Момент инерции прямоугольника относительно оси y. Момент инерции

Осевым (или экваториальным) моментом инерции сечения относительно некоторой оси называется взятая по всей его площади F сумма произведений элементарных площадок на квадраты их расстояний от этой оси, т. е.

Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей его площади F сумма произведений элементарных площадок на квадраты их расстояний от этой точки, т. е.

Центробежным моментом инерции сечения относительно некоторых двух взаимно перпендикулярных осей называется взятая по всей его площади F сумма произведений элементарных площадок на их расстояния от этих осей, т.е.

Моменты инерции выражаются в и т.д.

Осевые и полярные моменты инерции всегда положительны, так как в их выражения под знаки интегралов входят величины площадок (всегда положительные) и квадраты расстояний этих площадок от данной оси или полюса.

На рис. 9.5, а изображено сечение площадью F и показаны оси у и z. Осевые моменты инерции этого сечения относительно осей у :

Сумма этих моментов инерции

и, следовательно,

Таким образом, сумма осевых моментов инерции сечения относительно двух взаимно перпендикулярных осей равна полярному моменту инерции этого сечения относительно точки пересечения указанных осей.

Центробежные моменты инерции могут быть положительными, отрицательными или равными нулю. Так, например, центробежный момент инерции сечения, показанного на рис. 9.5, а, относительно осей у и положителен, так как для основной части этого сечения, расположенной в первом квадранте, значения , а следовательно, и положительны.

Если изменить положительное направление оси у или на обратное (рис. 9.5,б) или повернуть обе эти оси на 90° (рис. 9.5, в), то центробежный момент инерции станет отрицательным (абсолютная величина его не изменится), так как основная часть сечения будет тогда располагаться в квадранте, для точек которого координаты у положительны, а координаты z отрицательны. Если изменить положительные направления обеих осей на обратные, то это не изменит ни знак, ни величину центробежного момента инерции.

Рассмотрим фигуру, симметричную относительно одной или нескольких осей (рис. 10.5). Проведем оси так, чтобы хотя бы одна из них (в данном случае ось у) совпадала с осью симметрии фигуры. Каждой площадке расположенной справа от оси соответствует в этом случае такая же площадка расположенная симметрично первой, но слева от оси у. Центробежный момент инерции каждой пары таких симметрично расположенных площадок равен:

Следовательно,

Таким образом, центробежный момент инерции сечения относительно осей, из которых одна или обе совпадают с его осями симметрии, равен нулю.

Осевой момент инерции сложного сечения относительно некоторой оси равен сумме осевых моментов инерции составляющих его частей относительно этой же оси.

Аналогично центробежный момент инерции сложного сечения относительно любых двух взаимно перпендикулярных осей равен сумме центробежных моментов инерции составляющих его частей относительно этих же осей. Также и полярный момент инерции сложного сечения относительно некоторой точки равен сумме полярных моментов инерции составляющих его частей относительно той же точки.

Следует иметь в виду, что нельзя суммировать моменты инерции, вычисленные относительно различных осей и точек.


05-12-2012: Адольф Сталин

Было бы неплохо объяснить на наглядном примере для особо одаренных, типа меня, что такое момент инерции и с чем его едят. На специализированных сайтах как-то всё очень запутанно, а у Дока есть явный талант довести информацию, быть может не самую сложную, но очень грамотно и понятно

05-12-2012: Доктор Лом

В принципе, что такое момент инерции и откуда он взялся, достаточно подробно объяснено в статье "Основы сопромата, расчетные формулы", здесь лишь повторюсь: "W - это момент сопротивления поперечного сечения балки, другими словами, площадь сжимаемой или растягиваемой части сечения балки, умноженная на плечо действия равнодействующей силы". Момент сопротивления необходимо знать для расчетов конструкции на прочность, т.е. по предельным напряжениям. Момент инерции необходимо знать для определения углов поворота поперечного сечения и прогиба (смещения) центра тяжести поперечного сечения, так как максимальные деформации возникают в самом верхнем и в самом нижнем слое изгибаемой конструкции, то определить момент инерции можно, умножив момент сопротивления на расстояние от центра тяжести сечения до верхнего или нижнего слоя, поэтому для прямоугольных сечений I=Wh/2. При определении момента инерции сечений сложных геометрических форм сначала сложная фигура разбивается на простейшие, затем определяются площади сечения этих фигур и моменты инерции простейших фигур, затем площади простейших фигур умножаются на квадрат расстояния от общего центра тяжести сечения до центра тяжести простейшей фигуры. Момент инерции простейшей фигуры в составе сложного сечения равен моменту инерции фигуры + квадрат расстояния умноженный на площадь. Затем полученные моменты инерции суммируются и получается момент инерции сложного сечения. Но это максимально упрощенные формулировки (хотя, соглашусь, все равно выглядит достаточно мудрено). Со временем напишу отдельную статью.

