Липопротеиды: значение, диагностика, виды и нормы лпвп, лпнп, лпонп. Что такое липопротеины? Состав и функции липопротеинов крови


Основными липидами плазмы крови человека являются триглицериды, фосфолипиды и эфиры холестерина. Эти соединения представляют собой эфиры длинноцепочечных жирных кислот и в качестве липидного компонента входят все вместе в состав липопротеинов. Жир

ные кислоты присутствуют в плазме также в свободной (неэстерифициро- ванной) форме.
Местом хранения жирных кислот служит жировая ткань, а утилизируются они в печени и мышцах, куда транспортируются в форме свободных жирных кислот (СЖК). Жирные кислоты, в особенности - пальмитиновая, олеиновая и линолевая, - откладываются в жировой ткани в виде триглицеридов. Скорость мобилизации триглицеридов определяется работой гормончувствительной липазы, активность которой возрастает под действием некоторых гормонов, таких, как норадреналин и глюкокортикоиды. Липолиз приводит к высвобождению в плазму жирных кислот и глицерина и усиливается в состоянии острого стресса, при длительном голодании и недостатке инсулина.
Триглицериды (или триацилглицериды) представляют собой эфиры жирных кислот и глицерина. Синтез триглицеридов в печени и жировой ткани осуществляется по глицерофосфатному пути, тогда как в тонком кишечнике триглицериды образуются, главным образом, за счет непосредственной эстерификации всасываемых из пищи моноглицеридов. Ресинтезируемые в клетках тонкого кишечника триглицериды выходят в кишечные лимфатические сосуды в форме хиломикронов, а затем поступают в кровоток через грудной лимфатический проток. В норме всасывается свыше 90% триглицеридов. Это означает, что ежедневно в кровь попадает 70-150 г экзогенных триглицеридов. В тонком кишечнике происходит образование и так называемых эндогенных триглицеридов, которые синтезируются из эндогенных жирных кислот, однако их главным источником является печень, откуда они секретируются в форме липопротеинов очень низкой плотности (ЛПОНП). Спектр остатков жирных кислот, обнаруживаемых в триглицеридах и ЛПОНП, в значительной степени зависит от набора жирных кислот триглицеридов, поступающих с пищей.
Два основных фосфолипида, которые присутствуют в плазме, - это фосфатидилхолин (лецитин) и сфингомиелин. Синтез фосфолипидов происходит почти во всех тканях, но главным источником фосфолипидов плазмы служит печень. Фосфолипиды являются неотъемлемым компонентом всех клеточных мембран. Между плазмой и эритроцитами постоянно происходит обмен лецитином и сфингомиелином. Оба эти фосфолипида присутствуют в плазме в качестве составных компонентов ли- попротеинов, где они играют ключевую роль, поддерживая в растворимом состоянии неполярные липиды, такие, как триглицериды и эфиры холестерина.
Холестерин - это стерин, содержащий стероидное ядро из четырех колец и гидроксильную группу. Это соединение обнаруживается в организме как в виде свободного стерина, так и в форме сложного эфира с одной из длинноцепочечных жирных кислот. Свободный холестерин -
компонент всех клеточных мембран и та основная форма, в которой холестерин присутствует в большинстве тканей. Исключение представляют кора надпочечников, плазма и атероматозные бляшки, где преобладают эфиры холестерина. Большинство тканей обладает способностью к синтезу холестерина, но в норме практически весь холестерин синтезируется в печени и дистальной части тонкого кишечника.
Ранней стадией синтеза холестерина является превращение ацетата в мевалоновую кислоту. Фермент, определяющий скорость этого процесса, называется 3-гидрокси-3-метилглутарил-коэним А-редуктаза (ГМГ-КоА-редуктаза). Активность этого фермента регулируется по принципу обратной связи с помощью конечного продукта реакции - холестерина. Основные метаболиты холестерина, - желчные кислоты,

