Мутационная теория. Основные положения мутационной теории де фриза

Мутационная теория

Мутационная теория или теория мутаций - раздел генетики, закладывающий основы генетической изменчивости и эволюции.

Возникновение

Мутационная теория составляет одну из основ генетики. Она зародилась вскоре после переоткрытия Т. Морганом законов Менделя в начале 20 столетия. Можно считать, что она почти одновременно зародилась в умах голландца Де Фриза (1903) и отечественного ученого-ботаника С. И. Коржинского (1899). Однако приоритет в первенстве и в большем совпадении изначальных положений принадлежит российскому ученому . Признание основного эволюционного значения за дискретной изменчивостью и отрицание роли естественного отбора в теориях Коржинского и Де Фриза было связано с неразрешимостью в то время противоречия в эволюционном учении Ч. Дарвина между важной ролью мелких уклонений и их «поглощением» при скрещиваниях (см. кошмар Дженкина).

Основные положения

Основные положения мутационной теории Коржинского - Де Фриза можно свести к следующим пунктам :

  1. Мутации внезапны, как дискретные изменения признаков
  2. Новые формы устойчивы
  3. В отличие от ненаследственных изменений, мутации не образуют непрерывных рядов, не группируются вокруг какого-либо среднего типа. Они являют собой качественные скачки изменений
  4. Мутации проявляются по-разному и могут быть как полезными, так и вредными
  5. Вероятность обнаружения мутаций зависит от числа исследуемых особей
  6. Сходные мутации могут возникать неоднократно

Исследования Х. Де Фриза проводились на различных видах Oenothera , которые в ходе эксперимента не выщепляли мутации, а показывали сложную комбинативную изменчивость, поскольку эти формы являлись сложными гетерозиготами по транслокациям.

Строгое доказательство возникновения мутаций принадлежит В. Иоганнсену на основе экспериментов на самоопыляющихся линиях фасоли и ячменя - были исследованы массы семян, мутационное изменение этого признака и обнаружил В. Иоганнсен (1908-1913 гг). Примечательно то, что даже имея мутационный характер, масса семян распределялась относительно некоторых средних значений, тем самым ставя под сомнение третий пункт мутационной теории.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Мутационная теория" в других словарях:

    Утверждает, что из двух категорий изменчивости непрерывной и прерывистой (дискретной), только дискретная изменчивость передаётся по наследству. Разработана голл. ботаником X. Де Фризом в 1901 1903. Осн. положения М. т.: мутация возникает внезапно … Биологический энциклопедический словарь

    Мутационная теория - * мутацыйная тэорыя * mutation theory теория, основанная на признании наследуемости только дискретных (мутационных) изменений в геноме организма. М. т. была разработана была Г. де Фризом в 1901 1903 гг. Ряд ее положений (создание видов в… … Генетика. Энциклопедический словарь

    Возникла в результате открытия мутаций наследственных изменений признаков и свойств организмов. Согласно мутационной теории (российский ученый С. И. Коржинский, 1899, нидерландский Х. Де Фриз, 1901 1903), резкие, внезапные мутации решающий фактор … Большой Энциклопедический словарь

    Возникла в результате открытия мутаций наследственных изменений признаков и свойств организмов. Согласно мутационной теории (российский учёный С. И. Коржинский, 1899, нидерландский X. Де Фриз, 1901 03), резкие, внезапные мутации решающий… … Энциклопедический словарь

    Mutation theory мутационная теория. Tеория, основанная на признании наследуемости только дискретных (мутационных) изменений организма, разработана Х. Де Фризом в 1901 03; ряд положений М.т. (создание видов в результате мутаций без отбора и др.),… … Молекулярная биология и генетика. Толковый словарь.