20-04-2013: Petr

Не нужно полностью доверять поданной в сайтах информации. Её никто по-хорошему не проверяет. И ссылки на неё не даются. Так в Таблице 1. "Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций достаточно простых геометрических форм" для тонкостенной трубы дается определение, что отношение диаметра к толщине оболочки должно быть больше 10. По другим источникам - должно быть больше 20!!! (Н.М. Беляев. Сопротивление материалов. М.1996. стр.160. или Н.И.Безухов. Основы теории упругости, пластичности и ползучести.М.1961.стр.390)

21-04-2013: Доктор Лом

Верно. Доверять нельзя. Но логическое мышление пока никто не отменял. Самый правильный вариант - рассчитывать момент инерции или момент сопротивления для любой трубы по формулам, приведенным для обычной трубы (на 1 пункт выше). Формулы, приводимые для тонкостенной трубы, в любом случае будут приближенными и годятся только для первичного расчета и об этом забывать нельзя.
Впрочем параметры максимально допустимой толщины стенки исправил.

25-06-2013: Саня

требуется определить момент инерции для сложного нестандартного сечения. сечение: прямоугольник с двумя пазами. внешне похоже на букву "Ш". не получается найти какую либо информацию. буду признателен за какую нибудь информацию

25-06-2013: Доктор Лом

Посмотрите статью "Расчет прочности потолочного профиля для гипсокартона" (http://сайт/item249.html)
там в частности определяется момент инерции тоже не совсем простого сечения.

04-11-2014: Доктор Лом

Формула из приведенного вами источника неправильная (ею можно пользоваться только для приблизительных вычислений) и проверить это легко.
Чтобы определить момент инерции сечения трубы, достаточно вычесть из момента инерции стержня круглого сечения (тут при вычислениях используется наружный диаметр трубы) момент инерции отверстия (внутренний диаметр, ведь внутри трубы никакого материала нет, на то она и труба). После простейших математических преобразований мы получим формулу момента инерции трубы, приведенную в таблице.
А для того, чтобы определить момент сопротивления, нужно момент инерции разделить на максимальное расстояние от центра тяжести до самой дальней точки сечения, соответственно на D/2, или умножить на 2/D.
В итоге получить указанную вами формулу невозможно и чем толще будет стенка трубы, тем больше будет погрешность при использовании этой формулы.

04-11-2014: Радик

Спасибо, док!

11-11-2014: Ильгам

Не смог найти инфо о том в каких единицах (мм, см, м) все значения в формулах.
Попробовал посчитать Wz для уголка 210х90мм (если у швел.24П срезать верхнюю полку), получилось 667,5 см3, при условии что все значения в см.
Для примера, у швел.24П (до срезания полки) Wx(Wz)=243 см3.

11-11-2014: Доктор Лом

Это общие формулы. В каких единицах подставите значения, в таких и получите результат, только само собой уже в кубических. Но если начали подставлять, например, в сантиметрах, то так и нужно продолжать.
У швеллера без полки момент сопротивления по умолчанию не может быть больше чем у целого швеллера. Для приблизительного определения момента сопротивления швеллера без полки вы можете воспользоваться формулами для неравнополочного уголка (только для определения Wz, для Wy эти формулы не подойдут).

04-01-2015: Valerij

Если сечение трубы ослаблено несколькими значительными отверстиями, как учесть это при расчёте момента инерции и момента сопротивления? Труба 32.39см и в ней 9 отв. диам.2.8см в сечении(шаг отвермтий 10см. по длине трубы).

05-01-2015: Доктор Лом

Для определения момента инерции вам нужно вычесть из момента инерции трубы момент инерции вашего отверстия. Для этого нужно определить площадь сечения отверстия и затем умножить ее на квадрат расстояния до центра трубы плюс собственный момент инерции отверстия. Больше подробностей в статье "Моменты инерции поперечных сечений".
Если расчет не требует особой точности и диаметр отверстия в 5 и более раз меньше диаметра трубы (вроде ваш случай, если 32.39 - это наружный диаметр), то сегмент отверстия можно привести к прямоугольнику. Если отверстие не сквозное, то следует дополнительно определить положение центра тяжести трубы с отверстием для того, чтобы потом вычислить новое значение момента сопротивления.
Но и это еще не все. Вам следует учесть, что возле отверстий возникают значительные локальные напряжения.

09-10-2015: Борис

Неравноплечий уголок.При вычислении Wy не y,а H-y

09-10-2015: Доктор Лом

Не пойму, о чем вы. Определение момента сопротивления относительно оси у в таблицах вообще не приводится.

09-10-2015: Борс

Для треугольников при вычислении Wzп h в квадрате.

09-10-2015: Борис

09-10-2015: Доктор Лом

Все верно. Теперь понял, о чем вы. Более корректно было бы указать момент сопротивления для верхней и для нижней части сечения, а я указал только для нижней. Ну а при определении момента сопротивления треугольников банально пропущен квадрат.
Исправил. Спасибо за внимательность.

28-04-2016: Jama

Здравствуете! Кто может помочь о правильности расчета http://ej.kubagro.ru/2011/02/pdf/19.pdf
я не могу понят откуда значение берется момент сопротивления. Помогите пожалуйста! 21-03-2017: игорь

здравствуйте,Сергей. я прочитал некоторые ваши статьи,очень интересно и понятно(в основном).я хотел бы рассчитать балку двутаврового сечения,но не могу найти Ix и Wx. дело в том что она не стандартная,я её буду делать сам,из дерева.можете ли вы мне помочь? я оплачу.только я не смогу оплатить электронными средствами т.к. не знаю как этим пользоваться.

21-03-2017: Доктор Лом

Игорь, я отправил вам письмо.

30-08-2017: Али

Уважаемый доктор, желаю вам всего найлучшего. Помогите пожалуйста, какими формулами нужны для подбора и проверки на прочность балку следующих сечений,:Швеллер,уголок и бульбовый профиль, имея допускаемый момент сопротивления W=58,58cm3. спасибо большое и жду вашу помощь.

