволяют насекомым охватывать 360 градусов , то есть видеть все, что происходит спереди, с обоих боков и сзади. Может быть, поэтому к мухе так сложно подобраться незамеченным. А если учесть, что сложные глаза гораздо лучше видят движущийся предмет, чем неподвижный, то остается только удивляться, как у человека иногда все же получается прихлопнуть муху газетой!

Особенность насекомых с фасеточными глазами улавливать даже малейшее движение отображена в следующем примере: если пчелы и мухи усядутся вместе с людьми смотреть кинофильм, то им будет казаться, что двуногие зрители подолгу рассматривают один кадр, прежде чем перейти к рассматриванию следующего. Чтобы насекомые могли смотреть кино (а не отдельные кадры, наподобие фото), то пленку проектора нужно крутить в 10 раз быстрее.

Стоит ли завидовать глазам насекомых? Наверное, нет. К примеру, глаза мухи видят многое, но не способны к пристальному разглядыванию. Вот почему они обнаруживают пищу (каплю варенья, например), ползая по столу и буквально на нее натыкаясь. А пчелы из-за особенностей своего зрения не различают красный цвет - для них он черный, серый или синий.

Если рассматривать глаз насекомого под сильным увеличительным стеклом, то мы увидим, что состоит он из мельчайшей круглой решетки. А кажется это по той причине, что глаз насекомого состоит из множества маленьких глазков, на научном языке называемых «фасетками». Сегодня пробуем понять, почему у насекомых глаза круглые, как видят насекомые окружающие их предметы? Эти так часто интересуют ребенка, но ?

Особенности строения органов зрения

Глаза насекомых разделяют на три вида:

  1. сложные (фасеточные);
  2. простые;
  3. личиночные.

Строение таких глаз отличается, и видеть ими насекомые способны неодинаково.

Сложное строение глаз преобладает у максимального количества насекомых, зависит от развития самого живого существа. Такие глаза состоят из множественных отдельных структурных элементов – омматидиев.

Через них проводится, преломляется свет, воспринимаются зрительные сигналы. Каждый отдельный омматидий отличается наличием аппарата пигментного изолирования, который целиком или частично предохраняет от попадания бокового света.

Омматидии разделяют на два основных вида, что влияет на особенности строения глаз.

  1. Аппазиционный глаз имеет изолированные омматидии. Каждый из них способен работать индивидуально от остальных, видя только определенную часть окружающего пространства. Картинка складывается в мозгу насекомого, словно мельчайшая мозаика.
  2. Во второй группе – суперпозиционной, омматидии, правда частично, но имеют защищенность от боковых лучей. Это несколько мешает насекомым видеть при интенсивности света, но улучшает зрение в сумерках.

К простым глазам относятся органы зрения, которые имеются у некоторых насекомых и располагаются, как правило, на верхней части головы.

Строение таких глаз существенно упрощено, видят они слабее остальных. Есть мнение, что такие глаза полностью лишены зрительной возможности, и только несут ответственность за улучшение функций сложных глаз.

И если закрасить насекомому фасеточные , оно не сможет ориентироваться в пространстве, даже имея хорошо выраженные глазки простого строения.

Личиночными глазами называют органы зрения, которые имеют личинки насекомых, обладающие возможностью полностью превращаться в сложные глаза. Структура их несколько упрощена, что не позволяет насекомому хорошо видеть.

Отличительные особенности зрения насекомых

Зрение насекомых изучается давно. Благодаря повышенному интересу ученых специалистов, удалось выяснить массу отличительных особенностей, связанных с работоспособностью глаз.

И все равно, строение зрительных органов настолько различно, что качество восприятия изображения, цветность, объемы, движение у разных групп насекомых отличается. На это влияют некоторые факторы:

  • сложный глаз отличается структурным строением омматидиев и численностью, выпуклостью, расположением и формами;
  • простые глаза и стеммы отличаются числом и тонкостью строения, имея огромное количество вариантов.

