Космос для вас вреден. О последствиях полетов к звездам

Дайте космонавту и герою Космонавта и Героя April 5th, 2016

Александр Мисуркин - уникальный космонавт. Он провел 167 суток на орбите, из них 20 часов в открытом космосе, и в числе экипажа "Союза" впервые пролетел по "короткой схеме" от Байконура до МКС за 6 часов. Но его уникальность не в этом, а в том, что даже спустя два года после полета он не имеет звания "летчик-космонавт". Он летчик - налет более тысячи часов. Он космонавт. Но не летчик-космонавт. И не Герой, хотя после первого полета сейчас все космонавты получают Золотую Звезду. Про него просто... забыли.

О почти детективной истории того как Звезда обошла героя рассказано на сайте "Новостей космонавтики". Ситуация складывается странная: вроде бы все заинтересованные участники присуждения награды в курсе о ситуации, и никто не против. Александр не бил морды командиру взвода Звездного десанта, не дебоширил на ночных улицах Звездного городка, и не купался в фонтанах на День космонавтики. Однако, все представления к награде неотвратимо терялись в недрах многоступенчатой бюрократической машины. Поначалу какие-то объективные причины для проволочек были: по данным ГИБДД их экипаж на орбите превысил первую космическую и был оштрафован.

Примерно через полгода, то есть весной 2014 г., кадровики ЦПК и РКК «Энергия» наконец подготовили единое представление экипажа к наградам: Сашу Мисуркина - к званию Героя Российской Федерации, Павла Виноградова - к ордену «За заслуги перед Отечеством» III степени - и согласно принятому порядку отправили на согласование в администрацию Московской области.

К концу лета это представление вернулось в отдел кадров «Энергии» по той причине, что у П. В. Виноградова обнаружился неоплаченный штраф за превышение скорости в июне 2013г. (Павел в это время был в космосе и летел со скоростью почти 8км/с. Неужели ГИБДД стало размещать радары на орбите?) Дело затягивалось. Чтобы не задерживать награждение Мисуркина, кадровики по просьбе Павла Владимировича сделали отдельные представления на каждого из них, и документы Мисуркина снова были отосланы в администрацию области. Виноградову же, чтобы сдвинуть дело с мертвой точки, пришлось оплатить штраф и написать «оправдательное» письмо на имя губернатора области А. Ю. Воробьёва с обещанием исправиться и никогда больше «не нарушать».

Но впоследствии никаких вразумительных объяснений наградного игнора не поступало. Скорее всего ситуацию усугубила реформа Роскосмоса : создание ОРКК, перерождение Федерального космического агентства в госкорпорацию. И сейчас, нужная бумага лежит на чьем-нибудь столе под грудой новых документов или прежний владелец кабинета не успел подписать, а прошедший ему на смену чиновник не стал разбираться в старых бумагах. В общем, всякое бывает. И в текущей ситуации мы можем либо негодовать от равнодушия бюрократии, либо что-то предпринять.

Я предлагаю подписать онлайн-письмо новому главе Роскосмоса . Не знаю будет ли какой эффект, иногда петиции работают, иногда нет. Мы можем по крайней мере попытаться, заодно выразив свое уважение космонавту, не дожидаясь официальных церемоний.

Правообладатель иллюстрации AP Image caption В настоящем космосе трудно выглядеть так же хорошо, как это получилось у Сандры Буллок в кино

Многие мечтают о полете на орбиту, на Луну, а то и дальше. Но те, кто на самом деле отправляется в космос, сталкиваются с рядом опасностей для здоровья.

По словам врача из культового сериала "Звездный путь" Леонарда Маккоя (он же Костоправ, он же Костлявый), "космос - это болезни и опасности в обертке тьмы и безмолвия". И он во многом прав. Путешествие в космосе может сделать вас слабым, усталым, больным и, с определенной долей вероятности, страдающим от депрессии.

"Мы не приспособлены к существованию в безвоздушном пространстве, наша эволюция не включала в себя подобное", - говорит Кевин Фонг, основатель Центра изучения медицины в экстремальных условиях, в космосе и на больших высотах Университетского колледжа в Лондоне и автор книги "Предел. Жизнь, смерть и возможности человеческого тела".

Представим, что вам посчастливилось-таки полететь в космос. И вот вы лежите в кресле и считаете секунды до старта. Чего вам стоит ждать от своего тела? Как оно поведет себя в ближайшие минуты, часы, дни и месяцы? Мы спросили об этом ученых, инженеров и астронавтов, которые по опыту знают, что происходит с человеком в условиях, когда наш организм находится в совершенно искусственной, чуждой для него ситуации. Как с этим справляться?

10 секунд после старта. Возможная потеря сознания

Космический аппарат отделяется от пускового комплекса, и ускорение возрастает до 4G. Вы чувствуете себя в четыре раза тяжелее своего нормального веса. Вас вдавливает в кресло, очень трудно даже шевельнуть рукой.

"Из-за перегрузки кровь смещается в ноги, и, чтобы оставаться в сознании, нам нужно обеспечивать кровоснабжение мозга", - так мне объяснял Джон Скотт, старший научный сотрудник лаборатории изучения возможностей человека, когда я посетил центрифугу компании QinetiQ в Фарнборо на юге Англии.

Из-за того, что кровь отливает от головы, у военных летчиков даже при относительно низких перегрузках случается серая пелена перед глазами. Правда, в современных пилотируемых космических аппаратах, например, в российском "Союзе", поза космонавта выбрана таким образом (с приподнятыми ногами), чтобы направить кровь от ног к груди и дальше к голове.