31-08-2017: Доктор Лом

Посмотрите статью "Расчет стальных однопролетных балок с шарнирными опорами при изгибе согласно СП 16.13330.2011", там все достаточно подробно расписано.

13-11-2017: Абдуахад

Здравствуйте пожалуйста подскажите почему Ql^2/8 почему деленная на 8 и почему иногда делим на 6 и 24 итд подскажите пожалуйста только это не понял

Осевой момент инерции равен сумме произведений элементарных площадок на квадрат расстояния до соответствующей оси.

(8)

Знак всегда «+».

Не бывает равным 0.

Свойство: Принимает минимальное значение, когда точка пересечения координатных осей совпадает с центром тяжести сечения.

Осевой момент инерции сечения применяют при расчетах на прочность, жесткость и устойчивость.

1.3. Полярный момент инерции сечения Jρ

(9)

Взаимосвязь полярного и осевого моментов инерции:

(10)

(11)

Полярный момент инерции сечения равен сумме осевых моментов.

Свойство:

при повороте осей в любую сторону, один из осевых моментов инерции возрастает, а другой убывает (и наоборот). Сумма осевых моментов инерции остается величиной постоянной.

1.4. Центробежный момент инерции сечения Jxy

Центробежный момент инерции сечения равен сумме произведений элементарных площадок на расстояния до обеих осей

(12)

Единица измерения [см 4 ], [мм 4 ].

Знак «+» или «-».

, если координатные оси являются осями симметрии (пример – двутавр, прямоугольник, круг), или одна из координатных осей совпадает с осью симметрии (пример – швеллер).

Таким образом для симметричных фигур центробежный момент инерции равен 0.

Координатные оси u иv , проходящие через центр тяжести сечения, относительно которых центробежный момент равен нулю, называютсяглавными центральными осями инерции сечения. Главными они называются потому, что центробежный момент относительно них равен нулю, а центральными – потому, что проходят через центр тяжести сечения.

У сечений, не обладающих симметрией относительно осей x илиy , например у уголка,не будет равен нулю. Для этих сечений определяют положение осейu иv с помощью вычисления угла поворота осейx иy

(13)

Центробежный момент относительно осей u иv -

Формула для определения осевых моментов инерции относительно главных центральных осей u иv :

(14)

где
- осевые моменты инерции относительно центральных осей,

- центробежный момент инерции относительно центральных осей.

1.5. Момент инерции относительно оси, параллельной центральной (теорема Штейнера)

Теорема Штейнера:

Момент инерции относительно оси, параллельной центральной, равен центральному осевому моменту инерции плюс произведение площади всей фигуры на квадрат расстояния между осями.

(15)

Доказательство теоремы Штейнера.

Согласно рис. 5 расстояние у до элементарной площадкиdF

Подставляя значение у в формулу, получим:

Слагаемое
, так как точка С является центром тяжести сечения (см. свойство статических моментов площади сечения относительно центральных осей).

Для прямоугольника высотой h и шириной b :

Осевой момент инерции:

Момент сопротивления изгибу:

момент сопротивления изгибу равен отношению момента инерции к расстоянию наиболее удаленного волокна от нейтральной линии:

т.к.
, то

Для круга:

Полярный момент инерции:

Осевой момент инерции:

Момент сопротивления кручению:

Т.к.
, то

Момент сопротивления изгибу:

Пример 2. Определить момент инерции прямоугольного сечения относительно центральной оси С x .

Решение. Разобьём площадь прямоугольника на элементарные прямоугольники с размерами b (ширина) иdy (высота). Тогда площадь такого прямоугольника (на рис. 6 заштрихована) равна dF =bdy . Вычислим значение осевого момента инерции J x

По аналогии запишем

- осевой момент инерции сечения относительно центральной

Центробежный момент инерции

, так как оси С x и Сy являются осями симметрии.

Пример 3. Определить полярный момент инерции круглого сечения.

Решение. Разобьём круг на бесконечно тонкие кольца толщиной
радиусом, площадь такого кольца
. Подставляя значение
в выражение для полярного момента инерции интегрируя, получим

Учитывая равенство осевых моментов круглого сечения
и

, получаем

Осевые моменты инерции для кольца равны

с – отношение диаметра выреза к наружному диаметру вала.

Лекция №2 «Главные оси и главные моменты инерции

Рассмотрим, как изменяются моменты инерции при повороте координатных осей. Положим, даны моменты инерции некоторого сечения относительно осей 0х , 0у (не обязательно центральных)- ,- осевые моменты инерции сечения. Требуется определить,- осевые моменты относительно осейu ,v , повёрнутых относительно первой системы на угол
(рис. 8)

Так как проекция ломаной линии ОАВС равна проекции замыкающей, находим:

(15)

Исключим uиvв выражениях моментов инерции:



(18)

Рассмотрим два первых уравнения. Складывая их почленно, получим

Таким образом, сумма осевых моментов инерции относительно двух взаимно перпендикулярных осей не зависит от угла
и при повороте осей остается постоянной. Заметим при этом, что

Где - расстояние от начала координат до элементарной площадки (см. рис.5). Таким образом

Где - уже знакомый нам полярный момент инерции:

Определим осевой момент инерции круга относительно диаметра.