  • синтезируются исключительно в печени. Ключевым ферментом в этом случае служит холестерин-7-альфа-гидроксилаза.
Результаты экспериментов по изучению изменений плазмаспецифи- ческой активности после введения радиоактивного холестерина свидетельствуют о существовании в организме трех пулов холестерина. Холестерин каждого из пулов обменивается с холестерином плазмы, причем скорости установления равновесия сильно различаются. Быстро обменивающийся пул представлен холестерином липопротеинов плазмы, эритроцитов, печени, кишечника и некоторых других внутренних органов и содержит 20-25 г чистого холестерина. Количество холестерина в промежуточном пуле составляет около 10-12 г. К этому пулу относится холестерин периферических тканей, таких, как кожа и жировая ткань. Медленно обменивающийся пул содержит наибольшее количество холестерина (35-37 г) и включает холестерин разных тканей, таких, как скелетные мышцы и стенки сосудов . В стационарном состоянии метаболизма поступление синтезируемого и всасываемого холестерина в быстро обменивающийся пул сбалансировано выведением холестерина путем фекальной экс-креции. Независимо от того, сколько холестерина попадает в организм с пищей, усваивается в среднем 35-40%, причем процесс всасывания опосредуется лимфатической системой. Всасывание холестерина пищи и реабсорбция жирных кислот играют важную роль в организации скорости синтеза холестерина клетками печени . Синтез желчных кислот опре-деляется эффективностью их циркуляции между печенью и тонким кишечником и поэтому увеличивается при любом воздействии, которое затрудняет их реабсорбцию.
Более двух третей холестерина плазмы эстерифицировано преимущественно линолевой и олеиновой кислотами. Эти эфиры образуются, в основном, в плазме под действием фермента лецитин-холестерин- ацил-трансферазы (ЛХАТ). Относительно небольшой вклад в этот процесс вносит также фермент тонкого кишечника и печени - АКАТ. Природа эфиров холестерина зависит в значительной степени от жирнокис
лотного состава лецитина плазмы или, иными словами, - от типа жиров в пище. В отличие от своих эфиров, свободный холестерин плазмы легко обменивается с холестерином клеточных мембран.
В норме уровень общего холестерина (ОХС) плазмы крови варьируется от 4 до 6,5 ммоль/л, но, в отличие от уровня триглицеридов, не воз- рас-тает резко после потребления жирной пищи.
Все липиды, за исключением свободных жирных кислот, попадают в плазму в форме макромолекулярных комплексов, называемых липоп- ротеинами. Эти комплексы содержат специфические белковые компоненты аполипопротеины (апопротеины или просто апо), взаимодействующие с фосфолипидами и свободным холестерином и образующие полярную наружную оболочку, которая экранирует расположенные внутри неполярные триглицериды и эфиры холестерина.
С помощью ультрацентрифугирования плазмы крови, взятой у донора после приема пищи, можно выделить шесть классов липопротеи- нов. Все они представляют собой сферические частицы, различающиеся по размеру и состоящие из смеси белков, фосфолипидов, триглицеридов, свободного и эстерифицированного холестерина, относительные количества которых варьируются в разных классах липопротеинов. Так, основная часть холестерина обнаруживается в липопротеинах низкой плотности (ЛПНП), а существенно меньшая - в ЛПОНП и липопроте- инах высокой плотности (ЛПВП). В отличие от холестерина, эндогенные триглицериды переносятся преимущественно в составе ЛПОНП. Хиломикроны служат для переноса триглицеридов в первые часы после приема пищи и в норме через 12 ч голодания полностью исчезают из плазмы. Таким образом, измерение содержания общего холестерина и триглицеридов в плазме или сыворотке крови дает сумму вкладов каждого класса липопротеинов. Изменение количества сывороточных липидов обычно отражает изменения либо в концентрации липопротеи- нов, либо в соотношении уровней липопротеинов различных классов. В норме концентрация ремнантных частиц, или липопротеинов промежуточной плотности (ЛППП), в плазме относительно низка и, как правило, их вкладом пренебрегают, но он может стать определяющим при измерении содержания холестерина и три-глицеридов в крови пациентов с некоторыми формами гиперлипидемии.
Прежде чем описывать метаболизм различных классов липопротеинов, необходимо сделать краткий обзор физических свойств как самих этих частиц, так и входящих в их состав аполипопротеинов. Липоротеины плазмы различаются по скорости флотации, гидратированной плотности, размеру и электрофоретической подвижности. В настоящее время наиболее распространена классификация липопротеинов, основанная на различиях в их плотности, что используется для разделения этих частиц методом ультрацентрифугирования. Кроме того, липопротеины суще
ственно различаются и по содержанию аполипопротеинов, или апоп- ротеинов .
Апопротеины выполняют три основные функции: 1) взаимодействуя с фосфолипидами, помогают солюбилизировать эфиры холестерина и три-глицериды; 2) регулируют реакции липидов липопротеинов с ферментами, такими, как ЛХАТ, липопротеинлипаза и печеночная липаза; 3) связываются с рецепторами на поверхности клеток, определяя, таким образом, места захвата и скорость деградации других компонентов, в частности - холестерина. Связывание апопротеинов с липидами осуществляется, главным образом, за счет гидрофобных взаимодействий между жирнокислотными цепями фосфолипидов и неполярными областями апопротеинов. Ионные взаимодействия между полярными группами головок фосфолипидов и парами противоположно заряженных аминокислот апопротеинов играют вторичную стабилизирующую роль.
Аполипопротеины семейства А, - апо А-I и апо А-II, - это основные белковые компоненты ЛПВП. Существуют данные, свидетельствующие о том, что когда оба апопротеина А находятся рядом, как это бывает в ЛПВП, апо А-II усиливает липидсвязывающие свойства апо А-I. Другая функция апо А-I - это активация фермента ЛХАТ
Апопротеин В, или апо В, отличается гетерогенностью и различиями в молекулярном весе; апо ВЮ0 обнаруживается, главным образом, в хиломикронах, ЛПОНП и ЛПНП, а апо В48 - только в хиломикронах. При этом апо ВЮ0 служит лигандом рецептора ЛПНП, апо В48 - нет.
К апопротеинам С относятся, по крайней мере, три индивидуальных апопротеина, которые являются основными компонентами ЛПОНП и минорным компонентом ЛПВП. Считается, что апо С-II активирует фермент липопротеинлипазу.
Апопротеин Е, - компонент ЛПОНП, ЛППП и ЛПВП, - поступает в плазму преимущественно в составе новосинтезированных ЛПВП. Апо Е выполняет несколько функций, в том числе - рецептор-опосредован- ный перенос холестерина между тканями и плазмой.
Из других апопротеинов следует упомянуть апо D, минорный компонент ЛПВП; апо А-IV, обнаруженный в хиломикронах кишечника; а также апо (а), один из белковых компонентов особого липопротеина (а), или ЛП (а) . В настоящее время в литературе имеются детальные обзоры современных данных по структуре и функциям аполипопротеинов .
Липопротеины отдельных классов принимают различное участие в атерогенезе, в связи с чем необходимо привести их краткую характеристику.
Хиломикроны - самые крупные липопротеиновые частицы, имеют диа-метр от 100 до 1000 нм и содержат преимущественно триглицери