10 минут после старта. Тошнота

"В первую очередь космонавты жалуются на тошноту и рвоту", - говорит Фонг. Отсутствие гравитации влияет на наше внутреннее ухо, которое отвечает за чувство равновесия, координацию и ориентацию в пространстве. "А еще это [отсутствие гравитации] снижает способность отслеживать движущиеся объекты", - добавляет он.

У некоторых астронавтов кроме небольших изменений зрения были обнаружены отек зрительного нерва, изменения на сетчатке, деформация глазного яблока Уильям Джеффс,

НАСА

Даже если не обращать внимания на шарики рвоты, летающие в невесомости по капсуле, "космическая болезнь" может вызвать слабость и неспособность выполнять поставленные задачи.

Один такой случай чуть не сорвал лунную программу "Аполлон". Во время полета "Аполлон-9" (это было первое испытание лунного посадочного модуля на орбите) Расти Швайкарт поначалу был не в состоянии выполнить некоторые из поставленных задач, и продолжительность выхода в открытый космос пришлось сократить.

Ануше Ансари, ставшая первым космическим туристом среди женщин, тоже говорила, что ей пришлось столкнуться с тошнотой, рвотой и потерей ориентации.

Два дня после старта. Опухшее лицо

Недавно я брал интервью у канадского астронавта Криса Хэдфилда. По его словам, на орбите у него постоянно был заложен нос. В космосе мы будто постоянно стоим на голове; жидкость скапливается в верхней части тела. Результат - отек лица. Похоже на отек ног во время долгого авиаперелета.

Они перевозбуждены из-за пребывания в космосе, посменно работают, да еще должны привыкать ко сну в спальном мешке, пристегнутыми ремнями к стене

"Наше тело гонит жидкость вверх, - объясняет Фонг. - Когда мы оказываемся в невесомости, системы организма продолжают работать, и поскольку они не встречают сопротивления в виде гравитации, ткани головы отекают".

Но то, что вы будете выглядеть толще, чем обычно - это еще не беда. Недавние исследования также показывают, что космический полет может повлиять на зрение. Исследователи из Университета Техаса обследовали астронавтов с помощью МРТ-сканеров, и две трети из обследованных имели отклонения от нормы.

"Причины этого мы пока не выяснили, - признает представитель НАСА Уильям Джеффс. - У некоторых астронавтов кроме небольших изменений зрения были обнаружены отек зрительного нерва, изменения сетчатки, деформация глазного яблока. Возможно, из-за повышения внутричерепного давления".

Неделя после старта. Снижение массы мышц и костей

Когда отсутствует сила тяжести, наше тело начинает деградировать.

Правообладатель иллюстрации Thinkstock Image caption Прежде чем решиться сделать первый шаг на Марсе, позаботьтесь о своих костях и мышцах!

"Многим системам нашего организма для правильного функционирования нужна сила тяжести, - объясняет Фонг. - В некоторых экспериментах крысы за семь-десять дней полета теряли до трети мышечной массы – а это очень много!" Деградирует и сердечная мышца.

Когда вы находитесь на орбите, например, на Международной космической станции, это не такая уж большая проблема. Но представим себе, что вы задумали полет на Марс. Вы приземляетесь в 200 миллионах километров от дома, а ваш экипаж не может ходить…

С самого начала космической эры ученые ломали голову над тем, как помочь космонавтам поддерживать физическую форму. Каждый член экипажа МКС посвящает час в день кардиотренировке и еще час - силовым упражнениям. Несмотря на это, когда они возвращаются на Землю после полугодовой вахты на орбите, ходить им трудно.

Отсутствие силы тяжести влияет и на кости. Они растворяются - почти буквально. "На некоторых несущих участках наблюдались потери в 1-2% в месяц, - говорит Фонг. - Это очень значительные потери костной ткани и огромное количество кальция, который попадает в кровь".

Для будущих исследователей, готовых впервые ступить на поверхность Марса, это может оказаться серьезным препятствием. Обидно будет, если такой важный для человечества шаг закончится банальным переломом ноги.

Две недели после старта. Бессонница

"Бессонница - одна из наиболее распространенных проблем, - говорит Фонг. - Циркадные ритмы космонавтов, их цикл светового дня - все идет наперекосяк". На орбите, где Солнце встает каждые 90 минут, космонавтам с трудом удается приспособиться к отсутствию естественной ночи.

Кроме того, они перевозбуждены из-за пребывания в космосе, посменно работают, да еще должны привыкать ко сну в спальном мешке, пристегнутыми ремнями к стене.

Для борьбы с недосыпанием на МКС оборудованы отдельные спальные отсеки, которые можно затемнить, имитируя ночь. Испытания проходит новая система светодиодного освещения, призванная уменьшить неестественную резкость света на борту станции.

Год после старта. Болезни

Все больше свидетельств того, что космический полет оказывает вредное воздействие на иммунную систему. Исследователи НАСА обнаружили, что белые кровяные клетки дрозофил на орбите менее эффективны при поглощении чужеродных микроорганизмов и борьбе с инфекцией, чем у генетически идентичных мух, оставшихся на Земле.

В дальнем космосе, например, на пути к Луне или Марсу, возможность получить летальную дозу радиации становится все более реальной

Это исследование подтверждается другими работами. Другие насекомые, мыши и саламандры в космосе становятся более уязвимы для болезней. Вероятнее всего, дело опять в отсутствии гравитации.

