Движение амебы осуществляется с помощью. Организация саркодовых на примере амебы обыкновенной. Кишечные амебы и их значение

Задания:

    Изучить систематическое положение, образ жизни, строение тела, размножение, значение в природе и для человека Амебы обыкновенной, Эвглены зеленой, Вольвокса, Инфузории туфельки. Следует выполнить конспект в тетради.

    Рассмотреть под микроскопом, найти и отметить главные составные части тела Амебы обыкновенной, Эвглены зеленой, Вольвокса, Инфузории туфельки. В работе используются готовые микропрепараты животных.

    Другие модификации, особенно цитоплазма, имеют разные признаки в клетках разных типов и поэтому справедливо приписывают им менее общую ценность. Длительность митоза значительно различается в клетках разных типов, и даже в данной клетке изменяется по отношению к температуре окружающей среды.

    Негели считали, что материальная непрерывность вещества со специальными свойствами при оплодотворении яйца может объяснить передачу наследственных характеристик вида. Хертвиг ​​продемонстрировал, что при оплодотворении вещества мужского полового элемента, проникающие в яйцо, являются преимущественно, а иногда и исключительно, ядерными веществами; и так как яйца и сперма эквивалентны передаче символов, а поскольку две другие пронуклеусы являются единственными частями оплодотворенной яйцеклетки, а цитоплазма - только женского происхождения, то наследственное вещество должно содержаться только в ядро; Если бы это было не так, то материнские персонажи должны были преобладать у потомков отеков, что противоречит опыту.

    В альбоме зарисовать и обозначить строение тела Амебы обыкновенной, Эвглены зеленой, Вольвокса, Инфузории туфельки. Рисунок выполняется простым карандашом, возможна растушевка цветными карандашами. Подписи к рисунку выполняются ручкой. Во всех случаях перед рисунком требуется записывать систематическое положение изображенного животного. Систематическое положение это полное название биологического вида изучаемого животного, его принадлежность к отряду, классу, типу. Следует выполнить рисунки, обозначенные в печатной методичке V (красной галочкой), а в данной электронной методичке эти рисунки помещены в конце всего текста (стр. 28-35).

    Поэтому Вайсман предполагает, что ядерные составляющие наследственных символов являются хромосомами. Эта «гипотеза работы», которая сначала считалась слишком упрощенной, имела большое значение в проведении цитологии и под ее влиянием, она пришла к открытию комплекса фактов, которые, независимо от теоретической интерпретации, которые могут быть они показали, что поведение хромосом не может быть контингентом, но должно регулироваться законами.

    Страсбургер, Ботанический трактат, 4-е изд. Итальянский, Милан. Цикл митотического деления подразделяется на эти, как и во всех клетках, на следующие четыре фазы: обильный, метафазный, анафазный, телофазный. В начале глубокого увеличения объема клеток, уже чувствительного к концу периода, мешающего делению и следующему, акцентируется, и это увеличение более актуально для ядра цитоплазмы. Считается, что увеличение объема Ядерная зависимость в основном зависит от прохождения воды от цитоплазмы к ядру, и это делает нас причиной более высокой цитоплазматической рефрактерности и увеличения вязкости, а также большей прозрачности и мутности ядра.

    Изучить систематическое положение, образ жизни и болезни, вызываемые Амебой дизентерийной, Трипаносомами, Лейшманиями, Трихомонадами, Лямблией, Балантидием. Выполнить конспект в тетради.

    Выучить систематическое положение и подробный цикл развития Плазмодия малярийного и кокцидии из рода Эймерия. Конспект в тетради.

    Кроме того, если ячейка была снабжена удлинителями, они убираются, и ее форма имеет тенденцию становиться сферической. Между этими двумя центрами есть пучок мелких фибрилл, центры постепенно отклоняются, а веретена растет пропорционально. Эта нить вскоре делит поперечно на так много единиц, хромосом, число которых неизменно определяется для каждого вида; у человека - 48 лет, у саламандры. Во многих видах, как и в саламандре, нет непрерывной фазы нитей, хромосомы не зависят от самого первого момента, когда они рисуют.

    Затем хромосомы становятся менее извилистыми, они «укорачиваются», «сгущаются», «сгибаются» в ловушку и, наконец, каждый из них ломается продольно на две тонкие нити, которые остаются длинными спаренными. С этого момента ядро ​​движется к периферии и хромосомы, продольно перекошенные и в форме ловушки радиально направлены в цитоплазматическую область, где находятся центры и центральный фюзеляж; выпуклость каждого «изгиба» направлена ​​к последней, два свободных конца обращены к поверхности ядра, противоположного полярной области.

    В альбоме зарисовать схему цикла развития (жизненного цикла) Плазмодия малярийного и кокцидии Эймерия магна.

    Знать ответы на контрольные вопросы темы:

    Общая характеристика подцарства Одноклеточные. Классификация подцарства Одноклеточные.

    Систематическое положение, образ жизни, строение тела, размножение, значение в природе и для человека Амебы обыкновенной, Эвглены зеленой, Вольвокса, Инфузории туфельки.