ды, а также небольшие количества фосфолипидов, свободного холестерина, его эфиров и белка. Основной функцией хиломикронов является перенос пищевых триглицеридов из кишечника, где происходит их всасывание, в кровяное русло.
ЛПОНП (пре-в-липопротеины) - по структуре и составу сходны с хиломикронами, но обладают меньшими размерами, от 25 до 100 нм, и содержат меньше триглицеридов, но больше холестерина, фосфолипидов и белка. От хиломикронов ЛПОНП отличаются по месту синтеза и источнику транспортируемых триглицеридов. Так, ЛПОНП образуются, в основном, в печени и служат для переноса эндогенных триглицеридов .
Скорость образования ЛПОНП растет при увеличении потока свободных жирных кислот, поступающих в печень, а также в ситуациях, когда в печени возрастает скорость синтеза эндогенных жирных кислот, что происходит при попадании в организм большого количества углеводов.
Частицы ЛПОНП варьируются по размеру. В результате липолиза образуются ЛПОНП небольшого размера, - их называют ремнантными ЛПОНП или липопротеинами промежуточной плотности (ЛППП), - которые являются промежуточным продуктом в процессе превращения ЛПОНП в ЛПНП. При гипертриглицеридемии наблюдается возрастание не только числа, но также и размеров ЛПОНП, что, вероятно, может служить причиной другого характерного признака данного заболевания - снижения уровня ЛПНП.
ЛПНП ф-липопротеины) - главный из классов липопротеинов плазмы, переносящих холестерин. Эти частицы отличаются от своих предшественников ЛПОНП значительно более низким содержанием триглицеридов и присутствием только одного апо В100 из разнообразных апопротеинов, обнаруживаемых в ЛПОНП. Катаболизм ЛПНП зависит как от факторов среды, например - от типа потребляемых жиров, так и от генетических факторов - мутаций генов, кодирующих рецептор ЛПНП и апо В.
ЛПВП (а-липопротеины) по диапазону плотности подразделяются на подклассы ЛПВП2 и ЛПВП3. Свыше 90% белка ЛПВП представлено белком апо А. Синтезируются ЛПВП в печени и тонком кишечнике. Накопление эфиров холестерина в ретикуло-эндотелиальной системе пациентов, у которых отсутствуют ЛПВП (болезнь Танжера), говорит о том, что в норме ЛПВП играют ведущую роль в удалении тканевого холестерина.
ЛП (а) - крупнее ЛПНП, но обладают по сравнению с ними большей плотностью и имеют электрофоретическую подвижность, свойственную ЛПОНП. По липидному составу ЛП (а) не отличается от ЛПНП, но имеют больше белка, в том числе собственный апо (а) - по
лиморфный белок, обладающий высокой степенью гомологии с плаз- миногеном и содержащий большее количество углеводов. Имеются данные, что ЛП (а) образуются исключительно в печени, независимо от метаболизма ЛПОНП .
Метаболизм липопротеинов - это сложный динамический и во многом не изученный процесс, включающий в себя как разнообразные перемещения липидов и апопротеинов между отдельными классами ли- попротеинов, так и целый ряд реакций, катализируемых ферментами. Эти взаимодействия приводят, в том числе, к рецептор-опосредованно- му поступлению холестерина в клетку или к его удалению из клетки .
Здесь уместно напомнить, что функция апопротеинов не ограничивается только тем, что они образуют с липидами растворимые и, следовательно, транспортируемые кровью комплексы. Установлено, что некоторые апопротеины выполняют коэнзимную роль, активируя отдельные реакции липидного обмена. В частности, апо А-I активирует реакцию, осуществляемую ЛХАТ В ходе этой реакции, как известно, происходит эстерификация свободного холестерина в плазме крови. Имеются данные, что реакция ЛХАТ катализируется также апо С-I.
Апо С-II оказался необходимым компонентом для реакций, катализируемых липопротеинлипазами. Так как при действии липопротеин- липазы происходит расщепление триглицеридов хиломикронов и ЛПОНП, то эта реакция приобретает особое значение как начальная ступень в катаболизме названных липопротеинов .
В 1985 году американским ученым J.Goldstein и M.Brown была присуждена Нобелевская премия за открытие рецептора ЛПНП и установление причины семейной гиперхолестеринемии . Они обнаружили, что основная роль рецептора ЛПНП заключается в том, чтобы обеспечить все клетки организма доступным источником холестерина, который необходим для синтеза клеточных мембран, а определенные органы используют его также и в качестве субстрата для образования некоторых продуктов своего метаболизма, например, желчных кислот, половых гормонов, кортикостероидов. Поэтому клетки печени, половых желез и надпочечников содержат большое количество рецепторов ЛПНП. Печень, в силу своего размера, является основным местом ре- цептор-опосредованного катаболизма ЛПНП. Рецепторы ЛПНП связывают также ремнантные ЛПОНП (или ЛППП) и один из подклассов ЛПВП, имеющий белок апо-Е .
Координированная регуляция экспрессии рецептора ЛПНП и активности ГМГ-КоА-редуктазы обеспечивает функционирование гомеостатического механизма снабжения холестерином таких клеток, как гепа- тоциты, повседневно перерабатывающих большие его количества. Фармакологические средства, конкурентно ингибирующие ГМГ-КоА-ре-
дуктазу, блокируют эндогенный синтез холестерина и посредством этого стимулируют экспрессию рецептора ЛПНП, что приводит к снижению уровня холестерина ЛПНП в плазме крови.
Рецептор ЛПВП был идентифицирован в культивируемых фиброб- ластах и гладкомышечных клетках. Экспрессия этого рецептора увеличивается при нагрузке клеток холестерином. Кроме того, описаны два других рецептора липопротеинов , хотя их вклад в метаболизм липопротеинов in vivo не установлен.
В упрощенном виде внутриклеточный и тканевой метаболизм липопротеинов разных классов можно представить следующим образом. Хи- ломикроны доставляют липиды пищи в плазму крови через лимфу. Под воздействием внепеченочной липопротеинлипазы, активируемой а- по С-II, хиломикроны в плазме превращаются в ремнанты, которые захватываются рецепторами гепатоцитов, распознающими поверхностный апо-Е. Эндогенные триглицериды переносятся ЛПОНП из печени в плазму, где они, как и хиломикроны, претерпевают частичную деградацию до ремнантных ЛПОНП, или ЛППП. В свою очередь, ЛППП либо захватываются рецепторами ЛПНП, распознающими апо Е или апо ВЮ0, либо превращаются в ЛПНП, содержащие апо ВЮ0, но уже не имеющие апо Е. В этом процессе может принимать участие печеночная липаза. Катаболизм ЛПНП протекает двумя основными путями, один из которых связан с рецепторами ЛПНП, а второй - с печеночной триг- лицеридлипазой. ЛПВП имеют сложное происхождение: их липидный компонент включает или свободный холестерин и фосфолипиды, высвобождающиеся при липолизе хиломикронов и ЛПОНП, или свободный холестерин, поступающий из периферических клеток, в то время как основной апопротеин ЛПВП, апо А-I, синтезируется и в печени, и в тонком кишечнике. Новосинтезированные частицы ЛПВП в плазме представлены подклассом ЛПВП3, но, в конечном итоге, под воздействием ЛХАТ, активируемой апо А-I , они превращаются в ЛПВП2 . К сожалению, мы не располагаем пока точными данными о последовательности сборки липопротеиновых частиц, не говоря уже о механизмах этого процесса.
Таблица 1.1
Пределы колебаний содержания общего холестерина (ОХС), триглицеридов (ТГ), ХС-ЛПНП и ХС-ЛПВП в плазме крови (в ммоль/л) в норме .