Еще больше оснований для тревоги дает воздействие космической радиации. Космонавты часто сообщают, что "видят" яркие вспышки света. Причина - в космических лучах, проходящих через их мозг. И это при том, что МКС вращается по достаточно низкой орбите, и атмосфера Земли отчасти защищает обитателей станции от жесткого космического излучения. Но в дальнем космосе, например, на пути к Луне или Марсу, возможность получить летальную дозу радиации становится все более реальной. Это может сделать продолжительные полеты слишком опасными.

Впрочем, наблюдения за астронавтами программы "Аполлон", которые проводили по несколько дней в дальнем космосе на борту слабо защищенной капсулы, не выявили повышенной вероятности заболевания раком.

Два года после старта. Депрессия

Вы пережили взлет, преодолели тошноту, научились спать в космосе и делаете зарядку, чтобы по прибытии на Марс уверенно шагнуть на его поверхность. Вы в отличной физический форме. Но как вы себя чувствуете психологически?

В июне 2010 года Европейское космическое агентство и российский Институт медико-биологических проблем послали шесть человек в "полет на Марс" продолжительностью 520 дней. Имитация полета происходила на окраине Москвы в макете космического корабля. Исследовался стресс, связанный с длительным перелетом, и проблемы, вызванные изоляцией.

Как разрешить психологические проблемы людей, запертых в тесной автоматизированной консервной банке, пьющих переработанную мочу и наблюдающих за иллюминаторами бесконечное безвоздушное пространство?

Путешествие на Марс прошло прекрасно. Это было захватывающее приключение, и у экипажа была масса дел. Хорошо прошла также "прогулка по Марсу". Самой трудной оказалась финальная часть полета - возвращение на Землю. Ежедневные дела стали обременительными, члены экипажа легко раздражались. Дни тянулись медленно. В общем, участников одолела скука.

Как разрешить психологические проблемы людей, запертых в тесной автоматизированной консервной банке, пьющих переработанную мочу и наблюдающих за иллюминаторами бесконечное безвоздушное пространство? Специалисты космических агентств продолжают работать над этой задачей.

"Психологическое здоровье наших астронавтов всегда занимало нас не меньше, чем их физическое состояние, - говорит Джеффс. - Постоянные поведенческие тренинги, исследование и совершенствование технологий коммуникации - все это призвано помочь предотвратить любые потенциальные проблемы".

Для этого в первую очередь нужно набирать в экипажи правильных людей. Нервный срыв у космонавта - это худшее, что может случиться.

Долгие годы эволюции приспособили нас к жизни в условиях стабильной земной гравитации. Атмосфера дает нам защиту и обеспечивает возможность дышать. Наверное, какой-то вариант искусственной гравитации отчасти решит проблему, однако космос в любом случае представляет серьезную угрозу здоровью человека.

В следующем году НАСА планирует начать на МКС годичный эксперимент для более подробного изучения последствий длительного космического полета для астронавтов. А пока всякий, кто решится покинуть сравнительно безопасную орбиту нашей планеты и отправиться к другим мирам, должен помнить: на Земле пока нет врача, подобного культовому персонажу из "Звездного пути". Нет и технологий, которые тот использовал во время своей службы в Звездном Флоте.

Об авторе. Ричард Холлингам - журналист и ведущий подкаста "Исследователи космоса". Он редактирует журнал Space:UK для Британского космического агентства, выступает комментатором запусков для Европейского космического агентства и ведет научные программы на радио Би-би-си.

Оригинал статьи на английском языке можно прочитать на сайте .

Космическая ракета, доставившая в ночь с 13 на 14 сентября 1959 г. вымпел Советского Союза на Луну, прош­ла свой путь за 1,5 суток. Приблизительно столько же времени понадобилось американской космической ракете, произведшей в июле 1964 г. перед падением на поверх­ность Луны фотографирование лунных ландшафтов с близких расстояний. При будущих полетах человека на Луну фактор времени не будет играть большой роли. Длительность этого космического путешествия будет меньше длительности многих путешествий по земным маршрутам.

Но уже при планировании полетов на планеты вопрос длительности путешествия становится важным. Чтобы до­стичь Венеры с наименьшей затратой горючего, необходимо около 150 суток, а для достижения Марса около 260 суток. Разумеется, когда будут использованы более эффективные средства тяги, чем те, которые применяются в космических ракетах наших придерживаться маршрута с наименьшей затратой энер­гии отпадет, время путешествия на планеты можно будет значительно сократить. В принципе, жителю Земли будет возможно значительную часть своего месячного отпуска проводить на одной из соседних планет.

Совершенно иначе выглядит проблема полетов к дру­гим звездам и другим галактикам. Здесь расстояния столь огромны, что фактор времени приобретает решающее значение.

Скорость космической ракеты на различных участках пути ограничивается предельным ускорением, которое способны длительное время переносить пассажиры. Кромеe того, скорость ракеты не может достичь скорости света.

Если ракета будет двигаться с постоянным ускорени­ем 10 м/с 2 , то пассажиры будут чувствовать себя пре­восходно. Состояния невесомости не будет, люди будут стоять на дне кабины ракеты точно так же, как они это делали в различных помещениях при обычной жизни на Земле, и будут испытывать совершенно те же физиче­ские ощущения, в том числе и ощущение того же веса отдельных частей своего тела и веса других предметов. Это объясняется тем, что ускорение силы тяжести на Земле также равно 10 м/с 2 (точнее, 9,81 м/с 2).