    В этот момент ядерная мембрана растворяется, ядерный сок смешивается с веществом цитоплазмы и поэтому барьер, отделяющий последний от хромосом, исчезает. Два центра, которые уже были отделены друг от друга во время пророчества, пробегают по контуру ядра, описывая полукруг и приводя к двум полюсам ячейки, центральный шпиндель тянется и утолщается. есть два фибриллярных литых средства, вставленных с вершиной в центрах, с основанием хромосом, которые не относятся к центральному расплаву, или к астротуре, и получены из материалов ядра, когда два центра эмигрируют на полюсы, ядерные плавкие предохранители покрывают центральные фитирующие филаменты.

    Систематическое положение, образ жизни и болезни, вызываемые Амебой дизентерийной, Трипаносомами, Лейшманиями, Трихомонадами, Лямблией, Балантидием, меры профилактики этих болезней.

    Систематическое положение и цикл развития Плазмодия малярийного и кокцидии из рода Эймерия, меры профилактики малярии и кокцидиоза.

Всего по теме «Подцарство Одноклеточные» в альбоме должно быть 7 рисунков.

В то же время 24 пары хромосом перемещаются в экваториальную плоскость, которая падает перпендикулярно оси митоза; хромосомные соединения расположены параллельно экваториальной плоскости, образуя замкнутый контур вокруг центрального расплава; выпуклость каждой пары всегда направлена ​​к оси расплава, причем обе руки направлены к поверхности ячейки. Среди фибрилл мантий хромосомы имеют интимные связи; действительно, кажется, что они притягиваются к экваториальной плоскости путем упругой ретракции слияний слияний.

В свое время две оси, до сих пор оставшиеся приверженцы, сначала отделяют выпуклость отгиба до конца; когда отрыв завершен, каждый из них смотрит на выпуклость к соответствующему центру. Наконец, они эмигрируют в центры, прибывающие вскоре после этого; и сразу после этого они «укорачиваются и сгущаются». Ячейка растет по длине в направлении оси митотической формы. Кондиусомы по-прежнему ограничены периферией цитоплазмы и никогда не проникают в область расплава. Как только восхождение двух хромосомных групп прекращается, начинается деление тела клетки; в экваториальной области имеется канавка, она широко распространяется на всю поверхность и становится все более продолжительной до тех пор, пока две половины клетки не будут объединены только тонким цитоплазматическим мостиком, и даже когда это исчезнет, ​​две дочерние клетки все они отделены, процесс деления закончен.

Обзор свободноживущих одноклеточных

В подцарстве Одноклеточные выделяют пять типов животных: Тип Саркомастигофоры, Тип Споровики, Тип Микроспоридии, Тип Книдоспоридии, Тип Инфузории. Свободноживущие виды встречаются среди представителей типов Саркомастигофоры и Инфузории.

Амеба обыкновенная – вид Amoeba proteus (тип Саркомастигофоры, класс Саркодовые) обитает в воде в прудах, канавах с илистым дном. Похожа эта Амеба на крошечную капельку киселя, которая постоянно изменяет форму своего тела. Размеры ее тела достигают 0,2 - 0,7 мм.

Центральные фибриллы фюзеляжа и нити выдолблены экваториальной канавкой, а расплав имеет форму сдвига, связанного посередине. Излучение астры становится менее обширным и исчезает, центросфера и центрифуги могут исчезнуть. Все главы сходятся к экватору, ориентируясь перпендикулярно плоскости деления, и когда две дочерние клетки отделяются, они равномерно распределяются в цитоплазме этих клеток. Перекрестно переплетенные хромосомы и приводят к двум описанным фигурам, сходным с духами родительских клеток; С этого момента каждое из двух ядер восстанавливает преобразования, которые произошли во время профана; ядерные мембраны реформируются, появляются ядерные ядра, распадаются хромосомы.

Строение. Тело Амебы покрыто цитоплазматической мембраной , за которой идет слой прозрачной плотной эктоплазмы . Далее располагается полужидкая эндоплазма , составляющая основную массу амебы. В цитоплазме есть ядро . Цитоплазма находится в непрерывном движении, в результате которого возникают цитоплазматические выросты - псевдоподии , или ложноножки. Псевдоподии служат для передвижения и для поглощения частиц пищи.

Основным зданием и функциональной единицей живых организмов является ячейка. Хотя это самая маленькая частица организмов, она способна к самостоятельной жизни. Некоторые простые микроорганизмы составляют только одну клетку. Напротив, растения образуют большое количество тканеобразующих клеток.

Основными частями растительной клетки являются

Это фактически обертывание вокруг ячеек. Этот пакет также формирует его. Его основная функция - защита клеток растений. Вакуум Это масса, которая содержит целлюлитный сок. Это также резервуар различных веществ. Часть клетки захватывает энергию от солнечного света. Он содержит хлорофилл, светлый краситель, который захватывает энергию солнечного света. Хлорофилл осаждается в тилактоидах, которые вызывают окраску цветов, фруктов, корней, листьев.

Питание . Амеба охватывает пищевые частицы (бактерии, водоросли) ложноножками и втягивает их внутрь тела. Вокруг бактерий образуются пищеварительные вакуоли . В них благодаря ферментам происходит переваривание пищи. Вакуоли с не переваренными остатками подходят к поверхности тела, и эти остатки выбрасываются наружу.