Возраст, годы

ОХС

ТГ

ХС-ЛПНП

ХС-ЛПВП

0-19

3.2-5.2

0.4-1.5

1.7-3.4

1.0-1.9

20-29

3.2-5.9

0.5-2.1

1.8-4.3

0.8-1.7

30-39

3.7-6.8

0.6-3.2

2.1-4.9

0.8-1.7

40-49

4.0-7.0

0.6-3.5

2.3-5.0

0.8-1.7

50-59

4.1-7.2

0.7-3.3

2.3-5.2

0.8-1.7

Липопротеины - это сферические частицы, в которых можно выделить гидрофобную сердцевину, состоящую из триглицеридов (ТРГ) и эфиров холестерина (ЭХС) и амфифильную оболочку, в составе которой – фосфолипиды, гликолипиды и белки.

Белки оболочки называются апобелками. Холестерин (ХС) обычно занимает промежуточное положение между оболочкой и сердцевиной. Компоненты частицы связаны слабыми типами связей и находятся в состоянии постоянной диффузии – способны перемещаться друг относительно друга.

Основная роль липопротеинов – транспорт липидов, поэтому обнаружить их можно в биологических жидкостях.

При изучении липидов плазмы крови оказалось, что их можно разделить на группы, так как они отличаются друг от друга по соотношению компонентов. У разных липопротеинов наблюдается различное соотношение липидов и белка в составе частицы, поэтому различна и плотность.

Липопротеины разделяют по плотности методом ультрацентрифугирования, при этом они не осаждаются, а всплывают (флотируют). Мерой всплывания является константа флотации, обозначаемая S f (сведберг флотации). В соответствии с этим показателем различают следующие группы липопротеинов:

Липопротеины можно разделить и методом электрофореза. При классическом щелочном электрофорезе разные липопротеины ведут себя по-разному. При помещении липопротеинов в электрическое поле хиломикроны остаются на старте. ЛОНП и ЛПП можно обнаружить во фракции пре-глобулинов, ЛНП - во фракции -глобулинов, а ЛВП - -глобулинов:

Определение липопротеинового спектра плазмы крови применяется в медицине для диагностики атеросклероза.

Все эти липопротеины отличаются по своей функции.

1. Хиломикроны (ХМ) - образуются в клетках кишечника, их функция: перенос экзогенного жира из кишечника в ткани (в основном - в жировую ткань), а также - транспорт экзогенного холестерина из кишечника в печень.

2. Липопротеины Очень Низкой Плотности (ЛОНП) - образуются в печени, их роль: транспорт эндогенного жира, синтезированного в печени из углеводов, в жировую ткань.

3. Липопротеины Низкой Плотности (ЛНП) - образуются в кровеносном русле из ЛОНП через стадию образования Липопротеинов Промежуточной Плотности (ЛПП). Их роль: транспорт эндогенного холестерина в ткани.

4. Липопротеины Высокой Плотности (ЛВП) - образуются в печени, основная роль - транспорт холестерина из тканей в печень, то есть удаление холестерина из тканей, а дальше холестерин выводится с желчью.

При определении содержания в крови липопротеинов различной плотности их обычно разделяют методом электрофореза. При этом ХМ остаются на старте, ЛОНП оказываются во фракции пре-глобулинов, ЛНП и ЛПП находят во фракции -глобулинов, а ЛВП -  2 -глобулинов. Если в крови повышено содержание -глобулинов (ЛНП) - это означает, что холестерин откладывается в тканях (развивается атеросклероз).

Общая характеристика апопротеинов в составе липопротеинов плазмы крови

Апопротеин

Липопротеин

Мол. масса

Свойства

ЛПВП, хиломикроны

Активатор ЛХАТ

ЛПВП, хиломикроны

Два одинаковых мономера, связанных через дисульфидный мостик

ЛПНП, ЛПОНП, ЛППП

Лиганд для рецептора к ЛПНП; синтезируется в печени

Хиломикроны и обломки хиломикронов

Синтезируется в кишечнике

ЛПОНП, ЛПВП

Возможный активатор ЛХАТ (?)

ЛПОНП, ЛПНП, хиломикроны

Активатор внепеченочной липопротеинлипазы

ЛПОНП, ЛПВП, хиломикроны

Различные формы, содержащие сиаловую кислоту

Белок, переносящий ЭХ

ЛПОНП, ЛПВП, хиломикроны, обломки хиломикронов

Лиганд для рецепторов, взаимодействующих с обломками ХМ

Хиломикро-

Транспорт липидов

из клеток кишечника (экзогенных липидов)

Транспорт липидов, синтезируемых в печени (эндогенных липидов)

Промежуточ- ная форма

превращения ЛПОНП в ЛПНП под действием фермента

ЛП-липазы

Транспорт холестерола в ткани

Удаление избытка холестерола из клеток и других липопротеинов.

Донор апопротеинов А, С-II

Место образования

Эпителий

кишечника

Клетки печени

Кровь (из ЛПОНП и ЛППП)

Клетки печени − ЛПВП-пред- шественники

Плотность, г/мл

частиц, нМ

Больше 120

Основные

аполипопротеины

Примечание : ФЛ  фосфолипиды, ХС  холестерин, ЭХС  эфиры холестерина, ТАГ  триацилглицериды. Апопротеины: В-48  основной белок ХМ, В-100  основной белок ЛПОНП, ЛПНП, ЛППП, взаимодействует с рецепторами ЛПНП; С-II  активатор липопротеинлипазы (ЛП-липазы), переносится с ЛПВП на ХМ и ЛПОНП в крови; Е  участвует в связывании липопротеинов с рецепторами ЛПНП и другими рецепторами, А-I  активатор лецитинхолестеринацилтрансферазы (ЛХАТ) (согласно )

Липопротеины отличаются по своей функции.

1. Хиломикроны (ХМ) образуются в клетках кишечника, их функция: перенос экзогенного жира из кишечника в ткани (в основном  в жировую ткань), а также транспорт экзогенного холестерина из кишечника в печень.

2. Липопротеины очень низкой плотности (ЛПОНП) образуются в печени, их роль: транспорт эндогенного жира, синтезированного в печени из углеводов, в жировую ткань.

3.Липопротеины низкой плотности (ЛПНП) образуются в кровеносном русле из ЛОНП через стадию образования липопротеинов промежуточной плотности (ЛППП). Их роль: транспорт эндогенного холестерина в ткани.

4. Липопротеины высокой плотности (ЛПВП) образуются в печени, основная роль  транспорт холестерина из тканей в печень, т. е. удаление холестерина из тканей, а далее холестерин выводится с желчью.