Но для уменьшения длительности полета нужна воз­можно большая скорость и, следовательно, возможно большее ускорение. По-видимому, здоровые люди могут длительное, время удовлетворительно переносить посто­янное ускорение в 20 м/с 2 . При таком ускорении ракеты вес пассажира, измеренный в кабине при помощи пру­жинных весов, был бы вдвое больше того, который он имел на Земле. Иначе говоря, пассажир чувствовал бы себя так же, как и на поверхности такой планеты, на которой ускорение силы тяжести и, значит сила тяже­сти, вдвое больше, чем на Земле. Дополнительная нагрузка к обычному весу будет при этом равномерно рас­пределяться по всему организму человека, ее будет зна­чительно легче переносить, чем груз, равный весу челове­ка, взваленный на его плечи. Итак, будем исходить из возможного постоянного ускорения 20 м/с 2 .

При таком ускорении на огромных расстояниях ско­рость может достичь очень больших величин. А при больших скоростях классические законы механики, зако­ны Ньютона, становятся неверными. Необходимо исполь­зовать законы, даваемые теорией относительности Эйн­штейна, которые верны для любых скоростей, и малых и больших.

Для выполнения расчетов нам удобнее принять, что во все время движения постоянным остается отношение силы тяги ракеты к ее массе и это отношение равно

Если бы при космических полетах к звездам и галак­тикам действовала классическая механика, то во все вре­мя движения ускорение а было бы постоянным и было бы справедливо равенство

Однако классическая механика неверна, теория относительности дает следующую форму для мгновенного ускорения:

где υ -скорость космической ракеты в данный момент, а с -скорость света. При очень малых значениях скоро­сти υ в сравнении со скоростью света формулы (60) и (61) практически дают одно и то же, но когда υ/с не очень мало, формула (60) уже неверна.

Если бы движение происходило по законам класси­ческой механики, ускорение было бы постоянным и рав­ным b. Тогда скорость υ и пройденный путь S через вре­мя t после начала движения определялись бы известными из школьного курса физики формулами

Но, как мы видим, согласно формуле (58) по мере роста скорости ускорение будет уменьшаться. Вследствие это­го формулы для скорости и пройденного пути в момент t, даваемые релятивистской механикой, т. е. механикой, основанной на теории относительности, другие и имеют следующий вид:

В классической механике предполагалось, что ско­рость тела может становиться сколь угодно большой. Это следует и из формулы (62), в которой по мере увеличе­ния времени tможет неограниченно возрастать и ско­рость υ. Одной из важнейших основ релятивистской ме­ханики является закон невозможности в природе скоро­cти, большей скорости света. Если в формуле (64) неогра­ниченно увеличивать время t, то скорость υ станет расти неограничено: она будет приближаться к скорости света, но никогда не превзойдет ее.

Самым поразительным выводом теории относительно­сти является утверждение, что ход времени в двух дви­жущихся одна относительно другой системах различен. Именно, если в начальный момент, когда космическая ракета покоилась на поверхности Земли, ход времени для ее пассажиров и ход времени для жителей Земли был одинаков, то после того как ракета станет двигаться, ход времени в ней замедлится. Малому промежутку времени t 2 - t 1 на Земле будет соответствовать малый промежуток времени в ракете τ 2 - τ 1 равный

Формула (63) ведет к удивительным выводам. Если космонавты, покинув Землю, будут совершать полеты на больших скоростях, а затем возвратятся на Землю, то окажется, что от разлуки и до встречи времени у них прошло существенно меньше, чем у жителей Земли. Один из близнецов, путешествовавший в космосе, после возвращения окажется моложе близнеца, остававшегося на Земле. Более того, отец, оставивший на Земле малолет­него сына и совершивший космическое путешествие на больших скоростях, может после возвращения на Землю, оставаясь сам еще сравнительно молодым человеком, за­стать сына дряхлым стариком.

В 1895 г. Г. Уэллс написал роман «Машина времени». Из всех фантастических романов писателя этот роман казался самым фантастическим. Однако, как мы видим, путешествие во времени все-таки оказывается возмож­ным. Машиной времени должна служить космическая ракета, развивающая большие скорости в пространстве. Но путешествовать во времени можно только в направле­нии будущего. Путешественник во времени Уэллса мог достичь страны будущего, где жили «элои» и «морлоки», но он не смог бы после этого возвратиться назад, как и не смог бы посетить страну прошлого.

Если движение происходит с постоянным, как мы приняли отношением b силы тяги ракеты к ее массе, то из соотношения (66) можно получить связь между вре­менем t,прошедшим на Земле, и временем τ, прошедшим у космонавтов,

где Агsh есть особая функция, обратная так называемо­му гиперболическому синусу. Таблицы этой функции приводятся во многих математических справочниках. Ка­ким бы не было t по формуле (67) τ получается всегда меньше t причем чем больше t тем существеннее раз­личие между τ и t. Этот эффект иногда называют реля­тивистским расширением времени.

Различие хода времени в движущихся одна относительно другой системах не только предсказано теорией относительности, но и подтверждено в наши дни экспериментами. Например, доказано, что у мюонов (так называются быстро распадающиеся элементарные частицы с массой, равной 207 массам электрона, и единичным положительным или отрицательным зарядом), движущихся медленно, среднее время, протекающее до распада, равно 2,22 10-6 с, а у мюонов космических лучей, движущихся с очень большой скоростью, время распада больше, в
точном соответствии с формулой (67).