Это фактически центр управления, координации и воспроизведения клеток. Он образует ядерную мембрану, хроматин, ядро. Это фактически живое вещество внутри клетки. Опасные для жизни клетки: прием веществ из окружающей среды, рост и развитие, дыхание, движение и размножение.

Куча питания из окружающей среды. Это вода с различными веществами, растворенными. С достаточным количеством питательных веществ клетка растет и растет. Он дышит точно так же, как и другие организмы. Клетка умножается на наиболее частое деление. Принцип деления состоит в том, что две дочерние клетки формируются из одной родительской клетки. Согласно химическому составу, клетка состоит из 65% воды, 12% белков, 9% углеводов, 8%, 3% минералов и 3% нуклеиновых кислот. Различия между растительными клетками растений и животных отличаются от животных животных тем, что они имеют более жесткую внешнюю клеточную стенку, которая удерживает тело растения в прохладном состоянии.

Выделение. Жидкие продукты жизнедеятельности выделяются через сократительную , или иначе пульсирующую вакуоль. Вода из окружающей среды постоянно поступает в тело Амебы осмотически через наружную мембрану. Концентрация веществ в теле Амебы выше, чем в пресной воде. Это создает разность осмотического давления внутри и вне тела простейшего. Сократительная вакуоль периодически удаляет избыток воды из тела Амебы. Промежуток между двумя пульсациями равен 1-5 мин. Сократительная вакуоль выполняет также функцию дыхания.

Кроме того, зеленые растения содержат хлоропласты, содержащие зеленый хлорофилловый краситель, которые наряду с солнечной энергией играют важную роль в фотосинтезе. клетка животного также не содержит клеточной стенки, хлоропластов или вакуума, но также содержит лизосомы.

Все клетки обладают способностью синтезировать белки, распространять, сохранять материю и энергию с окружающей средой, самостоятельно регулировать и адаптировать, хранить и преобразовывать энергию и вещества, расти и дифференцировать, получать и обрабатывать стимулы и двигаться. Все эти свойства связаны с действием и образованием биомолекул, внутренняя структура которых значительно отличается от неорганической материи. Клетки обнаружены в определенных структурах, наиболее характерными из которых являются липидные и белковые мембранные системы и клеточные органеллы.

Дыхание. Амеба дышит растворенным в воде кислородом всей поверхностью тела. Насыщенная диоксидом углерода вода удаляется из организма через сократительную вакуоль.

Размножение . Амеба размножается бесполым путем - делением тела (клетки) на двое. Сначала втягиваются псевдоподии и Амеба округляется. Затем происходит деление ядра митозом . На теле Амебы появляется перетяжка, которая перешнуровывает его на две равные части. В каждую из них отходит по одному ядру. Летом при благоприятных условиях в теплой воде Амеба размножается раз в сутки.

Клетки, полученные клеткой, необходимы для

Клетки, секретируемые клеткой, представляют собой клетки, которые

Ячейки могут иметь различную форму. Основная форма сферическая, с которой мы в основном сталкиваемся в свободных клетках. Клетки, сгруппированные в ткани, приобретают различные формы, которые зависят от их функции и участков, которые они занимают в организме.

Интересно, что, хотя это не правило, размер клеток и организмов пропорционален. Крупные животные имеют большие клетки. Клетки одинаковых органов у разных людей обычно имеют одинаковые размеры. Аналогично, количество клеток у животных одного и того же вида изменяется в определенном диапазоне. Мы также знаем случаи, когда число ячеек стабильно. Это явление называют эвтелиями, и мы наблюдаем его у некоторых нематод и других животных с псевдоколомой. Вес клеток животных составляет в среднем 2 нг. Клеточная дифференциация Как правило, дифференцировка клеток происходит в многоклеточных организмах, поэтому клетки специализируются на определенных функциях всего организма.

При наступлении холодов осенью или при отсутствии пищи, или наступлении иных не благоприятных условий Амеба инцистируется - покрывается плотной защитной оболочкой и превращается в цисту . Цисты очень малы и легко разносятся ветром, что способствует расселению Амебы.

Значение в природе. Амеба обыкновенная является элементом разнообразия жизни на Земле. Она участвует в круговороте веществ в природе. Она является составной частью пищевых цепей: Амеба питается бактериями и детритом, ею питаются мальки рыб, гидры, какие-то черви, мелкие ракообразные.

Кластер одинаково дифференцированных клеток называется тканью. Клетки многоклеточных клеток часто обладают дополнительными структурными и функциональными свойствами по отношению к клеткам моноцитов, что обусловлено необходимостью взаимодействия, изготовления и возбуждения клеток-тканей, механической консолидации и тому подобного.

Мембраны, в прокариотах и ​​в растительных клетках также клеточная стенка. Следует, однако, отметить, что митоз и мейоз происходят только у эукариот. Развитие клеток между двумя митозами называется клеточным циклом. Продолжительность этого цикла генетически запрограммирована и определяет длину жизни клетки. Дифференциальные ячейки часто формируются в клеточном цикле. Образование простейших связывается с образованием эукариотической клетки. Мы предполагаем, что простейшие происходят от организмов, подобных сегодняшним бактериям.

Вопросы для самоконтроля

Назовите систематическое положение Амебы обыкновенной.

Где живет Амеба обыкновенная?

Какое строение имеет Амеба обыкновенная?