    мутационная теория - ПАТОЛОГИЯ ЭМБРИОГЕНЕЗА МУТАЦИОННАЯ ТЕОРИЯ. ОСНОВНЫЕ ПОЛОЖЕНИЯ МУТАЦИОННОЙ ТЕОРИИ – 1. Мутации возникают внезапно, скачкообразно, без всяких переходов и не образуют непрерывных рядов. 2. Мутации передаются по наследству. 3. Они ненаправленны, т.е … Общая эмбриология: Терминологический словарь

    Теория изменчивости и эволюции, созданная в начале 20 в. Х. Де Фризом. Согласно М. т., из двух категорий изменчивости непрерывной и прерывистой (дискретной), только последняя наследственна; для её обозначения Де Фриз ввёл термин Мутации.… … Большая советская энциклопедия

    Теория происхождения видов, выдвинутая в нач. 20 в. Х. де Фризом, согласно которой новые виды возникают из старых скачкообразно, посредством крупных наследственных изменений мутаций. Новый словарь иностранных слов. by EdwART, 2009 … Словарь иностранных слов русского языка

    Возникла в результате открытия мутаций наследств. изменений признаков и свойств организмов. Согласно М.т. (X. Де Фриз, 1901 03), резкие, внезапные мутации решающий фактор эволюции, сразу ведущий к возникновению новых видов; естеств. отбору… … Естествознание. Энциклопедический словарь

    Стиль этой статьи неэнциклопедичен или нарушает нормы русского языка. Статью следует исправить согласно стилистическим правилам Википедии. Мутационная теория канцерогенеза учение, согласно которому причиной возникновения злокачественных оп … Википедия

Книги

  • Введение в изучение зоологии и сравнительной анатомии , Мензбир М.А.. Вниманию читателей предлагается книга выдающегося отечественного зоолога, академика АН СССР М. А. Мензбира (1855-1935), содержащая вводный курс зоологии и сравнительнойанатомии.…

Мутационная теория эволюции Гуго де Фриза (Н. de Vries), созданная в 1901-1903 гг., широко известна. Исследуя длительное время изменчивость в роде энотера и у других растений, де Фриз обнаружил явление спорадического возникновения среди линнеевских видов особей с необычным новым признаком, стойко передающимся потомству в неограниченном числе поколений. Для обозначения этого явления он предложил термин «мутация», ставший азбучным понятием в генетике. Излишне пояснять, что генетический термин «мутация» не имеет ничего общего с мутацией Ваагена – понятием, ранее введенным в палеонтологию.

Зарегистрировав появление константных мутантных форм, де Фриз получил основание рассматривать обычные линнеевские виды, или виды систематиков, как смеси монотипичных, генетически далее неразложимых элементарных видов (жорданонов), отличающихся друг от друга одним наследственным признаком. На превращениях именно таких элементарных видов де Фриз и построил свою мутационную теорию эволюции.

По этой теории эволюционные преобразования совершаются скачкообразно. Время от времени под действием пробудившейся «созидательной силы» природы тот или иной вид, дотоле длительное время пребывавший в неизменном состоянии, испытывает мутацию и практически внезапно превращается в новый вид, который теперь сразу и на столь же долгое время, как и его предшественник, становится постоянным. Периоды покоя, длящиеся тысячелетиями, чередуются с мутационными периодами, кажущимися по сравнению с первыми всего лишь мгновениями.

Де Фриз отмечает, что мутации, а следовательно, и образование новых видов «не зависят от жизненных условий» (Фриз де, 1904. С. 199). Видообразование совершается также независимо от естественного отбора. «Для этого, – по его словам, – не нужно ни ряда поколений, ни борьбы за существование, ни удаления негодных особей, ни подбора» (там же, с. 196).

Борьба за существование в природе имеет место, но она идет не между особями одного вида, как полагал Дарвин, а между разными видами. При этом борьба за существование, в отличие от точки зрения Дарвина, не увеличивает видовое разнообразие, а сокращает его за счет выбраковки нежизнеспособных форм. Таким образом, Г. де Фриз свел сложный процесс видообразования и эволюции к одному фактору – «видообразовательной изменчивости» (Завадский, 1973. С. 274) – и тем самым избавил своих оппонентов от необходимости пространной критики своей концепции.