5.3.8.1. Структура липопротеинов. Независимо от типа все липопротеины имеют сходное строение.

Они представляют собой сферические частицы, в которых можно выделить гидрофобную сердцевину, состоящую из ТАГ и эфиров холестерина (ЭХС) и гидрофильную оболочку, в составе которой – фосфолипиды, гликолипиды и белки. Компоненты частиц связаны слабыми типами связей и находятся в состоянии постоянной диффузии – способны перемещаться друг относительно друга. Белки, входящие в состав липопротеина и называемые апопротеинами (обозначаются латинскими буквами), могут быть или интегральными, не способными к отделению от липопротеина, т. е. присущи только этому типу липопротеина, или свободно переносимыми от одного типа липорпотеина к другому типу.

Функции апопротеинов в составе липопротеинов заключаются в: 1) формировании структуры липопротеинов; 2) взаимодействии с рецепторами на клеточной поверхности, тем самым определяется, с какими тканями связывается данный тип липопротеина; 3) активации ферментов липидного обмена. Иногда апопротеины сами обладают собственной ферментативной активностью; 4) выполнении функции эмульгаторов, так как апопротеины являются гидрофильными веществами; 5) транспорте липидов от одного типа липопротеина к другому.

5.3.8.2. Хиломикроны. Из ресинтезированных ТАГ, эфиров холестерина, фосфолипидов, поступивших с пищей жирорастворимых витаминов образуются комплексы липопротеинов, получившие название хиломикроны (ХМ), функция которых заключается в доставке экзогенных (пищевых) жиров в периферические ткани. ХМ содержат около 2 % белка, 7 % фосфолипидов, 8 % холестерина и его эфиров и более 80 % ТАГ. Диаметр ХМ колеблется от 0,1 до 5 мкм. Из-за больших размеров частиц ХМ не способны проникать из эндотелиальных клеток кишечника в кровеносные капилляры и диффундируют в лимфатическую систему кишечника, а из нее – в грудной лимфатический проток, из которого ХМ попадают в кровяное русло, где осуществляют транспорт ТАГ, холестерина и частично фосфолипидов из кишечника через лимфатическую систему в кровь.

Через 1–2 ч после приема пищи, содержащей жиры, повышается концентрация ТАГ в крови и появляются в кровеносном русле ХМ. Через 10–12 ч после приема пищи содержание ТАГ возвращается к нормальным величинам, а ХМ полностью исчезают из крови.

ХМ свободно диффундируют из плазмы крови в межклеточные пространства печени. Гидролиз ТАГ, содержащихся в ХМ, происходит как внутри печеночных клеток, так и на поверхности. ХМ не способны (из-за своих размеров) проникать в клетки жировой ткани, поэтому ТАГ ХМ подвергаются гидролизу на поверхности эндотелия капилляров жировой ткани при участии фермента липопротеинлипазы.

Основной апопротеин в составе ХМ  белок апоВ-48. Белок кодируется тем же геном, что и белок В-100, входящий в состав ЛПОНП, ЛПНП, ЛППП (см. таблицу) и синтезируемый в печени. В кишечнике происходит считывание лишь части гена, а именно 48 %, поэтому белок и получил свое название В-48, синтезируется он в шероховатом эндоплазматическом ретикулуме и гликозилируется. В аппарате Гольджи затем формируются так называемые «незрелые» ХМ. Они путем экзоцитоза попадают в главный грудной лимфатический проток, а через него в кровь. В лимфе и крови ХМ получают апопротеины Е и С-II, превращаясь в «зрелые» ХМ. После приема жирной пищи образовавшиеся ХМ опалесцируют, придавая плазме крови похожий на молоко вид. Транспортируя липиды к различным тканям, где они подвергаются расщеплению, ХМ постепенно исчезают из крови и плазма становится прозрачной.

Липопротеины или липопротеиды (англ. lipoprotein ) - сложные белки, состоящий из аполипопротеинов и липидов. Из липидов в состав липопротеинов могут входить: свободные жирные кислоты, фосфолипиды, холестерины, нейтральные жиры и другие. Аполипопротеины (синонимы: апобелки и апо) - белки, компоненты липопротеинов, специфически связывающиеся с соответствующими липидами при формировании липопротеина.

На иллюстрации: структура липопротеина. Автор оригинального рисунка AntiSense, лицензия GNU Free Documentation License. Адаптировано.

Типы липопротеинов
Существуют разные классификации липопротеинов, ориентированные на различные их характеристики. Липопротеины разделяют на растворимые в воде (плазме крови, молоке и т.п.) и структурные, входящие в состав мембран клеток, миелиновой оболочки нервных волокон, структурных тканей растений.

Наиболее известной и распространённая является классификация липопротеинов плазмы крови по плотности. Выделяют:

  • Хиломикроны
  • Липопротеины очень низкой плотности (ЛПОНП или ЛОНП)
  • Липопротеины низкой плотности (ЛПНП или ЛНП)
  • Липопротеины промежуточной (средней) плотности (ЛППП, ЛПП, ЛСП или ЛПСП)
  • Липопротеины высокой плотности (ЛПВП или ЛВП)
Плотность липопротеинов тем ниже, чем выше содержание в них липидов.

Средние значения характеристик разных классов липопротеинов (в популяции у молодых здоровых людей с весом около 70 кг):

Тип Плотность,
г/мл
Диаметр, нм % протеина % холестерина % фосфолипидов % триглицеридов
и эфиров холестерина
ЛПВП >1,063 5–15 33 30 29 4
ЛПНП 1,019–1,063 18–28 25 50 21 8
ЛППП 1,006–1,019 25–50 18 29 22 31
ЛПОНП 0,95–1,006 30–80 10 22 18 50
Хиломикроны <0,95 100-1000 <2 8 7 84



Отдельно выделяют липопротеины (а) (на рисунке слева) - подкласс липопротеинов плазмы крови человека. Липопротеин (а) является отдельным фактором риска развития сердечно-сосудистых заболеваний. Концентрация липопротеинов (а) в плазме крови определяется, в основном, генетически и физические упражнения, медикаментозная терапия или диета на него практически не влияют.
«Хорошие» и «плохие» липопротеины
Считается, что липопротеины высокой плотности являются «хорошими», а низкой, промежуточной и очень низкой плотности - «плохими». В общем случае, чем выше концентрация ЛПВП в плазме крови, тем меньше риск атеросклероза и других сердечно-сосудистых заболеваний. При его избытке «плохих» липопопротеинов (ЛПНП, ЛСП и ЛОНП) в стенках сосудов возникают бляшки, которые могут ограничивать движение крови по сосуду, что грозит атеросклерозом и значительно повышает риск заболеваний сердца (ишемической болезни, инфаркта) и инсульта.