Чем покрыто тело Амебы обыкновенной?

С помощью чего передвигается Амеба обыкновенная?

Как питается Амеба обыкновенная?

Как происходит выделение продуктов жизнедеятельности у амебы?

Как размножается Амеба обыкновенная?

Каково значение Амебы обыкновенной в природе?

Обзор свободноживущих одноклеточных

Рис. Амеба обыкновенная.

1 - пищеварительная вакуоль с «заглоченной» пищевой частицей; 2 - выделительная (сократительная) вакуоль; 3 - ядро; 4 - пищеварительная вакуоль; 5 - псевдоподии; 6 - эндоплазма; 7 - эктоплазма.


Рис. Питание и движение Амебы обыкновенной.

Обзор свободноживущих одноклеточных


Рис. Размножение Амебы обыкновенной.

Рис. Циста Амебы обыкновенной (сильно увеличено).

А - циста; Б - выход амебы из цисты.

Обзор свободноживущих одноклеточных

Эвглена зеленая – вид Euglena viridis (тип Саркомастигофоры, класс Жгутиковые, подкласс Растительные жгутиковые) обитает в пресных водах, канавах, болотах (в стоячей воде). Это очень своеобразный организм, находящийся на грани между растительным и животным мирами.

Строение . Тело Эвглены длиной около 0,05 мм, имеет вытянутую веретенообразную форму. На переднем конце тела Эвглены находится длинный и тонкий протоплазматический вырост - жгутик , с помощью которого Эвглена осуществляет передвижение. Жгутик производит винтообразные движения, как бы ввинчиваясь в воду. Действие его можно сравнить с действием винта моторной лодки или парохода. Такое движение более совершенно, чем передвижение с помощью ложноножек. Эвглена передвигается значительно быстрее, чем Инфузория туфелька или Амеба обыкновенная. Покрыто тело Эвглены цитоплазматической мембраной , но наружный слой цитоплазмы Эвглены плотный, он образует вокруг тела плотную оболочку - пелликулу . Благодаря этой оболочке форма тела Эвглены не изменяется. В цитоплазме находятся, ядро , резервуар , сократительная вакуоль , стигма (глазок), хроматофоры (содержат хлорофилл).

Питание . Эвглена зеленая соединяет в себе черты растительных и животных организмов. В цитоплазме находится большое количество хроматофоров , содержащих хлорофилл. Благодаря присутствию хлорофилла Эвглена способна к фотосинтезу, как растение. На свету из углекислого газа и воды с помощью хлорофилла Эвглена образует органические вещества. Это автотрофный тип питания. В темноте она питается готовыми органическими веществами, как животное. Это гетеротрофный тип питания. Таким образом, Эвглена зеленая имеет смешанный (миксотрофный ) тип питания.

Двоякий способ питания Эвглены – чрезвычайно интересное явление. Оно указывает на общее происхождение растений и животных.

Выделение и дыхание. Выделительную функцию выполняет сократительная вакуоль . Она находится на переднем конце тела. Жидкие

Обзор свободноживущих одноклеточных

продукты жизнедеятельности из сократительной вакуоли выводятся в резервуар , затем во внешнюю среду. Эвглена дышит всей поверхностью тела растворенным

в воде кислородом, а выделяет углекислый газ. Сбоку от резервуара располагается органелла ярко-красного цвета - светочувствительный глазок , или стигма . Эвглена проявляет положительный фототаксис, т.е. предпочитает хорошо освещенные участи водоема и активно сюда устремляется.

Размножение. Размножается Эвглена бесполым путем - продольным делением на двое. Сначала делятся ядро, хроматофоры, затем делится цитоплазма. Жгутик отпадает или переходит к одной особи, а у другой он образуется снова.

При не благоприятных условиях, например при высыхании водоёма, при наступлении холодов, при попадании в водоем каких-либо моющих или загрязняющих веществ эвглены, подобно Амёбам, образуют цисты . В таком виде они могут разноситься с пылью.

Значение в природе. Эвглена зеленая является элементом разнообразия жизни на Земле. Она участвует в круговороте веществ в природе. Она является составной частью пищевых цепей: Эвглена зеленая как водоросль продуцирует органическое вещество, ею питаются рыбы, гидры, какие-то мелкие черви, мелкие ракообразные. Вместе с Сине-зелеными Эвглена зеленая участвует в явлении «цветения» воды.

Вопросы для самоконтроля

Назовите систематическое положение Эвглены зеленой.

Где обитает Эвглена зеленая?

Какое строение имеет Эвглена зеленая?

Чем покрыто тело Эвглены зеленой?

С помощью чего передвигается Эвглена зеленая?

Как питается Эвглена зеленая?

Как происходят выделение и дыхание у Эвглены зеленой?

Как происходит размножение Эвглены зеленой?

Каково значение Эвглены зеленой в природе?

Обзор свободноживущих одноклеточных


Рис. Строение Эвглены зеленой.

1 - жгутик; 2 - глазок; 3 - хроматофоры; 4 - ядро; 5 - пелликула; 6 - сократительная вакуоль; 7 - запасные питательные вещества.


Рис. Деление Эвглены зеленой.