В таблице для различных расстояний вычислено вре­мя, необходимое для прохождения их ракетой, у кото­рой отношение силы тяги к массе все время постоянно и равно 20 м/с 2 . Во втором столбце приведено время, которое давала бы классическая механика по формуле (63). На самом деле движение ракеты не будет происхо­дить по законам классической механики, так как дости­гаемые скорости очень большие. По формуле (62) они к тому же получаются во много раз больше скорости света, и мы приводим этот столбец только для того, чтобы по­казать, насколько ошибочны результаты, классической механики в подобных случаях. В третьем столбце вычис­лено время, которое пройдет на Земле до момента дости­жения ракетой указанного расстояния. При b = 20 м/с 2 ракета уже на расстоянии 1/2 пс разовьет скорость, очень близкую к скорости света, и потому на расстояниях во много парсек время, требуемое для полета ракеты, прак­тически равно времени нужному для прохождения света, следовательно, начиная с пятой строки данные в третьем столбце численно равны количеству световых лет в указанном расстоянии.

Но иной промежуток времени будет проходить у пас­сажиров ракеты. Особенно разительно различие для боль­ших расстояний. Так как на больших расстояниях ракета успеет развить скорость очень близкую к скорости света, релятивистское расширение времени будет особен­но велико.

Пользуясь данными таблицы, представим себе путе­шествие к ближайшей нашему Солнцу звезде - а Цен­тавра. На самом деле это тройная звезда. Главный компонент - звезда спектрального класса G4 с абсолютной величиной + 4 m ,7 - двойник нашего Солнца: почти те же спектр, цвет, светимость, масса. Второй компонент имеет спектральный класс К1 (оранжевая звезда), а аб­солютную звездную величину 6 m ,1, светимость ее вдвое меньше, чем у Солнца. Третий компонент носит назва­ние Проксима, т. е. «ближайшая» Центавра. Он чуть ближе к нам, чем два других компонента этой тройной системы, и из наблюдаемых пока звезд является самым близким соседом Солнца. Светимость его очень мала: в 10000 раз меньше, чем у Солнца (М= 15 m ,7). Спектраль­ный класс - М, значит, это красная звездочка, красный карлик.

Эта тройная система, состоящая из желтой, оранже­вой и красной звезд, находится на расстоянии 1,32 пс. Во время путешествия к ней нужно сначала полпути, т. е. 0,66 пс, двигаться с ускорением. На это расстояние ракета потратит, как можно подсчитать при помощи фор­мулы (65), 2,58 земных года, а при помощи формулы (67) мы узнаем, что в ракете протечет 1,13 года. Затем нужно будет, используя ту же силу тяги ракеты, двигаться с замедлением. Тогда к моменту достижения тройной звез­ды а Центавра ракета остановится.

Характер движения на второй половине пути до а Центавра будет как бы симметричным отражением дви­жения на его первой половине. В любых двух точках, одинаково удаленных от середины пути, скорость ока­жется одинаковой. Поэтому и время, затраченное на вто­рую половину пути, будет как на Земле, так и в ракете, то же самое, что и для первой половины пути.

После этого ракета двинется обратно к Земле, снова сначала ускоряя движение, а затем, после прохождения половины пути, замедляя его. К моменту возвращения на Землю у пассажиров в ракете пройдет 1,13 · 4 ≈ 4,5 го­да. Но они убедятся в том, что, на Земле к моменту их прибытия прошло уже 2,58 · 4 ≈ 10 лет.

Для посещения звезды, находящейся на расстоянии 20 пс, например а Треугольника, и возвращения обрат­но, ракете нужна пройти с попеременным ускорением и замедлением движения четыре отрезка, длиною 10 пс каждый. Согласно таблице выше к моменту возвращения у пассажиров ракеты пройдет 2,33 · 4 ≈ 9 лет. Но призем­ляясь, пассажиры ракеты не узнают страны, которую ос­тавили: так велики будут перемены. Они не застанут никого из людей, кого знали - на Земле к моменту при­бытия пройдет 32,9· 4≈ 130 лет и успеют смениться несколько поколений.

Полет к туманности Андромеды, NGC 224, находящей­ся на расстоянии 460 кпс, и возвращение будут проте­кать совсем не так, как это описано в интересной книге И. А. Ефремова «Туманность Андромеды». Путешествие займет у космонавтов около 30 лет, а возвратятся они фактически в другой мир,- на Землю, на которой от на­чала полета прошло около 30 млн. лет.

Огромная экономия времени, протекающего в раке­те, в сравнении со временем, протекающим на Земле, достигается благодаря тому, что подавляющую часть

расстояния ракета движется со скоростью, очень близ­кой к скорости света. В таком случае, как показывает формула (66), промежуток времени τ 2 - τ 1 может быть очень мал в сравнении с промежутком времени t 2 - t 1 .

Вообще таблица показывает, что если обеспечить в течение всего времени постоянное отношение силы тяги ракеты к ее массе, равное 20 м/с 2 , то человеку доступно посещение любых областей обозреваемой нами Вселенной. Даже для достижения отдаленнейших скоплений галак­тик, расположенных на расстоянии 1000 Мпс, потребует­ся только 11 лет «ракетного» времени. Разумеется, воп­рос о возвращении на Землю для таких космических странников окажется лишенным смысла. Разве лишь будет интересно узнать, что произошло с Землей и Сол­нечной системой. Разумнее будет искать годный для оби­тания мир на новых местах.

Все предыдущие расчеты выполнялись в предположе­нии, что можно обеспечить в течение всего, рассматривае­мого времени постоянное отношение силы тяги ракеты к ее массе, равное 20 м/с 2 . Посмотрим теперь, можно ли этого практически добиться? Что покажет энергетический расчет? Легко убедиться, что применяемые в наше время двигатели космических ракет, сжигающие химическое топливо, совершенно непригодны для путешествий к звездам и галактикам.