Рис. 3. Схема видообразования (по: де Фриз. 1904)

Де Фриз наглядно отобразил свою концепцию взрывного видообразования в виде схематичного родословного древа (рис. 3), внешне очень напоминающего хорошо знакомую аквариумистам водоросль кабомбу. Это длинная, местами ветвящаяся нить, образующая массу мутовок, находящихся на одинаковых расстояниях друг от друга. Каждая ветвь мутовки представляет собой вид или подвид, имеющий начало и конец, а каждое звено нити между соседними мутовками – неизменное состояние родоначального вида. Каждая мутовка соответствует мутационному периоду, все же древо в целом отображает род.

Этим де Фриз не ограничивается. Он добавляет, что рисунок можно было бы подобным же образом продолжить вниз – «вплоть до самых древних живых существ», и далее пишет: «На рисунке… мы восходим от видов к сборным видам (Oenothera lamarckiana), от сборных видов – к подродам (Onagra и Euoenothera), а отсюда – к родам (Oenothera). Более древним взрывам соответствовали бы подсемейства, семейства и все высшие системы. Если бы вся система была известна нам без пробелов и генеалогическое древо имело бы форму обыкновенной дихотомической таблицы для определения, то каждая точка разветвления означала бы для нас место взрыва…» (Фриз де, 1904. С. 192).

Сопоставив схему видообразования де Фриза с диаграммой дивергенции Дарвина, мы увидим, что они, равно как и трактовка обоими учеными способов осуществления надвидовой эволюции, принципиально сходны. В обоих случаях новые формы образуются путем ответвления от прежде единой родоначальницы. Правда, по диаграмме Дарвина, ветвление дихотомично, так как промежуточные формы вымирают; у де Фриза оно веерообразно (мутовчато), поскольку промежуточные формы, как и исходная, при отсутствии внутривидовой борьбы сохраняются. Но эти различия не столь принципиальны. Гораздо важнее иное различие. У Дарвина нарождение новых видов – плавный процесс, совершающийся медленно и постепенно, у де Фриза – резкий и скачкообразный.

Рис. 4. Фрагмент диаграммы по Дарвину (только А) (из: Сковрон, 1987)

Однако в понимании способов надвидовой эволюции де Фриз и Дарвин едины. Для обоих образование высших таксонов – результат постепенного накопления изменений и, стало быть, дело времени. По де Фризу, каждый крупный эволюционный шаг складывается из серии мутаций. Никакого качественного различия между процессами видообразования и крупномасштабной эволюцией де Фриз, как и Дарвин, не проводит.

Подходя к оценке прогрессивного развития, связанного с «усовершенствованием организации», крайне упрощенно, де Фриз считал, что для осуществления эволюции от начала жизни до ее современных высших форм требовалось возникновение всего нескольких тысяч наследственных единиц, или эволюционных шагов. «Обыкновенно в каждый мутационный период, – писал де Фриз, – организация подвигается на один шаг. Следовательно, сколько таких шагов сделала организация с самого начала, столько было и мутационных периодов » (там же, с. 201–202).

Приняв продолжительность жизни на Земле равной 24 млн лет, а число мутационных периодов равным 6000, де Фриз нашел, что средняя продолжительность фазы покоя между мутационными периодами должна составлять 4000 лет (по замечанию самого де Фриза, это «очень грубое приближение»). Приведенные цифры характеризуют наиболее быстрый прогресс, который осуществили высшие растения и животные. Что касается низших, то у них число мутационных периодов было невелико, а фазы покоя весьма продолжительны. Де Фриз добавляет при этом, что если вслед за Дарвином объяснять прогрессивную эволюцию отбором и накоплением мелких изменений, то «не хватит… и миллиардов веков» (Фриз де, 1932. С. 70).

В первой половине геологической истории развитие мира живых существ должно было идти в несколько раз быстрее, чем в более позднее время. Мало-помалу прогресс ослабевал. «С появлением человека цель, кажется, была достигнута, и теперь все идет так лениво, что прогресс как будто закончен: нам кажется, что мы совершаем лишь вместе с ним его последние шаги» (Фриз де, 1904. С. 209). Этим соображением чисто финалистического характера де Фриз предвосхитил популярную среди финалистов 30-40-х годов концепцию цикличности и затухания эволюции.