Обзор свободноживущих одноклеточных

Вольвоксы – род Volvox (тип Саркомастигофоры, класс Жгутиковые, подкласс Растительные жгутиковые) это несколько видов колониальных жгутиковых одноклеточных, которые подобно Эвглене зеленой относятся одновременно и к царству Животные, и к царству Растения (ботаники изучают их как представителей отдела Зеленые водоросли). Вольвоксы обитают в летнее время в воде прудов, озер, самые обычные представители гидробионтов.

Строение. Вольвокс это колониальное одноклеточное, по форме напоминающее полый шар. По периметру шара в один слой располагаются отдельные клетки колонии, которые соединены друг с другом цитоплазматическими мостиками . Размеры колонии у разных видов различны. Колонии вида Volvox globator достигают 2 мм в поперечнике. У Volvox aureus в состав колонии входит 500-1000 отдельных клеток, а у Volvox globator - до 20 тыс. Внутри колонии находится студенистое вещество, образующееся в результате ослизнения клеточных оболочек.

Каждая клетка имеет в основных чертах такое же строение, как и одиночные Эвглены зеленые, только у каждой клетки колонии Вольвокс по два жгутика. Не все клетки колонии одинаковы. 9/10,т.е. подавляющее большинство, это вегетативные клетки, которые обеспечивают движение, питание и вегетативный рост Вольвокса. Вегетативные клетки мелкие, грушевидной формы, у каждой есть 2 жгутика, хроматофор, ядро, стигма, сократительные вакуоли. 1/10 часть клеток колонии это генеративные клетки, которые несколько крупнее, округлые и они обеспечивают половое размножение.

Движение. Движение Вольвокса осуществляется благодаря совместному действию жгутиков всех клеток колонии. Движения не беспорядочны: Вольвокс стремится в самые освещенные и теплые участки водоема.

Питание. Питается Вольвокс также как Эвглена зеленая.

Размножение. Вольвокс может размножаться и бесполым , и половым способами. Бесполое размножение заключается в следующем. В какой-то

Обзор свободноживущих одноклеточных

благоприятный момент времени какая-то вегетативная клетка колонии «уходит» внутрь колонии. Там она начинает делиться на двое (в основе деления ядра лежит

митоз, деление осуществляется также как у Эвглены зеленой). Но клетки не расходятся, а остаются соединенными цитоплазматическими мостиками. Вновь появившиеся дочерние клетки в свою очередь тоже делятся, и так далее пока не образуется маленькая дочерняя колония, располагающаяся внутри материнской колонии. В одном материнском шаре можно увидеть сразу несколько дочерних колоний, которые растут и через некоторое время разрывают материнскую колонию и выходят наружу. Материнская колония при этом погибает.

Как правило, с наступлением не благоприятных условий начинается половое размножение Вольвокса. Из генеративных клеток возникают гаметы (в основе деления ядра генеративных клеток лежит редукционное деление – мейоз). Часть гамет преобразуется в макрогаметы (яйцевые клетки), другие же гаметы превращаются в подвижные микрогаметы (мужские половые клетки). Макро- и микрогаметы сливаются, образуется зигота (оплодотворенная яйцеклетка). Зигота после некоторого периода покоя дает начало новой колонии. Зимует Вольвокс в состоянии зиготы.

Значение. Значение Вольвокса в природе и в жизни человека велико. Прежде всего - это активные санитары загрязненных и сточных вод. Развиваясь в массе в многочисленных мелких и сильно загрязненных водоемах, Вольвоксы принимают самое активное участие в процессах самоочищения загрязненных вод. Благодаря способности Вольвокса выдерживать различную степень загрязнения среды обитания их используют в качестве индикатора загрязнения вод. Вольвоксы принимают также активное участие в отложении сапропелей (донные отложения мертвого органического вещества), являются одним из звеньев в цепи питания гидробионтов. Некоторые из них способны вызывать зеленое и красное «цветение» воды в крупных водоемах, где создаются оптимальные условия для их массового развития. Из некоторых видов, вызывающих красное «цветение»,

Обзор свободноживущих одноклеточных

можно получать каротин, препараты которого широко используются в медицинской практике.

Вопросы для самоконтроля.

Назовите систематическое положение Вольвокса.

Где обитают Вольвоксы?

Какое строение имеет Вольвокс?

С помощью чего передвигается Вольвокс?

Как питается Вольвокс?

Как происходят выделение и дыхание у Вольвокса?

Как происходит размножение Вольвокса?

Каково значение Вольвокса в природе?

Обзор свободноживущих одноклеточных


Рис. Колония Volvox aureus с дочерними колониями внутри материнской колонии.


Рис. Небольшой участок колонии Volvox aureus (схема).

1 - вегетативная клетка (особь) колонии, 2- цитоплазматический мостик, 3 - более крупная вегетативная клетка, из которой в будущем появятся дочерние колонии.

Обзор свободноживущих одноклеточных

Инфузория туфелька - Paramecium caudatum (тип Инфузории, класс Ресничные Инфузории) самый обычный обитатель стоячих вод, встречается также в пресноводных водоемах с очень слабым течением, содержащих разлагающийся органический материал. Из всех одноклеточных, Инфузория туфелька имеет наиболее сложную организацию.