ЛПВП легко проникают в стенку артерий и легко её покидают, не влияя, таким образом, на развитие атеросклероза. ЛПНП, ЛСП и часть ЛПОНП после окисления задерживаются в стенках артерий. Самые крупные - хиломикроны и большие по размеру ЛПОНП не способны из-за своего размера проникнуть в стенку артерий и также не влияют на развитие атеросклероза.

Для уменьшения «плохих» липопротеинов может быть рекомендована диета (см. ниже) и терапия препаратами из группы статинов (аторвастатин, церивастатин, розувастатин, питавастатин и др.).

Основная диета для снижения липидов (холестерина)
Принципы Источники
Уменьшение общего потребления жира и насыщенных жиров
Сливочное масло, твёрдый маргарин, цельное молоко, твёрдые и мягкие сыры, видимый жир мяса, утка, гусь, обычная колбаса, пирожные, сливки, кокосовое и пальмовое масло
Увеличение потребления высокобелковых продуктов с низким содержанием насыщенных жиров
Рыба, курица, индейка, дичь, телятина
Увеличение сложных углеводов и фруктовых, овощных и злаковых волокон, особенно клетчатки Все свежезамороженные овощи, свежие фрукты, все неполированные зерновые, чечевица, сушёные бобы, рис
Увеличение потребления полиненасыщенных и мононенасыщенных жиров Подсолнечное, кукурузное, оливковое масло, масло из соевых бобов и другие продукты из них, если они не в твёрдом виде (не гидрогенизированы)
Уменьшение холестерина в питании Мозги, почки, язык, яйца (не более 1-2 желтков в неделю), печень (не более 2 раз в месяц)
Уменьшение потребления натрия Соль, глютамат натрия, консервированные овощи и мясо, солёные продукты (ветчина, бекон, копчёная рыба), минеральная вода с большим количеством соли
Источник: Еганян Р.А. Диета и статины в профилактике ишемической болезни сердца (литературный обзор) // РМЖ. 2014. №2. С. 112.
Нарушения обмена липопротеинов в МКБ-10
Различные нарушения обмена липопротеинов в МКБ-10 относят к «Классу IV. Болезни эндокринной системы, расстройства питания и нарушения обмена веществ (E00-E90) », блоку «Е70-Е90 Нарушения обмена веществ », кодам:
  • «E78.0 Чистая гиперхолестеринемия» (семейная гиперхолестеринемия; гиперлипопортеинемия Фредриксона, тип IIa; гипер-бета-липопротеинемия; гиперлипидемия, группа A; гиперлипопротеинемия с липопротеинами низкой плотности)
  • «E78.1 Чистая гиперглицеридемия» (эндогенная гиперглицеридемия; гиперлипопортеинемия Фредриксона, тип IV; гиперлипидемия, группа B; гиперпре-бета-липопротеинемия; гиперлипопротеинемия с липопротеинами очень низкой плотности)
  • «E78.2 Смешанная гиперлипидемия» (обширная или флотирующая бета-липопротеинемия; гиперлипопортеинемия Фредриксона, типы IIb или III; гипер-бета-липопротеинемия с пре-бета-липопротеинемией; гиперхолестеринемия с эндогенной гиперглицеридемией; гиперлипидемия, группа C; тубоэруптивная ксантома; ксантома туберозная)
  • «E78.3 Гиперхиломикронемия» (гиперлипопортеинемия Фредриксона, типы I или V; гиперлипидемия, группа D; смешанная гиперглицеридемия)
  • «E78.4 Другие гиперлипидемии» (семейная комбинированная гиперлипидемия)
  • «E78.5 Гиперлипидемия неуточненная»
  • «E78.6 Недостаточность липопротеинов» (A-бета-липопротеинемия; недостаточность липопротеинов высокой плотности; гипо-альфа-липопротеинемия; гипо-бета-липопротеинемия (семейная); недостаточность лецитинхолестеринацилтрансферазы; танжерская болезнь)
  • «E78.8 Другие нарушения обмена липопротеинов»
  • «E78.9 Нарушения обмена липопротеинов неуточненные»
Медицинские услуги, связанные с определением уровня липопротеинов в крови человека
Приказом Минздравсоцразвития России № 1664н от 27.12.2011 г. утверждена Номенклатура медицинских услуг. В Разделе 9 Номенклатуры предусмотрен ряд медицинских услуг, связанных с определением уровня липопротеинов в крови человека:

На сайте в разделе «Литература » имеются подразделы «Расстройства питания и нарушение обмена веществ, ожирение, метаболический синдром » и «Сердечно-сосудистые заболевания, ассоциированные с заболеваниями ЖКТ », содержащий статьи для профессионалов здравоохранения, затрагивающие данные вопросы.

Результаты исследований уровня липопротеинов в крови дают важную информацию для лечащего врача, но они ни в коей мере не являются диагнозом!

Липопротеины - сложные белково-липидные комплексы, входящие в состав всех живых организмов и являющиеся необходимой составной частью клеточных структур. Липопротеины выполняют транспортную функцию. Их содержание в крови – важный диагностический тест, сигнализирующий о степени развития заболеваний систем организма.

Это класс сложных молекул, в состав которых могут одновременно входить свободные , жирные кислоты, нейтральные жиры, фосфолипиды и в различных количественных соотношениях.

Липопротеины доставляют липиды в различные ткани и органы. Они состоят из неполярных жиров, расположенных в центральной части молекулы - ядре, которое окружено оболочкой, образованной из полярных липидов и апобелков. Подобным строением липопротеинов объясняются их амфифильные свойства: одновременная гидрофильность и гидрофобность вещества.

Функции и значение

Липиды играют важную роль в организме человека. Они содержатся во всех клетках и тканях и участвуют во многих обменных процессах.