Глаза насекомых с разной численностью омматидиев:

  • у муравья имеется 6000 фасеток
  • у мухи 4000
  • у жуков 9000
  • у бабочек 17000
  • и самый сложный глаз у стрекозы имеет 28000- 30000 фасеток.

Насекомые видят по-разному: доступный для зрения лучевой спектр понижен с левой стороны, и увеличен с правой.

У стрекозы только нижние фасетки различают цвета, верхние различают форму. Глаза стрекозы занимают большую часть головы, поэтому стрекоза способна видеть — чувствовать, то что происходит у нее за спиной. Стрекоза не видит объект, а чувствует его тепло, видит в инфракрасном диапазоне.

Насекомые умеют отличать формы, но происходит это не так, как у человека. Бабочки и пчелы игнорируют круг или овал, но привлекутся радиальным строением, напоминающим цветочный венчик. Предмет, отличающийся сложностью фигуры и игры теней, привлечет внимание гораздо оперативней. Интересно и то, что пчелам нравятся предметы, отличающиеся малыми размерами.
Примечательно, что насекомые способны «узнавать» предметы даже по расположению.

Способность видеть окружающую действительность во всём разнообразии цветов и оттенков - это уникальная возможность, которую природа даровала человеку. У насекомых, как и у людей, тоже есть орган зрения, но они воспринимают мир красок иначе. Современные учёные, воспользовавшись специальными приборами, сумели немного приблизиться к разгадке тайны и понять, как видят насекомые предметы, цвета и различные очертания.

Способы восприятия

У разных насекомых органы зрения неодинаковы. Если одни представители класса беспозвоночных могут лишь отличить свет от темноты или наблюдать за миром в чёрно-белых тонах, тогда другие способны распознавать цвета или вовсе видеть всё в ультрафиолетовом спектре.

Способность видеть у насекомых несколько отличается от зрения других живых существ. Некоторые виды имеют несколько пар глаз, которые могут находиться не только на голове, но и на других частях тела. Насекомые не различают мелких деталей и видят всего лишь на расстоянии 1-2 метров. Они могут хорошо ориентироваться на закате благодаря своему умению определять плоскость поляризации света. Мигание световых волн они различают в десятки раз лучше людей. Насекомые воспринимают окружающий мир тремя путями:

  1. С помощью всей поверхности тела . Это довольно интересная способность многих насекомых, при которой не нужно иметь глаза. Большой минус состоит в том, что живые существа не различают предметы, а способны лишь распознать свет от темноты. Он проникает к голове, сначала проходя через кутикулу и внешний слой кожи. В клетках мозга начинается реакция, и насекомое ощущает, что на него попадает свет. Такая способность помогает насекомым, живущим под землёй. Подобная разновидность зрения существует у тараканов, отдельных видов гусениц и тли.
  2. Простыми глазами . Насекомым, имеющим подобные зрительные органы, повезло гораздо больше, ведь они способны не только отличить день от ночи, но и различать некоторые объекты, а также их форму. Как правило, простые глаза располагаются на передней части головы насекомого и состоят из роговицы, которая принимает свет из зрительных нервов. Зрительные органы этого типа чаще всего бывают у личинок насекомых. У личинки комара вместо глаз есть пигментные пятна, улавливающие свет. Зато гусеницы имеют по 5-6 органов зрения с каждой стороны головы. С их помощью они неплохо разбираются в формах. Вертикальные предметы они видят лучше, чем горизонтальные, поэтому из двух деревьев, скорее всего, выберут то, что выше, а не шире.
  3. . Они зачастую встречаются у взрослых насекомых и обычно расположены по бокам их головы. Такие глаза помогают распознавать любые формы объектов и даже различать цвета. Они имеют сложную структуру и состоят из совокупности линз, именуемых фасетками. Интересная особенность состоит в том, что беспозвоночные млекопитающие не видят окружающий мир целиком, а только кусочки изображений, которые уже в мозге собираются в единый пазл. К примеру, муха в процессе полёта успевает соединить все фрагменты в полную картину, поскольку именно в движении она видит гораздо лучше, чем в состоянии покоя.