Важнейшую роль играет скорость ω, с которой обра­зующиеся при сгорании газы вылетают из сопла ракеты. Чем больше эта скорость, тем большее ускорение в противоположном направлении будет иметь ракета. Скорость вылетания газов тем больше, чем выше, температура сго­рания. Температура же ограничивается способностью ма­териала, из которого сделано сопло ракеты, противосто­ять высокой температуре, не плавиться. По-видимому, пределом в этом отношении являются 4000 К. При такой температуре сгорания от некоторых видов топлив можно получить скорость вылета ω около 4 км/с.

В астронавтике известна формула

связывающая m 0 - массу ракеты с топливом, m- мас­су ракеты после сгорания топлива, ω - скорость вылета газов из сопла и υ -скорость, которую приобретет ракета после того как сгорит топливо. Формула эта верна только в рамках классической механики, когда и скорость вылетающих газов и скорость, достигаемая ракетой, очень малы в сравнении со скоростью света. Оба эти условия в данном расчете соблюдаются.

Мы видим, что величина достигаемой ракетой скоро­сти тем больше, чем больше отношение массы ракеты с топливом к ее массе без топлива. Но как велико может быть это отношение? Предположим маловероятное, что удалось построить такую ракету, в которой 0,999999 мас­сы составляет горючее, так что вес после израсходования горючего составит только одну миллионную веса ракеты на старте. Тогда правая часть равенства (68) будет равна 13,8 и, следовательно, если скорость вылета газов равна 4 км/с, ракета сможет достичь скорости 55,2 км/с. Пока не достигнуты очень большие скорости и можно пользо­ваться классической, механикой, постоянное отношение силы тяги к массе ракеты 20 м/с 2 равно ускорению раке­ты. Скорость 55,2 км/с будет достигнута через 2760 с, когда пройденный путь окажется равным 76 000 км. После этого расстояния топливо будет исчерпано, устрой­ство ракеты перестанет действовать.

Таким образом, употребляемый в настоящее время в космонавтике способ сообщения ракете тяги при помощи сгорания химического топлива не может быть применен для полета к звездам и галактикам. Он годен только в пределах Солнечной системы.

Формула (68) показывает, что основная задача состоит в нахождении такого метода создания реактивной тяги, при котором вылетающие частицы имели бы гораздо большую скорость, чем у современных ракет. Нужно, чтобы эта скорость была сравнима со скоростью света или даже равна ей. Идея такой ракеты предложена дав­но. Роль вылетающих из ракеты в определенном направ­лении частиц должны играть частицы света - фотоны, а ракета будет двигаться в противоположном направле­нии. Источником излучения могут быть ядерные реакции и другие процессы, при которых происходит выделение электромагнитной энергии. Трудности связаны с необходимостью получить мощный поток фотонов при сравни­тельно небольшом весе устройства, чтобы употреблявшая­ся в наших расчетах величина b была достаточной. Кро­ме того, нужно оградить устройство от разрушающего действия высоких температур. Пока такой источник энергии не создан. Но он, по-видимому, будет создан.

Чтобы совершить полет до ближайшего соседа, трой­ной звезды а Центавра, и вернуться обратно, можно пред­ложить следующий план. Фотонная ракета движется с ускорением b = 20 м/с 2 , пока ее масса не станет равной половине первоначальной. При этом согласно формулам (69) и (70) будет пройдено расстояние 0,073 пс и разви­та скорость 180000 км/с. После этого двигатель выклю­чается и ракета движется по инерции. Когда в свободном движении будет пройдено около 1,17 пс и до цели останется 0,073 пс, двигатель снова включается, но уже на торможение. Ракета остановится около а Центавра, из­расходовав еще половину той массы, которая у нее име­лась при начале торможения. В той же последователь­ности должен быть проделан обратный путь. Двигатель будет включаться всего четыре раза, каждый раз расхо­дуя половину имеющейся массы, так что отношение m 0 /m к моменту прибытия на Землю должно составить 16. Расчет показывает, что от момента вылета до момен­та возвращения в ракете протечет около 9,5 лет, а на Земле 16,5 лет.

Можно, конечно, совершать подобные полеты и к бо­лее далеким звездам, увеличивая участок пути с выклю­ченным двигателем. Но тогда с увеличением расстояния будет существенно увеличиваться время, протекающее в ракете.

При полётах на расстояния свыше 5 пс чрезвычайно важно развивать, насколько возможно, высокие скорости, близкие к скорости света; тогда не только уменьшается требуемое для совершения полета время, протекающее на Земле, но, что особенно важно, в очень сильной степе­ни уменьшается время, протекающее в ракете. А чтобы развить, насколько возможно, высокие скорости, двига­тель должен быть постоянно включенным.

Из формулы (69) следует, что, доведя отношение m 0 /m до 200, можно с постоянно включенным, поставлен­ным только на ускорение двигателем достичь звезды Ка­пеллы, удаленной приблизительно на 14 пс.

Но если бы мы хотели, не включая двигателя, разго­няясь полпути и полпути замедляя полет, долететь до Капеллы, повернуть обратно и возвратиться на Землю, то пришлось бы затратить столько энергии, что отношение m 0 /m потребовалось бы довести до 10 8 , что, конечно, не­мыслимо даже для техники будущего.

Точно так же весьма мало вероятна возможность про­стого достижения (без возвращения) человеком других галактик. При путешествии с постоянно включенным двигателем, чтобы покрыть расстояние до Магеллановых Облаков, нужно, чтобы m 0 /m было равно 6 10 5 .