Так как в силу симметрии
но, как известно,

Следовательно, для круга

С изменением угла поворота осей
значения моментов именяются, но сумма остается неизменной. Следовательно существует такое значение
, при котором один из моментов инерции достигает своего максимального значения, в то время как другой момент принимает минимальное значение. Дифференцируя выражениепо углу
и приравнивая производную к нулю, находим

(19)

При этом значении угла
один из осевых моментов будет наибольшим, а другой - наименьшим. Одновременно центробежный момент инерции
обращается в нуль, что можно легко проверить, приравнивая к нулю формулу для центробежного момента инерции
.

Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты принимают экстремальные значения, называются главными осями. Если они к тому же являются центральными (точка начала координат совпадает с центром тяжести сечения), то тогда они называютсяглавными центральными осями (u ; v ). Осевые моменты инерции относительно главных осей называютсяглавными моментами инерции - и

И их значение определяется по следующей формуле:

(20)

Знак плюс соответствует максимальному моменту инерции, знак минус - минимальному.

Существует ещё одна геометрическая характеристика – радиус инерции сечения. Эта величина часто используется в теоретических выводах и практических расчётах.

Радиусом инерции сечения относительно некоторой оси, например 0 x , называется величина , определяемая из равенства

(21)

F – площадь поперечного сечения,

- осевой момент инерции сечения,

Из определения следует, что радиус инерции равен расстоянию от оси 0х до той точки, в которой следует сосредоточить (условно) площадь сеченияF, чтобы момент инерции одной этой точки был равен моменту инерции всего сечения. Зная момент инерции сечения и его площадь, можно найти радиус инерции относительно оси 0х :

(22)

Радиусы инерции, соответствующие главным осям, называютсяглавными радиусами инерции и определяются по формулам


(23)

Лекция 3. Кручение стержней круглого поперечного сечения.

Если m = 1, n = 1, тогда получим характеристику

которая называется центробежным моментом инерции .

Центробежный момент инерции относительно осей координат – сумма произведений элементарных площадей dA на их расстояния до этих осей, взятая по всей площади сечения А .

Если хотя бы одна из осей y или z является осью симметрии сечения, центробежный момент инерции такого сечения относительно этих осей равен нулю (так как в этом случае каждой положительной величине z·y·dA можем поставить в соответствие точно такую же, но отрицательную, по другую сторону от оси симметрии сечения, см. рисунок).

Рассмотрим дополнительные геометрические характеристики, которые могут быть получены из перечисленных основных и также часто используются в расчетах на прочность и жесткость.

Полярный момент инерции

Полярным моментом инерции J p называют характеристику

С другой стороны,

Полярный момент инерции (относительно данной точки) – сумма произведений элементарных площадей dA на квадраты их расстояний до этой точки, взятая по всей площади сечения А .

Размерность моментов инерции – м 4 в СИ.

Момент сопротивления

Момент сопротивления относительно некоторой оси – величина равная моменту инерции относительно той же оси отнесенному к расстоянию (y max или z max ) до наиболее удаленной от этой оси точки

Размерность моментов сопротивления – м 3 в СИ.

Радиус инерции

Радиусом инерции сечения относительно некоторой оси, называется величина, определяемая из соотношения:

Радиусы инерции выражаются в м в системе СИ.

Замечание: сечения элементов современных конструкций часто представляют собой некоторую композицию из материалов с разным сопротивлением упругим деформациям, характеризуемым, как известно из курса физики, модулем Юнга E . В самом общем случае неоднородного сечения модуль Юнга является непрерывной функцией координат точек сечения, т. е. E = E(z, y) . Поэтому жесткость неоднородного по упругим свойствам сечения характеризуется более сложными, чем геометрические характеристики однородного сечения, характеристиками, а именно упруго-геометрическими вида



2.2. Вычисление геометрических характеристик простых фигур

Прямоугольное сечение

Определим осевой момент инерции прямоугольника относительно оси z . Разобьем площадь прямоугольника на элементарные площадки с размерами b (ширина) и dy (высота). Тогда площадь такого элементарного прямоугольника (заштрихован) равна dA = b · dy . Подставляя значение dA в первую формулу, получим

По аналогии запишем осевой момент относительно оси у :

Осевые моменты сопротивления прямоугольника:

;

Подобным образом можно получить геометрические характеристики и для других простых фигур.

Круглое сечение

Сначала удобно найти полярный момент инерции J p .

Затем, учитывая, что для круга J z = J y , а J p = J z + J y , найдем J z = J y = J p / 2.

Разобьем круг на бесконечно малые кольца толщиной и радиусом ρ ; площадь такого кольца dA = 2 ∙ π ∙ ρ ∙ dρ . Подставляя выражение для dA в выражение для J p и интегрируя, получим

2.3. Вычисление моментов инерции относительно параллельных осей

z и y :

Требуется определить моменты инерции этого сечения относительно «новых» осей z 1 и y 1 , параллельных центральным и отстоящих от них на расстояние a и b соответственно:

Координаты любой точки в «новой» системе координат z 1 0 1 y 1 можно выразить через координаты в «старых» осях z и y так:

Так как оси z и y – центральные, то статический момент S z = 0.

Окончательно можем записать формулы «перехода» при параллельном переносе осей:

Отметим, что координаты a и b необходимо подставлять с учетом их знака (в системе координат z 1 0 1 y 1 ).