Чёткость изображения у различных представителей класса беспозвоночных неодинаковая и зависит от роли, которую играет в их жизни зрительное восприятие. Одни могут рассмотреть только очертания объектов, другие представляют предметы вытянутыми в длину, а третьи видят чёткие и пропорциональные изображения.

Цветовое зрение насекомых

Давно известно, что некоторые виды насекомых хорошо различают цвета, а диапазон воспринимаемых ими оттенков отличается от человеческого. Цветовое зрение играет немалую роль в жизни этих членистоногих животных. Они распознают сигналы цветущего растения (запах, окраску венчиков) и находят цветы с необходимым нектаром или пыльцой. Насекомые, отыскав подходящий цветок, запоминают его детали, что помогает потом им найти нужное растение и сэкономить время в период сбора пыльцы.

Мозг мухи вряд ли больше, чем отверстие в швейной иголке. Но муха, обладая таким мозгом, умудряется обработать более ста статических изображений (кадров) в секунду. Как известно, у человека предел - примерно 25 кадров в секунду. А муха нашла более простой и эффективный способ обработки изображений. И это не могло не заинтересовать исследователей в области робототехники.

Обнаружено, что мухи обрабатывают 100 кадров в секунду. И это позволяет им во время полета обнаружить препятствие в течение нескольких миллисекунд (миллисекунда – это одна тысячная секунды). В частности, исследователи сфокусировали своё внимание на оптических потоках, которые они назвали "оптические полевые потоки ". Похоже на то, что это оптическое поле обрабатывается только первым слоем нейронов. Они обрабатывают “грубый” исходный сигнал от каждого мушиного “пикселя” . И пересылают обработанную информацию на следующий слой нейронов. И, как утверждают исследователи, этих вторичных нейронов всего лишь 60 штук в каждом полушарии мушиного мозга. Тем не менее, мушиному мозгу удаётся уменьшить или раздробить поле зрения на множество протекающих последовательно “векторов движения”, которые дают мухе вектор направления движения и “мгновенную” скорость. И что интересно, то, что муха это всё видит!

Мы, люди (и не все), знаем что такое вектор и мгновенная скорость. А муха об этих вещах, естественно, не имеет никакого понятия. И таким способностям мозга мухи обрабатывать огромное количество информации можно только позавидовать. А почему мы видим всего лишь примерно 50 кадров в секунду, а муха 100? Трудно сказать, но есть разумные предположения на этот счёт. Как взлетает муха? Почти “мгновенно”, с огромным ускорением. Мы такую перегрузку врадли бы выдержали. Но можно создать роботизированный мозг, который по скорости обработки информационных потоков не уступит мозгу мухи.

Чтобы попытаться понять, как крошечный мушиный мозг может обрабатывать такое огромный поток информации, исследователи в Мюнхене создали “симулятор полета” для мухи. Муха могла летать, но удерживалось на привязи. Электроды регистрировали реакцию клеток мозга мухи. А исследователи пытались понять, что же происходит в мозге мухи во время полёта.

Первые результаты очевидны. Мухи обрабатывают изображения от их неподвижных глаз совсем не так, как это делает человек. При перемещении мухи в пространстве, в ее мозге формируются “оптические полевые потоки” (optical flux fields), которые и дают мухе направление движения.

Как бы это видел человек? Например, при движении вперёд, окружающие объекты мгновенно бы разбегались по сторонам. А объекты в поле зрения казались бы большими, чем они есть на самом деле. И казалось бы, что ближайшие и удалённые объекты перемещаются по-разному.

Скорость и направление, с которыми объекты мелькают перед мушиными глазами, генерируют типичные шаблоны векторов движения – полевые потоки. Которые на втором этапе обработки изображения достигают так называемой "lobula plate" – центра зрения более высокого уровня. В каждом полушарии мозга мухи есть всего лишь 60 нервных клеток, ответственных за зрение. Каждая из этих нервных клеток реагирует только на сигнал с определенной интенсивностью.