Рассуждения и подсчеты, проведенные в этой публикации, привели нас к следующим выводам: 1) соотношение двух факторов - длительности жизни и способности перено­сить ускорение, у человека таково, что он в принципе мог бы совершить путешествие до любых, даже самых отдаленных из наблюдаемых тел Вселенной; 2) техниче­ские, энергетические ограничения резко сужают возмож­ности человека. Даже использование в будущем фотон­ной ракеты с очень большим отношением начальной и конечной масс позволит совершать полеты с возращени­ем только до нескольких самых близких звезд. Расстоя­ния в несколько десятков парсек могут быть доступны при отношениях m 0 /m порядка нескольких сотен. Однако это могут быть лишь полеты без возвращения; 3) достижение других галактик никогда не будет доступно человеку.

Минобороны отказало Максиму Сураеву в почетном звании без всяких объяснений

Максим Сураев честно трудился в космосе, но звезду героя ему пока почему-то не дали.

Вообще Министерство обороны всегда принимало решение о награждении только в отношении космонавтов, которые являются военнослужащими. Гражданских исследователей космоса чествует Роскосмос. Но никогда еще в истории отечественной космонавтики ни один слетавший на орбиту не оставался без звезды героя. Хотя проволочки с положительным решением из главного военного ведомства в последнее время происходят все чаще. К примеру, Роману Романенко, летавшему вместе с Сураевым в 2009 году, но приземлившемуся на несколько месяцев раньше, звезду не выдавали около четырех месяцев — раза три кормили отказами из Минобороны. Пришлось даже жаловаться Путину, после чего положительное решение о награждении военные приняли в считаные дни и приурочили его ко Дню космонавтики.

По мнению большинства коллег Сураева, летавших в космос до него и после, проблема обострилась после перевода Центра подготовки космонавтов из Минобороны в Роскосмос. “Мы словно превратились в каких-то просителей, — говорят молодые космонавты, — вроде бы в погонах, но армии не нужны, а гражданские ведомства, по установленным правилам, не вправе решать нашу судьбу”. Может быть, в руководстве Минобороны полагают, что космонавты занимаются на орбите ерундой? Тогда какой логикой руководствуются власти страны, выделяя миллионы на развитие космонавтики? Непонятно.

Кстати, по закону, решение об отказе в представлении космонавта к награде министр обороны обязан обосновывать, мол, так и так — оказался ваш парень некомпетентен, провалил все эксперименты... и т.п. Но в том-то и фокус — никаких объяснений из Минобороны не пришло вообще. Да и не может их быть. Ведь Сураев, наоборот, отличился во время полета, выполняя на “отлично” все виды космических работ, включая выход в открытый космос. А чего стоит его блог, через который он общался во время полета со всем миром, популяризируя отечественную космонавтику! Но, видимо, это не волнует военных чиновников. Центр подготовки космонавтов шлет министру через Роскосмос документы на представление Максима к награде, а тот просто присылает неподписанные документы обратно. Вот и в наградном отделе главного управления кадров Минобороны, куда “МК” обратился с официальным запросом, нам ответили коротко, лаконично: “Комментариев по этому поводу не даем”. А кто их должен давать, тоже не пояснили.

Космонавты, уже слетавшие на орбиту, пытаются не показывать своих чувств, но можно представить, как им обидно — ждать по десять лет “билет” в космос, а потом еще и звезды не получить за полет. “Если так дальше пойдет, — сказал нам в сердцах Романенко, — скоро в космос вообще никто летать не будет”.

МЕЖДУ ТЕМ

В Федеральном космическом агентстве подтвердили, что дважды направляли документы в Министерство обороны РФ для присвоения звания Героя России летчику-космонавту Максиму Викторовичу Сураеву. В настоящее время обращение по этому поводу направлено непосредственно в Администрацию Президента РФ.

Межзвёздный полёт -- путешествие между звёздами пилотируемых аппаратов или автоматических станций. Чаще всего под межзвёздным полётом понимают пилотируемое путешествие, иногда с возможной колонизацией внесолнечных планет.

Строительство эскадры межзвездных кораблей начнется в точках Лагранжа системы Земля-Луна (точки гравитационного равновесия). Материалы по большей части могут доставляться с лунных баз - например контейнеры с ними выстреливаются электромагнитными пушками и улавливаются специальными станциями-ловушками в районе строительства. Двигатель для межзвездного корабля должен иметь тот же порядок мощности, что и вся мощность, потребляемая человечеством на сегодняшний день. Основываясь на предвидимых технологиях и ресурсных возможностях, можно дать абрис будущих межзвездных перелетов.

При рассмотрении космического корабля любого назначения удобно разделить его на две части - двигательную установку и полезную нагрузку. Под двигательной установкой принято понимать не только собственно двигатели, но и баки с топливом, необходимые силовые конструкции. Для проблематики межзвездных перелетов именно двигательная установка является ключевым фактором, определяющим осуществимость проекта. Однако проблемы создания двигательной установки выходят за рамки настоящего рассмотрения. Сейчас для нас важно то, что существуют технологии, которые в ходе своего развития могут стать приемлемыми для осуществления межзвездных перелетов. Здесь на первом месте технологии использования инерциального термоядерного синтеза для ракетного движения. На американской установке NIF (National Ignition Facility) для исследования лазерного термоядерного синтеза стоимостью 3,5 миллиардов долларов уже получены результаты, говорящие о том, что ракетный двигатель на данном принципе может быть создан. Еще более мощная установка такого типа строится у нас под Саровом. Эти установки мало похожи на ракетные двигатели, но если их условно "разрезать" пополам, избавиться от фундаментов, стенок и многого ненужного в космосе оборудования, мы получим ракетный двигатель, который может быть доведен и до межзвездного варианта. Не вдаваясь в детали, отметим, что такие двигатели по необходимости будут большими, тяжелыми и очень мощными. Двигатель для межзвездного корабля должен иметь тот же порядок мощности, что и вся мощность, потребляемая человечеством на сегодняшний день. Располагая таким двигателем (а если такого двигателя нет, то и говорить не о чем), можно более свободно себя чувствовать, рассматривая параметры полезной нагрузки. По аналогии, если для велосипедиста лишние 50 кг уже ощутимы, то тепловоз и лишние 50 тонн не заметит.