2.4. Вычисление моментов инерции при повороте координатных осей

Пусть известны моменты инерции произвольного сечения относительно центральных осей z, y :

; ;

Повернем оси z , y на угол α против часовой стрелки, считая угол поворота осей в этом направлении положительным.

Требуется определить моменты инерции относительно «новых» (повернутых) осей z 1 и y 1 :

Координаты элементарной площадки dA в «новой» системе координат z 1 0y 1 можно выразить через координаты в «старых» осях так:

Подставляем эти значения в формулы для моментов инерции в «новых» осях и интегрируем почленно:

Проделав аналогичные преобразования с остальными выражениями, запишем окончательно формулы «перехода» при повороте координатных осей:

Отметим, что если сложить два первых уравнения, то получим

т. е. полярный момент инерции есть величина инвариантная (другими словами, неизменная при повороте координатных осей).

2.5. Главные оси и главные моменты инерции

До сих пор рассматривались геометрические характеристики сечений в произвольной системе координат, однако наибольший практический интерес представляет система координат, в которой сечение описывается наименьшим количеством геометрических характеристик. Такая «особая» система координат задается положением главных осей сечения. Введем понятия: главные оси и главные моменты инерции .

Главные оси – две взаимно перпендикулярные оси, относительно которых центробежный момент инерции равен нулю, при этом осевые моменты инерции принимают экстремальные значения (максимум и минимум).

Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями .

Моменты инерции относительно главных осей называются главными моментами инерции.

Главные центральные оси принято обозначать буквами u и v ; главные моменты инерции – J u и J v (по определению J uv = 0).

Выведем выражения, позволяющие находить положение главных осей и величину главных моментов инерции. Зная, что J uv = 0, воспользуемся уравнением (2.3):

Угол α 0 определяет положение главных осей относительно любых центральных осей z и y . Угол α 0 откладывается между осью z и осью u и считается положительным в направлении против часовой стрелки.

Заметим, что если сечение имеет ось симметрии, то, в соответствии со свойством центробежного момента инерции (см. разд.2.1, п.4), такая ось всегда будет главной осью сечения.

Исключая угол α в выражениях (2.1) и (2.2) с помощью (2.4), получим формулы для определения главных осевых моментов инерции:

Запишем правило: ось максимум всегда составляет меньший угол с той из осей (z или y), относительно которой момент инерции имеет большее значение.

2.6. Рациональные формы поперечных сечений

Нормальные напряжения в произвольной точке поперечного сечения балки при прямом изгибе определяются по формуле:

, (2.5)

где М – изгибающий момент в рассматриваемом поперечном сечении; у – расстояние от рассматриваемой точки до главной центральной оси, перпендикулярной плоскости действия изгибающего момента; J x – главный центральный момент инерции сечения.

Наибольшие растягивающие и сжимающие нормальные напряжения в данном поперечном сечении возникают в точках, наиболее удаленных от нейтральной оси. Их определяют по формулам:

; ,

где у 1 и у 2 – расстояния от главной центральной оси Х до наиболее удаленных растянутого и сжатого волокон.

Для балок из пластичных материалов, когда [σ p ] = [σ c ] ([σ p ], [σ c ] – допускаемые напряжения для материала балки соответственно на растяжение и сжатие), применяют сечения, симметричные относительно центральной оси. В этом случае условие прочности имеет вид:

[σ], (2.6)

где W x = J x / y max – момент сопротивления площади поперечного сечения балки относительно главной центральной оси; y max = h / 2 (h – высота сечения); М max – наибольший по абсолютному значению изгибающий момент; [σ] – допускаемое напряжение материала на изгиб.

Кроме условия прочности балка должна удовлетворять и условию экономичности. Наиболее экономичными являются такие формы поперечных сечений, для которых с наименьшей затратой материала (или при наименьшей площади поперечного сечения) получается наибольшая величина момента сопротивления. Чтобы форма сечения была рациональной, необходимо, по возможности, распределять сечение подальше от главной центральной оси.

Например, двутавровая стандартная балка примерно в семь раз прочнее и в тридцать раз жестче, чем балка квадратного поперечного сечения той же площади сделанного из того же материала.

Необходимо иметь в виду, что при изменении положения сечения по отношению к действующей нагрузке прочность балки существенно изменяется, хотя площадь сечения остается неизменной. Следовательно, сечение надо располагать так, чтобы силовая линия совпадала с той из главных осей, относительно которых момент инерции минимален. Следует стремится, чтобы изгиб бруса проходил в плоскости его наибольшей жесткости.

I = ∑r i 2 dF i =∫r 2 dF (1.1)

В принципе и определение и формула, его описывающая, не сложные и запомнить их намного легче, чем вникнуть в суть. Но все-таки попробуем разобраться, что же такое момент инерции и откуда он взялся.

Понятие момент инерции пришло в сопромат и строительную механику из другого раздела физики, изучающего кинематику движения, в частности вращательное движение. Но все равно начнем издалека.