Но для анализа оптических потоков важна информация, поступающая от двух глаз одновременно. Эту связь обеспечивают особые нейроны, называемые “VS cells”. Они и позволяют мухе точно оценить своё местоположение в пространстве и скорость полёта. Похоже на то, что “VS cells” ответственны за распознавание и реакцию на вращающий момент, действующий на муху во время её манёвров в полёте.

Исследователи в области робототехники работают над тем, чтобы разработать роботов, которые могут наблюдать окружающую среду при помощи цифровых камер, изучать то, что они видят и адекватно реагировать на изменение текущей ситуации. И эффективно и безопасно общаться и взаимодействовать с людьми.

Например, уже ведутся разработки маленького летающего робота, положение и скорость полёта которого будет контролироваться при помощи компьютерной системы, имитирующей зрение мухи.

Мы ограниченны нашими собственными представлениями. Восприятие реальности происходит за счет функции различных органов, и лишь не многие понимают, что это довольно-таки ограниченное видение. Может быть мы видим очень тусклую версию истинной реальности, из-за того что органы чувств несовершенны. На самом деле мы не можем видеть мир, глазами других форм жизни. Но благодаря науке мы можем приблизиться к этому. Изучая, можно выявить, как построены глаза других животных и как они функционируют. Например, сравнивая с нашим зрением, выявляя число колбочек и палочек или формы их глаз или зрачков. И это, хоть как то приблизит к тому миру, не опознанному нами.

Как видят птицы

Птицы имеют четыре типа колбочек, или так называемых светочувствительных рецепторов, тогда как у человека только три. А область зрения достигает до 360%, если сравнить с человеком, то его равняется 168%. Это позволяет птицам визуализировать мир с совершенно другой точки зрения и гораздо насыщенней, чем восприятие человеческого зрения. Так же большинство птиц может видеть в ультрафиолетовом спектре. Необходимость в таком зрении возникает, когда они добывают себе пищу. Ягоды и другие плоды имеют восковое покрытие, которое отражает ультрафиолетовый цвет, делая их выделяющимися на фоне зеленой листвы. Некоторые насекомые также отражают ультрафиолетовый свет, давая птицам неоспоримое преимущество.

Слева - так видит наш мир птица, справа - человек.

Как видят насекомые

Насекомые имеют сложное строение глаза, состоящего из тысяч линз, образующих поверхность схожую с футбольным мячом; в котором каждая линза - это один «пиксель». Как и мы, насекомые имеют три светочувствительных рецепторов. Восприятие цвета у всех насекомых разное. Например, некоторые из них, бабочки и пчелы, могут видеть в ультрафиолетовом спектре, где длина световой волны варьируется между 700 hm и 1 мм. Способность видеть ультрафиолетовый цвет позволяет пчелам видеть узор на лепестках, который направляет их к пыльце. Красный - это единственная окраска, которая не воспринимается пчелами как цвет. Поэтому в природе редко встречаются цветы чисто красного цвета. Еще один удивительный факт - пчела не может закрывать глаза, и поэтому спит с открытыми глазами.

Слева - так видит наш мир пчела, справа - человек. А вы знали? У богомолов и стрекоз самое большое количество линз и эта цифра доходит до 30 000.

Как видят собаки

Полагаясь на устаревшие данные многие, до сих пор полагают, что собаки видят мир в черно-белых красках, однако это ошибочное мнение. Совсем недавно ученые обнаружили, что у собак цветное зрение, как и у человека, но оно отличается. Колбочек содержащихся в сетчатке глаза меньше, в сравнение с человеческим глазом. Именно они отвечают за цветовосприятие. Особенностью зрения является отсутствия колбочек распознающих красный цвет, поэтому они не могут различать оттенки между желто-зелеными и оранжево-красными цветами. Это схоже с дальтонизмом у людей. За счет большего количества палочек, собаки способны видеть в темноте в пять раз лучше, чем мы. Еще одной особенностью зрения является возможность определения дистанции, что очень помогает им в охоте. Но в близком расстоянии они видят расплывчато, им необходима дистанция 40 см для того, чтобы увидеть объект.