Строение. Тело (клетка) Инфузории напоминает след человеческой туфельки (отсюда название). Размеры тела 0,1-0,3 мм. Инфузория имеет постоянную форму, так как эктоплазма уплотнена и образует пелликулу . В теле выделяют передний конец, он у нее тупой, и задний , который несколько заострен. Она передвигается с помощью ресничек , плавая тупым концом вперед. Реснички покрывают все тело, расположены парами. Ресничек у Инфузории более 15 тысяч. Располагаясь продольными диагональными рядами, реснички, совершая биения, заставляют Инфузорию вращаться и продвигаться вперед. Скорость движения - около 2 мм/c.

Между ресничками в эктоплазме находятся отверстия, ведущие в особые камеры, называемые трихоцистами , это защитные образования. При раздражении трихоцисты выстреливают наружу, превращаясь в длинные нити, парализующие жертву. После использования одних трихоцист на их месте в эктоплазме развиваются новые.

Тело Инфузории покрыто пелликулой . Под пелликулой располагается цитоплазма . Наружный слой цитоплазмы - эктоплазма - это прозрачный слой плотной цитоплазмы консистенции геля. Но основная масса цитоплазмы Инфузории туфельки представлена эндоплазмой , имеющей более жидкую консистенцию, чем эктоплазма. Именно в эндоплазме расположено большинство органелл. На нижней поверхности Инфузории ближе к ее переднему концу находится околоротовая воронка , на дне которой находится клеточный рот , или цитостом , или перистом .

Обзор свободноживущих одноклеточных

В эндоплазме Инфузорий находятся два ядра . Большее из них – макронуклеус , или вегетативное ядро - полиплоидное; оно имеет более двух наборов хромосом и контролирует метаболические процессы, не связанные с

размножением. Микронуклеус , или генеративное ядро - диплоидное. Оно контролирует размножение и образование макронуклеусов при делении ядра.

Питание. На нижней стороне тела у Инфузории есть околоротовая воронка, на дне которой находится клеточный рот (перистом, цитостом), переходящий в клеточную глотку . Как околоротовая воронка, так и глотка могут быть выстланы ресничками, движения которых направляют к цитостому поток воды, несущей с собой различные пищевые частицы, такие, например, как бактерии, кусочки мертвого органического вещества. Вода с бактериями через клеточный рот попадает в клеточную глотку, далее в эндоплазму, где образуются пищеварительные вакуоли . Вакуоли передвигаются вдоль тела инфузории. Первые стадии пищеварения протекают при кислой, последующие при щелочной реакции. Не переваренные остатки пищи, оставшиеся внутри вакуоли, путем экзоцитоза удаляются наружу через порошицу - отверстие, расположенное неподалеку от заднего конца тела Инфузории.

Выделение. В цитоплазме (эндоплазме) Инфузории туфельки имеются также две сократительные вакуоли , местоположение которых в клетке строго фиксировано: одна расположена в передней части тела, другая - в задней. Эти вакуоли отвечают за осморегуляцию, т. е. поддерживают в клетке определенную концентрацию воды. Эти вакуоли также удаляют жидкие продукты жизнедеятельности. Жизнь в пресной воде осложняется тем, что в клетку постоянно поступает вода в результате осмоса. Эта вода должна непрерывно выводиться из клетки, чтобы не произошло ее разрыва. Каждая вакуоль состоит из округлого резервуара и подходящих к нему в виде звезды (расходящихся лучами) 5-7 приводящих канальцев . Жидкие продукты и вода из цитоплазмы сначала поступают в приводящие канальцы; резервуар в это время сокращен. Затем канальцы все сразу сокращаются и изливают содержимое в резервуар.

Обзор свободноживущих одноклеточных

После этого через маленькое отверстие жидкость выбрасывается наружу при сокращении резервуара. Канальцы в это время вновь наполняются. Две вакуоли работают в противофазе (сокращаются поочередно), каждая при нормальных физиологических условиях сокращается один раз в 10-15 с. За час вакуоли выбрасывают из клетки объём воды, примерно равный объёму клетки.

Дыхание. Инфузория туфелька дышит всей поверхностью клетки. Но она способна существовать также и за счёт гликолиза при низкой концентрации кислорода в воде. Продукты азотистого обмена также выводятся через поверхность клетки и частично через сократительную вакуоль.

Размножение. Инфузории размножаются как бесполым, так и половым способами. Бесполое размножение осуществляется поперечным делением клетки на двое. Размножение сопровождается делением макро- и микронуклеусов (в основе деления ядер лежит митоз ). Размножение повторяется 1 - 2 раза в сутки. Бесполое размножение повторяется много раз подряд.

Время от времени в жизненном цикле Инфузории происходит половое размножение, которое протекает в форме конъюгации . Происходит это следующим образом. Две инфузории подходят друг к другу брюшными сторонами, соединяются. Пелликула на месте их соприкосновения растворяется. Между Инфузориями образуется цитоплазматический мостик. Одновременно макронуклеус распадается, а микронуклеус делится мейозом на 4 части (ядра). Три из них растворяются. Оставшееся ядро делится на 2. Одно из них подвижно и соответствует мужскому (мигрирующему) ядру, второе (женское) - стационарное ядро. По цитоплазматическому мостику Инфузории обмениваются мигрирующими ядрами. Оба половых ядра (стационарное и мигрирующее) сливаются, и таким образом, восстанавливается диплоидный набор хромосом. К концу конъюгации каждая Инфузория имеет по одному ядру двойственного происхождения - синкариону . Затем Инфузории расходятся, восстанавливается макронуклеус. После конъюгации инфузории усиленно делятся бесполым путем. Таким образом, при половом процессе число Инфузорий не увеличивается, а

Обзор свободноживущих одноклеточных

обновляются наследственные свойства ядер и возникают новые комбинации генетической информации, что с эволюционной точки зрения весьма прогрессивно.