Я точно не знаю, упало ли Исааку Ньютону на голову яблоко, упало оно рядом, или вообще не падало, теория вероятности допускает все эти варианты (к тому же в этом яблоке слишком много от библейской легенды о древе познания), однако я уверен, что Ньютон был наблюдательным человеком, способным делать выводы из своих наблюдений. Так наблюдательность и воображение позволили Ньютону сформулировать основной закон динамики (второй закон Ньютона), согласно которому масса тела m , умноженная на ускорение a , равна действующей силе Q (вообще-то более привычным для силы является обозначение F, но так как дальше мы будем иметь дело с площадью, которая также часто обозначается как F, то я использую для внешней силы, рассматриваемой в теоретической механике как сосредоточенная нагрузка, обозначение Q, сути дела это не меняет):

Q = ma (1.2)

По мне величие Ньютона именно в простоте и понятности данного определения. А еще, если учесть, что при равноускоренном движении ускорение а равно отношению приращения скорости ΔV к периоду времени Δt , за который скорость изменилась:

a = Δv/Δt = (v - v о)/t (1.3.1)

при V о = 0 a = v/t (1.3.2)

то можно определить основные параметры движения, такие как расстояние, скорость, время и даже импульс р , характеризующий количество движения:

p = mv (1.4)

Например, яблоко, падающее с разной высоты под действием только силы тяжести, будет падать до земли разное время, иметь разную скорость в момент приземления и соответственно разный импульс. Другими словами, яблоко, падающее с бóльшей высоты, будет дольше лететь и сильнее треснет по лбу незадачливого наблюдателя. И все это Ньютон свел к простой и понятной формуле.

А еще Ньютон сформулировал закон инерции (первый закон Ньютона): если ускорение а = 0 , то в инерциальной системе отсчета невозможно определить, находится ли наблюдаемое тело, на которое не действуют внешние силы, в состоянии покоя или движется прямолинейно с постоянной скоростью. Это свойство материальных тел сохранять свою скорость, пусть даже и нулевую, называется инертностью. Мерой инертности является инерционная масса тела. Иногда инерционная масса называется инертной, но сути дела это не меняет. Считается, что инерционная масса равна гравитационной массе и потому часто не уточняется, какая именно масса имеется в виду, а упоминается просто масса тела.

Не менее важным и значимым является и третий закон Ньютона, согласно которому сила действия равна силе противодействия, если силы направлены по одной прямой, но при этом в противоположные стороны . Не смотря, на кажущуюся простоту, и этот вывод Ньютона гениален и значение этого закона трудно переоценить. Об одном из применений этого закона чуть ниже.

Однако данные положения справедливы только для тел, движущихся поступательно, т.е. по прямолинейной траектории и при этом все материальные точки таких тел двигаются с одинаковой скоростью или одинаковым ускорением. При криволинейном движении и в частности при вращательном движении, например, когда тело вращается вокруг своей оси симметрии, материальные точки такого тела перемещаются в пространстве с одинаковой угловой скоростью w , но при этом линейная скорость v у различных точек будет разная и эта линейная скорость прямо пропорциональна расстоянию r от оси вращения до этой точки:

v = wr (1.5)

при этом угловая скорость равна отношению приращения угла поворота Δφ к периоду времени Δt , за который угол поворота изменился:

w = Δφ/Δt = (φ - φ о)/t (1.6.1)

при φ о = 0 w = φ/t (1.7.2)

соответственно нормальное ускорение а n при вращательном движении равно:

a n = v 2 /r = w 2 r (1.8)

И получается, что для вращательного движения мы не можем прямо использовать формулу (1.2), так как при вращательном движении одного только значения массы тела недостаточно, требуется еще знать распределение этой массы в теле. Получается, что чем ближе материальные точки тела к оси вращения, тем меньшую силу требуется приложить, чтобы заставить тело вращаться и наоборот, чем дальше материальные точки тела от оси вращения, тем большую силу нужно приложить, чтобы заставить тело вращаться (в данном случае речь идет о приложении силы в одной и той же точке). К тому же при вращении тела более удобно рассматривать не действующую силу, а вращающий момент, так как при вращательном движении точка приложения силы также имеет большое значение.

Поразительные свойства момента нам известны со времен Архимеда и если применить понятие момента к вращательному движению, то значение момента М будет тем больше, чем больше расстояние r от оси вращения до точки приложения силы F (в строительной механике внешняя сила часто обозначается как Р или Q ):

М = Qr (1.9)

Из этой также не очень сложной формулы выходит, что если сила будет приложена по оси вращения, то никакого вращения не будет, так как r = 0, а если сила будет приложена на максимальном удалении от оси вращения, то и значение момента будет максимальным. А если мы подставим в формулу (1.9) значение силы из формулы (1.2) и значение нормального ускорения и формулы (1.8), то получим следующее уравнение:

М = mw 2 r·r = mw 2 r 2 (1.10)

В частном случае когда тело является материальной точкой, имеющей размеры намного меньше, чем расстояние от этой точки до оси вращения, уравнение (1.10) применимо в чистом виде. Однако для тела, вращающегося вокруг одной из своих осей симметрии, расстояние от каждой материальной точки составляющей данное тело, всегда меньше одного из геометрических размеров тела и потому распределение массы тела имеет большое значение, в этом случае требуется учесть эти расстояния отдельно для каждой точки:

M = ∑r i 2 w 2 m i (1.11.1)

М с = w 2 ∫r 2 dm

И тогда получается, что согласно третьему закону Ньютона в ответ на действие вращающего момента будет возникать так называемый момент инерции I . При этом значения вращающего момента и момента инерции будут равны, а сами моменты направлены в противоположные стороны. При постоянной угловой скорости вращения, например w = 1, основными величинами, характеризующими вращающий момент или момент инерции будут масса материальных точек, составляющих тело, и расстояния от этих точек до оси вращения. В итоге формула момента инерции примет следующий вид:

[- М] = I = ∑r i 2 m i (1.12.1)

I c = ∫r 2 dm (1.11.2) - при вращении тела вокруг оси симметрии

где I - общепринятое обозначение момента инерции, I c - обозначение осевого момента инерции тела, кг/м 2 . Для однородного тела, имеющего одинаковую плотность ρ по всему объему тела V формулу осевого момента инерции тела можно записать так:

I c = ∫ρr 2 dV (1.13)

Таким образом момент инерции является мерой инертности тела при вращательном движении, подобно тому как масса является мерой инертности тела при поступательном прямолинейном движении .