Сравнение, как видят собака и человек.

Как видят кошки

Кошки не могут сфокусироваться на мелких деталях, поэтому видят мир чуть размытым. Им намного проще воспринимать объект в движении. А вот мнения по поводу того, что кошки способны видеть в абсолютной темноте не нашел подтверждения исследованиями ученых, хотя в темноте они видят гораздо лучше, чем днем. Наличие у кошек третьего века помогает им пробираться сквозь кусты и траву во время охоты, оно смачивает поверхность и защищает от пыли и повреждений. Близко его можно рассмотреть, когда кошка полу дремлет и пленка выглядывает сквозь полузакрытые глаза. Еще одной особенностью кошачьего зрения является особенность различать цвета. Например, главные цвета - это голубой, зеленый, серый, а белый и желтый могут и путать.

Как видят змеи

Остротой зрения, как другие животные змеи не блещут, так как их глаза покрыты тонкой пленкой, из-за которой видимость получается мутной. Когда змея сбрасывает кожу, вместе с ней сходит пленка, что делает зрение змей в этот период особенно отчетливым и острым. Форма зрачка змеи может меняться в зависимости от образа охоты. Например, у ночных змей он вертикальный, а у дневных круглой формы. Самыми необычными глазами обладают плетевидные змеи. Их глаза напоминают чем-то замочную скважину. Из-за такого необычного строения глаз змея умело пользуется своим бинокулярным зрением - то есть каждый глаз формирует цельную картинку мира. Глаза змеи могут воспринимать инфракрасное излучение. Правда, они «видят» тепловое излучение не глазами, а специальными чувствительными к теплу органами.

Как видят ракообразные

Креветки и крабы, у которых тоже сложные глаза, имеют не до конца изученную особенность - они видят очень мелкие детали. Т.е. их зрение довольно грубое, и им тяжело что-либо рассмотреть на расстоянии больше 20 см. Однако они очень хорошо распознают движение.

Неизвестно, зачем раку-богомолу нужно превосходящее остальных ракообразных зрение, однако так оно развилось в процессе эволюции. Считается, что у раков-богомолов наиболее сложное цветовое восприятие - у них есть 12 типов зрительных рецепторов (у людей только 3). Эти зрительные рецепторы располагаются на 6 рядах разнообразных рецепторов-омматидий. Они позволяют раку воспринимать циркулярно-поляризованный свет, а также гиперспектральный цвет.

Как видят обезьяны

Цветовое зрение человекообразных обезьян трихроматическое. У дурукулей, ведущих ночую жизнь, монохроматическое - с таким лучше ориентироваться в темноте. Зрение обезьян определяется образом жизни, питанием. Обезьяны по цвету различают съедобное и несъедобное, узнают степень зрелости плодов и ягод, избегают ядовитых растений.

Как видят лошади и зебры

Лошади крупные животные, поэтому им необходимы широкие возможности органов зрения. У них превосходное периферическое зрение, которое позволяет им видеть почти все, что находиться вокруг. Вот почему их глаза направлены в стороны, а не прямо как у людей. Но это так же означает, что перед носом у них слепое пятно. И они всегда видят все из двух частей. Зебры и лошади видят ночью лучше, чем человек, но видят они в основном в серых оттенках.

Как видят рыбы

Каждый вид рыб видит по-разному. Вот, например акулы. Кажется, что глаз акулы очень похож на человеческий, но действует он совершенно по-другому. Акулы не различают цвета. У акулы есть дополнительный отражающий слой за сетчаткой глаза, благодаря чему она обладает невероятной остротой зрения. Акула видит в 10 раз лучше человека в чистой воде.

Говоря в целом о рыбах. В основном рыбы не способны видеть дальше 12 метров. Различать объекты они начинают на расстоянии двух метров от них. У рыб о отсутствуют веки, но тем не менее, они защищены специальной пленкой. Еще одна из особенностей зрения - способность видеть за пределами воды. Поэтому рыболовам не рекомендуется надевать яркой одежды, которая может вспугнуть.