При неблагоприятных условиях Инфузории, как и прочие простейшие (одноклеточные) образуют цисты.

Значение в природе. Инфузория туфелька является элементом биологического разнообразия на Земле. Она участвует в круговороте веществ в природе. Она является составной частью пищевых цепей: Инфузория питается бактериями и детритом, ею питаются мальки рыб, гидры, какие-то черви, мелкие ракообразные.

Вопросы для самоконтроля.

Назовите систематическое положение Инфузории туфельки.

Где обитает Инфузория туфелька?

Какое строение имеет Инфузория туфелька?

Чем покрыто тело Инфузории туфельки?

С помощью чего передвигается Инфузория туфелька?

Как питается Инфузория туфелька?

Как происходят выделение и дыхание у Инфузории туфельки?

Как происходит размножение Инфузории туфельки?

Каково значение Инфузории туфельки в природе?

Обзор свободноживущих одноклеточных


Рис. Строение инфузории-туфельки.

1 -реснички; 2 - цитоплазма; 3 - большое ядро; 4 - малое ядро; 5 - пелликула; 6 - сократительная вакуоль; 7 -пищеварительная вакуоль; 8 – клеточный рот; 9 - порошица; 10 - трихоцисты.


Рис. Питание Инфузории туфельки.

1 - пищеварительные вакуоли; 2 -ротовое отверстие; 3 - порошица;

4 - реснички.

Обзор свободноживущих одноклеточных

Рис. Бесполое размножение Инфузории-туфельки.

Рис. Конъюгация у Инфузорий (схема).

A - начало конъюгации, у левой особи ядерный аппарат без изменений, в правой микронуклеус вздут; Б - первое мейотическое деление микронуклеуса, у левой особи метафаза, у правой - анафаза, начало распада макронуклеуса; В - в левой Инфузории окончание первого деления микронуклеуса, а в правой - начало второго деления микронуклеуса, распад макронуклеуса; Г - второе деление микронуклеуса; Д - один микронуклеус в каждой особи приступает к третьему делению, по 3 микронуклеуса в каждой особи дегенерируют; Е - обмен мигрирующими пронуклеусами; Ж - слияние пронуклеусов, образование синкариона; 3 – Инфузория, участвовавшая в конъюгации (эксконъюгант), деление синкариона; И - начало превращения одного из продуктов деления синкариона в новый макронуклеус; К - развитие ядерного аппарата закончено, восстановлены новые макро- и микронуклеусы, фрагменты старого макронуклеуса окончательно разрушены в цитоплазме.

Разнообразие одноклеточных форм жизни на Земле поражает. Несмотря на свои малые размеры, существует огромное разнообразие их и существенные различия в строении, форме, способности образовывать колонии, фотосинтезировать, способах передвижения. Бактерии, зеленые водоросли (например, эвглена зеленая и инфузория туфелька), амеба, грибы, актиномицеты, нитчатые водоросли, архебактерии демонстрируют широкое разнообразие строения и форм, давая возможность исследователям постоянно находиться в состоянии поиска и регулярно находить что-то новенькое в микроскопическом мире.

В морях микроорганизмы составляют 90% всей биомассы. Без них было бы невозможным существование других, более высокоорганизованных форм морских жителей. В пробах грунта со дна Марианской впадины (точнее – из разлома Челленджера), взятых в 2002 году японским батискафом, были найдены 13 видов микроорганизмов, ранее не известных науке. Их возраст составляет более 1 миллиарда лет, а строение аналогично найденным ранее в других регионах (России, Швеции, Австрии) «неведомым биологическим окаменелостям». Японские специалисты считают, что эти бактерии являются древнейшими из сохранившихся жителей Земли. Их фото, сделанные под электронным микроскопом, свидетельствуют о том, что это бактерии.

Эукариоты и прокариоты – разница только в наличии ядра?

Все принято делить на две большие группы исходя из строения их ядер, содержащих наследственную информацию. Это эукариоты и прокариоты.

Прокариоты

Организмы, не имеющие оформленных ядер и оформленных мембранных структур внутри клеток, способные передавать генетическую информацию , которые называются плазмидами. Они отличаются высоким уровнем горизонтальной и вертикальной изменчивости и устойчивостью к неблагоприятными условиям среды. В этой группе обнаружено большое количество организмов-экстремалов, приспособленных к жизни:

  • в горячих источниках,
  • при отрицательных температурах,
  • в средах с высоким содержанием солей,
  • при низкой освещенности,
  • при отсутствии кислорода.

Отличаются разнообразными видами питания, используют в качестве источника питательных веществ мертвую органику, минеральные вещества, соединения азота, серы, водорода. Способны к хемо- и фотосинтезу. Существует целая группа фотосинтезирующих цианобактерий, у которых этот процесс происходит в мембранных комплексах – тилакоидах и схож с фотосинтезом эукариот.