Все круг замкнулся. И тут может возникнуть вопрос, какое отношение все эти законы динамики и кинематики имеют к расчету статических строительных конструкций? Оказывается, что ни на есть самое прямое и непосредственное. Во-первых потому, что все эти формулы выводились физиками и математиками в те далекие времена, когда таких дисциплин, как "Теоретическая механика" или "Теория сопротивления материалов" попросту не существовало. А во-вторых потому, что весь расчет строительных конструкций и построен на основе указанных законов и формулировок и пока ни кем не опровергнутом утвержении о равенстве гравитационной и инертой масс. Вот только в теории сопротивления материалов все еще проще, как ни парадоксально это звучит.

А проще потому, что при решении определенных задач может рассматриваться не все тело, а только его поперечное сечение, а при необходимости несколько поперечных сечений. Но в этих сечениях действуют такие же физические силы, правда имеющие несколько иную природу. Таким образом, если рассматривать некое тело, длина которого постоянна, а само тело является однородным, то если не учитывать постоянные параметры - длину и плотность (l = const, ρ = const ) - мы получим модель поперечного сечения. Для такого поперечного сечения с математической точки зрения будет справедливым уравнение:

I р = ∫r 2 dF (2.1) → (1.1)

где I p - полярный момент инерции поперечного сечения, м 4 . В итоге мы получили формулу, с которой начинали (а вот стало ли понятнее, что такое момент инерции сечения, не знаю).

Так как в теории сопротивления материалов часто рассматриваются прямоугольные сечения, да и прямоугольная система координат более удобна, то при решении задач обычно рассматриваются два осевых момента инерции поперечного сечения:

I z = ∫y 2 dF (2.2.1)

I y = ∫z 2 dF (2.2.2)

Рисунок 1 . Значения координат при определении осевых моментов инерции.

Тут может возникнуть вопрос, почему использованы оси z и у , а не более привычные х и у ? Так уж сложилось, что определение усилий в поперечном сечении и подбор сечения, выдерживающего действующие напряжения, равные приложенным усилиям - две разные задачи. Первую задачу - определение усилий - решает строительная механика, вторую задачу - подбор сечения - теория сопротивления материалов. При этом в строительной механике рассматривается при решении простых задач достаточно часто стержень (для прямолинейных конструкций), имеющий определенную длину l , а высота и ширина сечения не учитываются, при этом считается, что ось х как раз и проходит через центры тяжести всех поперечных сечений и таким образом при построении эпюр (порой достаточно сложных) длина l как раз и откладывается по оси х , а по оси у откладываются значения эпюр. В то же время теория сопротивления материалов рассматривает именно поперечное сечение, для которого важны ширина и высота, а длина не учитывается. Само собой при решении задач теории сопротивления материалов, также порой достаточно сложных используются все те же привычные оси х и у . Мне такое положение дел кажется не совсем правильным, так как не смотря на разницу, это все же смежные задачи и потому будет более целесообразным использование единых осей для рассчитываемой конструкции.

Значение полярного момента инерции в прямоугольной системе координат будет:

I р = ∫r 2 dF = ∫y 2 dF + ∫z 2 dF (2.3)

Так как в прямоугольной системе координат радиус - это гипотенуза прямоугольного треугольника, а как известно квадрат гипотенузы равен сумме квадратов катетов. А еще существует понятие центробежного момента инерции поперечного сечения:

I xz = ∫xzdF (2.4)

Среди осей прямоугольной системы координат, проходящих через центр тяжести поперечного сечения, есть две взаимно-перпендикулярные оси, относительно которых осевые моменты инерции принимают максимальное и минимальное значение, при этом центробежный момент инерции сечения I zy = 0 . Такие оси называют главными центральными осями поперечного сечения, а моменты инерции относительно таких осей - главными центральными моментами инерции

Когда в теории сопротивления материалов речь заходит о моментах инерции, то как правило в виду имеются именно главные центральные моменты инерции поперечного сечения. Для квадратных, прямоугольных, круглых сечений главные оси будут совпадать с осями симметрии. Моменты инерции поперечного сечения также называют геометрическими моментами инерции или моментами инерции площади, но суть от этого не изменяется.