Вооружившись таким пониманием, мы можем попробовать представить первую межзвездную экспедицию. При этом придется использовать результаты расчетов и оценок, которые сделаны, но здесь, по понятным причинам, воспроизведены быть не могут.

Строительство эскадры межзвездных кораблей начнется в точках Лагранжа системы Земля-Луна (точки гравитационного равновесия). Материалы по большей части могут доставляться с лунных баз - например контейнеры с ними выстреливаются электромагнитными пушками и улавливаются специальными станциями-ловушками в районе строительства.

Один корабль - это сотни тысяч тонн полезной нагрузки, миллионы тонн - двигатели, десятки миллионов тонн - топливо. Цифры могут напугать, но, чтобы не сильно пугаться, их можно сравнить с другими крупными строительствами. Давным-давно за 20 лет была построена пирамида Хеопса весом более 6 миллионов тонн. Или уже в наши времена -- в Канаде в 1965 году был построен остров "Норт-Дам". Только грунта потребовалось 15 миллионов тонн, а постройка заняла всего 10 месяцев. Самый большой морской корабль -- Knock Nevis -- имел водоизмещение 825 614 тонн. Строительство в космосе имеет свои специфические трудности, но имеет и некоторые преимущества, например, облегчение силовых элементов из-за невесомости, практическое отсутствие ограничений по массе и размерам (на Земле достаточно большая конструкция просто раздавит сама себя).

Примерно 95% массы межзвездного корабля составит термоядерное топливо. Вероятно, в его качестве будут использоваться бороводороды, топливо -- твердое, баки не нужны, что очень улучшает характеристики корабля и облегчает его постройку. Набирать бороводороды лучше не системе Земля-Луна, а где-нибудь подальше от Солнца, в системе Сатурна, например, чтобы избежать потерь на сублимацию. Время строительства можно оценить в несколько десятков лет. Срок не так уж и велик, а кроме того, теми же строителями параллельно будут вестись и другие работы в рамках освоения Солнечной системы. Строительство лучше начинать с сооружения жилых блоков корабля, в которых и поселятся строители и другие специалисты. Заодно, за время строительства и накопления топлива будет в течение десятилетий проверена стабильность работы замкнутой системы жизнеобеспечения.

Замкнутая система жизнеобеспечения - наверное, второй по сложности вопрос после проблемы двигателей. Один человек потребляет примерно 5 кг воды, еды и воздуха в сутки, если все брать с собой, потребуется больше 200 тысяч тон припасов. Решение - повторное использование ресурсов, так как это происходит на планете Земля.

В полной мере масштаб межзвездных расстояний перелетов можно ощутить, только если заняться рассмотрением средств осуществления таких полетов. Конечно, такое рассмотрение не имеет целью "ощутить расстояние". Не может оно рассматривается и как проектирование конкретной конструкции межзвездных кораблей. Исследование вопросов межзвездных перелетов сегодня носит инженерно-теоретический характер. Нельзя доказать невозможность осуществления межзвездных перелетов, но и никому не удалость доказать их осуществимость. Выход из ситуации не прост - надо предложить такую конструкцию межзвездных кораблей, которая была бы воспринята инженерно-научным сообществом, как реализуемая.

Полеты одиночных межзвездных кораблей, являющиеся правилом в фантастической литературе, исключаются, возможен перелет только эскадры кораблей, примерно с десяток аппаратов. Это требование безопасности, а кроме того - и обеспечение разнообразия жизни за счет общения между экипажами разных кораблей.

Поле завершения строительства эскадры она перемещается к запасенным запасам топлива, стыкуется с ними и направляется в полет. По всей видимости, разгон будет очень медленным и в течение года-двух более мобильные аппараты смогут забросить на корабли то, что позабыли, и снять с борта передумавших.

Перелет продлится 100-150 лет. Медленный разгон с ускорением примерно в сотую долю земного в течение десятка лет, десятки лет полета по инерции, и несколько более быстрое, чем разгон, торможение. Быстрый разгон существенно сократил бы время перелета, но он не возможен из-за неизбежно большой массы двигательной установки.

Перелет не будет столь насыщен космическими приключениями, как описано в фантастической литературе. Внешних угроз практически нет. Облака космической пыли, завихрения пространства, провалы во времени - вся эта атрибутика угрозы не представляет ввиду ее отсутствия. Даже тривиальные метеориты крайне редки в межзвездном пространстве. Основная внешняя проблема - галактическое космическое излучение, космические лучи. Это изотропный поток ядер элементов, имеющих большую энергию и, следовательно, высокую проникающую способность. На Земле от них нас защищает атмосфера и магнитное поле, в космосе, если полет длительный, надо принимать специальные меры, экранировать жилую зону корабля так, чтобы доза космического излучения не сильно превышала земной уровень. Здесь поможет простой конструктивный прием - запасы топлива (а они очень большие) располагаются вокруг жилых отсеков и экранируют их от радиации большую часть времени перелета.