структура липопротеина

  • Липопротеины – основная транспортная форма липидов в организме . Поскольку липиды являются нерастворимыми соединениями, они не могут самостоятельно выполнять свое предназначение. Липиды связываются в крови с белками – апопротеинами, становятся растворимыми и образуют новое вещество, получившее название липопротеид или липопротеин. Эти два названия являются равноценными, сокращенно - ЛП.

Липопротеины занимают ключевое положение в транспорте и метаболизме липидов. Хиломикроны транспортируют жиры, поступающие в организм вместе с пищей, ЛПОНП доставляют к месту утилизации эндогенные триглицериды, с помощью ЛПНП в клетки поступает холестерин, ЛПВП обладают антиатерогенными свойствами.

  • Липопротеины повышают проницаемость клеточных мембран.
  • ЛП, белковая часть которых представлена глобулинами, стимулируют иммунитет, активизируют свертывающую систему крови и доставляют железо к тканям.

Классификация

ЛП плазмы крови классифицируют по плотности (с помощью метода ультрацентрифугирования). Чем больше в молекуле ЛП содержится липидов, тем ниже их плотность. Выделяют ЛПОНП, ЛПНП, ЛПВП, хиломикроны. Это самая точная из всех существующих классификаций ЛП, которая была разработана и доказана с помощью точного и довольно кропотливого метода - ультрацентрифугирования.

По размерам ЛП также неоднородны. Самыми крупными являются молекулы хиломикронов, а затем по уменьшению размера – ЛПОНП, ЛПСП, ЛПНП, ЛПВП.

Электрофоретическая классификация ЛП пользуется большой популярностью у клиницистов. С помощью электрофореза были выделены следующие классы ЛП: хиломикроны, пре-бета-липопротеины, бета-липопротеины, альфа-липопротеины. Данный метод основан на введении в жидкую среду активного вещества с помощью гальванического тока.

Фракционирование ЛП проводят с целью определения их концентрации в плазме крови. ЛПОНП и ЛПНП осаждают гепарином, а ЛПВП остаются в надосадочной жидкости.

Виды

В настоящее время выделяют следующие виды липопротеинов:

ЛПВП (липопротеины высокой плотности)

ЛПВП обеспечивают транспорт холестерина от тканей организма к печени.

  1. Увеличение ЛПВП в крови отмечают при ожирении, жировом гепатозе и билиарном циррозе печени, алкогольной интоксикации.
  2. Снижение ЛПВП происходит при наследственной болезни Танжера, обусловленной скоплением холестерина в тканях. В большинстве прочих случаев снижение концентрации ЛПВП в крови - признак .

Норма ЛПВП отличается у мужчин и женщин. У лиц мужского пола значение ЛП данного класса колеблется в пределах от 0,78 до 1,81 ммоль/л, норма у женщин ЛПВП - от 0,78 до 2,20, в зависимости от возраста.

ЛПНП (липопротеины низкой плотности)

ЛПНП являются переносчиками эндогенного холестерина, триглицеридов и фосфолипидов от печени к тканям.

Данный класс ЛП содержит до 45% холестерина и является его транспортной формой в крови. ЛПНП образуются в крови в результате действия на ЛПОНП фермента липопротеинлипазы. При его избытке на стенках сосудов появляются .

В норме количество ЛПНП составляет 1,3-3,5 ммоль/л.

  • Уровень ЛПНП в крови повышается при , гипофункции щитовидной железы, нефротическом синдроме.
  • Пониженный уровень ЛПНП наблюдается при воспалении поджелудочной железы, печеночно-почечной патологии, острых инфекционных процессах, беременности.

инфографика (увеличение по клику) – холестерин и ЛП, роль в организме и нормы

ЛПОНП (липопротеины очень низкой плотности)

ЛПОНП образуются в печени. Они переносят эндогенные липиды, синтезируемый в печени из углеводов, в ткани.

Это самые крупные ЛП, уступающие по размерам лишь хиломикронам. Они более, чем на половину состоят из триглицеридов и содержат небольшое количество холестерина. При избытке ЛПОНП кровь становится мутной и приобретает молочный оттенок.

ЛПОНП - источник «плохого» холестерина, из которого на эндотелии сосудов образуются бляшки. Постепенно бляшки увеличиваются, присоединяется с риском острой ишемии. ЛПОНП повышены у больных с и болезнями почек.

Хиломикроны

Хиломикроны отсутствуют в крови у здорового человека и появляются только при нарушении обмена липидов . Хиломикроны синтезируются в эпителиальных клетках слизистой оболочки тонкого кишечника. Они доставляют экзогенный жир из кишечника в периферические ткани и печень. Большую часть транспортируемых жиров составляют триглицериды, а также фосфолипиды и холестерин. В печени под воздействием ферментов триглицериды распадаются, и образуются жирные кислоты, часть которых транспортируется в мышцы и жировую ткань, а другая часть связывается с альбуминами крови.

как выглядят основные липопротеины

ЛПНП и ЛПОНП являются высокоатерогенными – содержащими много холестерина. Они проникают в стенку артерий и накапливаются в ней. При нарушении метаболизма уровень ЛПНП и холестерина резко повышается.

Наиболее безопасными в отношении атеросклероза являются ЛПВП . Липопротеины этого класса выводят холестерин из клеток и способствуют его поступлению в печень. Оттуда он вместе с желчью попадает в кишечник и покидает организм.

Представители всех остальных классов ЛП доставляют холестерин в клетки. Холестерин – это липопротеид, входящий в состав клеточной стенки. Он участвует в образовании половых гормонов, процессе желчеобразования, синтезе витамина Д, необходимого для усвоения кальция. Эндогенный холестерин синтезируется в печеночной ткани, клетках надпочечников, стенках кишечника и даже в коже. Экзогенный холестерин поступает в организм вместе с продуктами животного происхождения.

Дислипопротеинемия – диагноз при нарушении обмена липопротеинов

Дислипопротеинемия развивается при нарушении в организме человека двух процессов: образования ЛП и скорости их выведения из крови. Нарушение соотношения ЛП в крови – не патология, а фактор развития хронического заболевания, при котором уплотняются артериальные стенки, суживается их просвет и нарушается кровоснабжение внутренних органов.

При повышении уровня холестерина в крови и снижении уровня ЛПВП развивается атеросклероз, приводящий к развитию смертельно опасных заболеваний.

Этиология

Первичная дислипопротеинемия является генетически детерминированной.