В принципе самому определять значения главных центральных моментов инерции для поперечных сечений наиболее распространенных геометрических форм - квадрата, прямоугольника, круга, трубы, треугольника и некоторых других - большой необходимости нет. Такие моменты инерции давно определены и широко известны. А при расчете осевых моментов инерции для сечений сложной геометрической формы справедлива теорема Гюйгенса-Штейнера:

I = I c + r 2 F (2.5)

таким образом, если известны площади и центры тяжести простых геометрических фигур, составляющих сложное сечение, то определить значение осевого момента инерции всего сечения не составит труда. А для того, чтобы определить центр тяжести сложного сечения, используются статические моменты поперечного сечения. Более подробно статические моменты рассматриваются в другой статье, здесь лишь добавлю. Физический смысл статического момента следующий: статический момент тела - это сумма моментов для материальных точек, составляющих тело, относительно некоторой точки (полярный статический момент) или относительно оси (осевой статический момент), а так как момент - это произведение силы на плечо (1.9), то и определяется статический момент тела соответственно:

S = ∑M = ∑r i m i = ∫rdm (2.6)

и тогда полярный статический момент поперечного сечения будет:

S р = ∫rdF (2.7)

Как видим, определение статического момента сходно с определением момента инерции. Но есть и принципиальная разница. Статический момент потому и называется статическим, что для тела, на которое действует сила тяжести, статический момент равен нулю относительно центра тяжести. Другими словами такое тело находится в состоянии равновесия, если опора приложена к центру тяжести тела. А согласно первому закону Ньютона такое тело или находится в состоянии покоя или движется с постоянной скоростью, т.е. ускорение = 0. А еще с чисто математической точки зрения статический момент может быть равен нулю по той простой причине, что при определении статического момента необходимо учитывать направление действия момента. Например относительно осей координат, проходящих через центр тяжести прямоугольника, площади верхней части и нижней части прямоугольника будут положительными так как символизируют силу тяжести, действующую в одном направлении. При этом расстояние от оси до центра тяжести можно рассматривать как положительное (условно: момент от силы тяжести верхней части прямоугольника пытается вращать сечение по часовой стрелке), а до центра тяжести нижней части - как отрицательное (условно: момент от силы тяжести нижней части прямоугольника пытается вращать сечение против часовой стрелки). А так как такие площади численно равны и равны расстояния от центров тяжести верхней части прямоугольника и нижней части прямоугольника, то сумма действующих моментов и составит искомый 0.

S z = ∫ydF = 0 (2.8)

А еще этот великий ноль позволяет определять опорные реакции строительных конструкций. Если рассматривать строительную конструкцию, к которой приложена например сосредоточенная нагрузка Q в некоторой точке, то такую строительную конструкцию можно рассматривать, как тело с центром тяжести в точке приложения силы, а опорные реакции в этом случае рассматриваются, как силы приложенные в точках опор. Таким образом зная значение сосредоточенной нагрузки Q и расстояния от точки приложения нагрузки до опор строительной конструкции, можно определить опорные реакции. Например для шарнирно опертой балки на двух опорах значение опорных реакций будет пропорционально расстоянию до точки приложения силы, а сумма реакций опор будет равна приложенной нагрузке. Но как правило при определении опорных реакций поступают еще проще: за центр тяжести принимается одна из опор и тогда сумма моментов от приложенной нагрузки и от остальных опорных реакций все равно равна нулю. В этом случае момент от опорной реакции относительно которой составляется уравнение моментов, равен нулю, так как плечо действия силы = 0, а значит в сумме моментов остаются только две силы: приложенная нагрузка и неизвестная опорная реакция (для статически определимых конструкций).

Таким образом принципиальная разница между статическим моментом и моментом инерции в том, что статический момент характеризует сечение, которое сила тяжести как бы пытается сломать пополам относительно центра тяжести или оси симметрии, а момент инерции характеризует тело, все материальные точки которого перемещаются (или пытаются переместиться в одном направлении). Возможно, более наглядно представить себе эту разницу помогут следующие достаточно условные расчетные схемы для прямоугольного сечения:

Рисунок 2 . Наглядная разница между статическим моментом и моментом инерции.

А теперь вернемся еще раз к кинематике движения. Если проводить аналогии между напряжениями, возникающими в поперечных сечениях строительных конструкций, и различными видами движения, то в центрально растягиваемых и центрально сжатых элементах возникают напряжения равномерные по всей площади сечения. Эти напряжения можно сравнить с действием некоторой силы на тело, при котором тело будет двигаться прямолинейно и поступательно. А самое интересное, это то, что поперечные сечения центрально-растянутых или центрально сжатых элементов действительно движутся, так как действующие напряжения вызывают деформации. И величину таких деформаций можно определить для любого поперечного сечения конструкции. Для этого достаточно знать значение действующих напряжений, длину элемента, площадь сечения и модуль упругости материала, из которого изготовлена конструкция.

У изгибаемых элементов поперечные сечения также не остаются на месте, а перемещаются, при этом перемещение поперечных сечений изгибаемых элементов подобно вращению некоего тела относительно некоторой оси. Как вы уже наверное догадались, момент инерции позволяет определить и угол наклона поперечного сечения и перемещение Δl для крайних точек сечения. Эти крайние точки для прямоугольного сечения находятся на расстоянии, равном половине высоты сечения (почему - достаточно подробно описано в статье "Основы сопромата. Определенение прогиба "). А это в свою очередь позволяет определить прогиб конструкции.

А еще момент инерции позволяет определить момент сопротивления сечения . Для этого момент инерции нужно просто разделить на расстояние от центра тяжести сечения до наиболее удаленной точки сечения, для прямоугольного сечения на h/2. А так как исследуемые сечения не всегда симметричны, то значение момента сопротивления может быть разным для разных частей сечения.

А началось все с банального яблока... хотя нет, начиналось все со слова.