В этой группе выделяют бактерии (или эубактерии) и архебактерии. Основные отличия между ними состоят в строении мембран и белковых цепочек. Последние больше напоминают эукариотические. Многие бактерии – водные жители, при отсутствии воды образуют споры и пережидают неблагоприятный период. Некоторые формируют пленки и наросты на камнях, входят в состав лишайников. Являются древнейшими жителями нашей планеты. Самыми древними признаны термоацидофилы – архебактерии горячих источников, гибнущие при температуре ниже +55ºС.

Эукариоты

Все остальные организмы на Земле имеют в своих клетках оформленное ядро, за что и получили свое название. Кроме того, внутри их клеток имеются:

  • оформленные мембранные структуры – митохондрии, осуществляющие энергетические процессы;
  • хлоропласты, где проходит фотосинтез;
  • комплекс Гольджи;
  • вакуоли.

Сюда относятся такие классические микроорганизмы, как амеба, инфузория туфелька, эвглена зеленая и другие водоросли. Интересно, что ученые до сих пор не пришли к согласию о принадлежности одноклеточных водорослей. До сих пор ботаники считают, что это растение, а зоологи – что животное. Как и бактерии, одноклеточные водоросли инфузория туфелька, эвглена и амеба – водные жители. Только водоросли способны жить в толще воды, а амеба для передвижения требует твердого субстрата.

Амебы и их маленькие безъядерные жертвы: сходство, различия

частая причина желудочно-кишечных недомоганий у человека и животных. Некоторые из них имеют сходные симптомы, однако лечение их выполняется различными препаратами. Обнаружение возбудителя болезни помогает назначить пациенту эффективное лечение – в противном случае болезнь может превратиться в хроническую, чреватую регулярными обострениями.

Кого относят к амебам

Амеба – одноклеточное существо, способное передвигаться при помощи образования специальных выпячиваний цитоплазмы, называемых ложноножками. Это дает ей возможность свободно перемещаться по твердым поверхностям, хотя скорость этого передвижения весьма невелика. Фото этих необычных клеток дает возможность больше узнать об их строении и способе питания.

Амеба – настоящий хищник, и поедает бактерии и мелкие одноклеточные водоросли, получая энергию для жизни через усвоение их органических веществ. Прожорливая амеба способна поглощать и переваривать объекты, значительно большие, чем она, по размеру. В этом случае вся клетка на время превращается в большую пищеварительную вакуоль (что-то похожее на змею, которая съела слона в сказке о Маленьком Принце) и на время теряет свою подвижность.

В неблагоприятных условиях амеба образует цисты, что делает ее жизненный цикл схожим с таковым у бактерии. Некоторые амебы способны образовывать защитные раковины, накапливая для их создания необходимые вещества в специальных вакуолях. Проживая в кишечнике животных, амеба питается готовой мертвой органикой или живыми бактериями и не наносит вреда организму хозяина. Однако дизентерийная амеба, появившись в просвете кишечника, ведет себя как настоящий агрессор, уничтожая нормальную микрофлору и являясь причиной нарушений работы кишечника.

Интересно, что по способу передвижения и питания на амеб очень похожи иммунные клетки животных – макрофаги. По внешнему виду макрофаг – амеба, получившая постоянную «прописку» в многоклеточной системе и за это выполняющая функцию поглощения чужеродных клеток.

Представители бактерий

Не имеют настоящих ядер, существенно меньше по линейным размерам и часто являются пищевой базой для амеб. Если судить по фото, сделанным под электронным микроскопом, их клеточная оболочка жесткая и препятствует выпячиванию цитоплазмы.

Бактерии способны вызывать кишечные расстройства, эффективность которых зависит от их чувствительности к конкретным антибиотикам. Устойчивость к лекарствам в бактериальной популяции может передаваться от клетки к клетке при помощи кольцевых плазмид, осуществляющих так называемый горизонтальный перенос генов между клетками.

Недавние исследования позволили обнаружить бактерии в самых невероятных местах нашей планеты. Мир облетели фото затопленных золотых рудников ЮАР, где были обнаружены живые бактерии Firmicutes. Ученые утверждают, что энергию эти организмы берут из урановых руд. В условиях отсутствия солнца они занимают нишу , являясь источником первичных органических веществ, служащих питательной средой для остальных глубинных и подземных жителей. Они способны разлагать воду на кислород и водород и образовывать сульфаты из других соединений серы, придавая им удобный для усвоения другими организмами вид.

Фото, сделанные учеными в различных местах обитания микроорганизмов, демонстрируют их огромное разнообразие. Безусловно, бактерии держат пальму первенства по своей численности и по обширности доступных для их проживания зон. Являясь первыми колонистами минеральных отложений, они дают возможность в дальнейшем селиться там другим организмам – как одноклеточным, так и более сложным. Некоторые бактерии становятся неотъемлемой частью уникальных пейзажей Земли, окрашивая воду в синие, зеленые или красные тона, создавая причудливые цветные лишайники в самых невероятных местах. Фото этих мест свидетельствуют о том, что жизнь без одноклеточных организмов на Земле была бы невозможна.