Причинами вторичной дислипопротеинемии являются:

  1. Гиподинамия,
  2. Сахарный диабет,
  3. Алкоголизм,
  4. Дисфункция почек,
  5. Гипотиреоз,
  6. Печеночно-почечная недостаточность,
  7. Длительный прием некоторых лекарств.

Понятие дислипопротеинемия включает 3 процесса - гиперлипопротеинемию, гиполипопротеинемию, алипопротеинемию. Дислипопротеинемия встречается довольно часто: у каждого второго жителя планеты отмечаются подобные изменения в крови.

Гиперлипопротеинемия - повышенное содержание ЛП в крови, обусловленное экзогенными и эндогенными причинами. Вторичная форма гиперлипопротеинемии развивается на фоне основной патологии. При аутоиммунных заболеваниях ЛП воспринимаются организмом как антигены, к которым вырабатываются антитела. В результате образуются комплексы антиген - антитело, обладающие большей атерогенностью, чем сами ЛП.


Алипопротеинемия - генетически обусловленное заболевание с аутосомно-доминантным типом наследования. Заболевание проявляется увеличением миндалин с оранжевым налетом, гепатоспленомегалией, лимфаденитом, мышечной слабостью, снижением рефлексов, гипочувствительностью.

Гиполипопротеинемиянизкое содержание в крови ЛП, часто протекающее бессимптомно. Причинами заболевания являются:

  1. Наследственность,
  2. Неправильное питание,
  3. Сидячий образ жизни,
  4. Алкоголизм,
  5. Патология пищеварительной системы,
  6. Эндокринопатия.

Дислипопротеинемии бывают: органными или регуляторными, токсигенными, базальными - исследование уровня ЛП натощак, индуцированными - исследование уровня ЛП после приема пищи, препаратов или физической нагрузки.

Диагностика

Известно, что для организма человека избыток холестерина очень вреден. Но и недостаток этого вещества может привести к дисфункции органов и систем. Проблема кроется в наследственной предрасположенности, а также в образе жизни и особенностях питания.

Диагностика дислипопротеинемии основывается на данных анамнеза болезни, жалобах больных, клинических признаках - наличии ксантом, ксантелазм, липоидной дуги роговицы.

Основным диагностическим методом дислипопротеинемии является анализ крови на липиды. Определяют коэффициент атерогенности и основные показатели липидограммы - триглицериды,общий холестерин, ЛПВП, ЛПНП.

Липидограмма – метод лабораторной диагностики, который выявляет нарушения липидного обмена, приводящие к развитию заболеваний сердца и сосудов. Липидограмма позволяет врачу оценить состояние пациента, определить риск развития атеросклероза коронарных, мозговых, почечных и печеночных сосудов, а также заболеваний внутренних органов. Кровь сдают в лаборатории строго натощак, спустя минимум 12 часов после последнего приема пищи. За сутки до анализа исключают прием алкоголя, а за час до исследования - курение. Накануне анализа желательно избегать стресса и эмоционального перенапряжения.

Ферментативный метод исследования венозной крови является основным для определения липидов. Прибор фиксирует предварительно окрашенные специальными реагентами пробы. Данный диагностический метод позволяет провести массовые обследования и получить точные результаты.

Сдавать анализы на определение липидного спектра с профилактической целью, начиная с юности необходимо 1 раз в 5 лет. Лицам, достигшим 40 лет, делать это следует ежегодно. Проводят исследование крови практически в каждой районной поликлинике. Больным, страдающим гипертонией, ожирением, заболеваниями сердца, печени и почек, назначают и липидограмму. Отягощенная наследственность, имеющиеся факторы риска, контроль эффективности лечения - показания для назначения липидограммы.

Результаты исследования могут быть недостоверны после употребления накануне пищи, курения, перенесенного стресса, острой инфекции, при беременности, приеме некоторых лекарственных препаратов.

Диагностикой и лечение патологии занимается эндокринолог, кардиолог, терапевт, врач общей практики, семейный врач.

Лечение

играет огромную роль в лечении дислипопротеинемии. Больным рекомендуют ограничить потребление животных жиров или заменить их синтетическими, принимать пищу до 5 раз в сутки небольшими порциями. Рацион необходимо обогащать витаминами и пищевыми волокнами. Следует отказаться от жирной и жареной пищи, мясо заменить морской рыбой, есть много овощей и фруктов. Общеукрепляющая терапия и достаточная физическая нагрузка улучшают общее состояние больных.

рисунок: полезная и вредная “диеты” с точки зрения баланса ЛП

Гиполипидемическая терапия и антигиперлипопротеинемические препараты предназначены для коррекции дислипопротеинемии. Они направлены на снижение уровня холестерина и ЛПНП в крови, а также на повышение уровня ЛПВП.

Из препаратов для лечения гиперлипопротеинемии больным назначают:

  • – «Ловастатин», «Флувастатин», «Мевакор», «Зокор», «Липитор». Эта группа препаратов уменьшает выработку холестерина печенью, снижает количество внутриклеточного холестерина, разрушает липиды и оказывает противовоспалительное действие.
  • Секвестранты снижают синтез холестерина и выводят его из организма – «Холестирамин», «Колестипол», «Холестипол», «Холестан».
  • снижаю уровень триглицеридов и повышают уровень ЛПВП – «Фенофибрат», «Ципрофибрат».
  • Витамины группы В.

Гиперлипопротеинемия требует лечения гиполипидемическими препаратами «Холестерамином», «Никотиновой кислотой», «Мисклероном», «Клофибратом».

Лечение вторичной формы дислипопротеинемии заключается в устранении основного заболевания. Больным сахарным диабетом рекомендуют изменить образ жизни, регулярно принимать сахаропонижающие препараты, а также статины и фибраты. В тяжелых случаях требуется проведение инсулинотерапии. При гипотиреозе необходимо нормализовать функцию щитовидной железы. Для этого больным проводят гормональную заместительную терапию.

Больным, страдающим дислипопротеинемией, рекомендуют после проведения основного лечения:

  1. Нормализовать массу тела,
  2. Дозировать физические нагрузки,
  3. Ограничить или исключить употребление алкоголя,
  4. По возможности избегать стрессов и конфликтных ситуаций,
  5. Отказаться от курения.

Видео: липопротеины и холестерин – мифы и реальность

Видео: липопротеины в анализах крови – программа “Жить здорово!”