Сколь неочевиден общий прогресс живого, связанный с «постепенным умножением числа свойств и признаков», прогрессивные мутации возникают, по мнению де Фриза, очень редко. В природе гораздо чаще встречаются мутации регрессивные («ретрогрессивные»), связанные, например, с выпадением признака, и «…происхождение видов в природе идет по большей части ретрогрессивным путем» (Фриз де, 1932. С. 124).

В теории де Фриза четко представлены два пути видообразования: 1) «групповой способ видообразования», при котором новые формы появляются сбоку главного ствола в виде веточек, образующих мутовку, и 2) «филогенетический», осуществляющийся на линиях, связывающих мутовки. По мнению де Фриза, первый способ видообразования обеспечивает богатство и разнообразие природы, а второй – «свойственное системе расчленение», но они не отделены друг от друга резкой гранью (Vries de, 1918; Фриз де, 1932. С. 118–119). В указанных способах видообразования легко угадывается близость к современным представлениям о кладистическом и филетическом видообразовании.

Завершая анализ теории де Фриза, необходимо сказать, что, несмотря на отдельные высказывания в поддержку эволюционной роли естественного отбора (Vries de, 1918), де Фриз явился автором в целом антидарвиновской, достаточно механистической и упрощенческой концепции, которую К.М. Завадский (1973) отнес к одной из основных разновидностей генетического антидарвинизма. В то же время нельзя не отметить, что, будучи беспристрастным и блестящим исследователем, наделенным большой научной интуицией, де Фриз высказал три кардинальных положения, составивших ядро современной теории прерывистого равновесия и находившихся еще недавно в фокусе острых дискуссий. К ним относятся идея периодичности мутирования и эксплозивности видообразования, отрицание внутривидовой борьбы и признание макроэволюционной роли межвидовой борьбы, положение об образовании большинства новых видов за счет боковых ответвлений.

Совершенно иного взгляда на соотношение внутривидовой и надвидовой эволюции придерживался другой генетик – современник де Фриза Л. Кено.

Л. Кено вошел в историю эволюционизма как автор теории преадаптации. Основная идея этой теории была высказана Кено уже в 1901 г. (Cuenot, 1901), т.е. до опубликования де Фризом мутационной теории, а затем оформлена в виде законченной доктрины в ряде публикаций (Cuenot, 1925, 1929, 1936). Кено с самого начала считал, что между условиями среды, в которой рождается новый вид, и его адаптацией к ней никакой причинной связи не существует и что особенности видовой организации возникают отнюдь не под действием ламарковских факторов или естественного отбора. Он с готовностью принял мутационизм, полагая, что эта концепция и его собственная теория дополняют друг друга, ибо путем мутаций, по его мнению, способны формироваться новые структуры. Не без гордости Кено причислял себя к самой молодой школе эволюционистов, которую назвал «менделистской, или мутационистской, или еще преадаптационистской» (Cuenot, 1921. Р. 467).

Со временем, однако, Кено становилось все более ясным, что при всем значении мутационного процесса как материальной базы эволюции его возможности ограничены рамками видообразования. Постепенно он приходит к выводу, что мутационная теория, дополненная фактором изоляции, способна удовлетворительно объяснить возникновение жорданонов (элементарных видов), географических рас и разновидностей, со временем достигающих видового уровня, но она ничего не может дать для понимания истинной (т.е. макро-) эволюции, характеризующейся появлением новых органов и морфологических структур. Отвергнув созидательную роль отбора, Кено настойчиво искал для объяснения этой эволюции крупного масштаба иные причины. В их поиске он все более склонялся к финализму (подробнее см.: Назаров, 1984).

Решающее значение в переходе Кено на позиции финализма имело, по-видимому, экспериментальное исследование возникновения в эмбриогенезе мозолистых затвердений на запястье передних конечностей африканской свиньи-бородавочника (Phacochoerus africanus), выполненное совместно с Р. Антони (Anthony, Cuenot, 1939). Именно в результате этой работы Кено уверовал в чудодейственный системный эффект одной крупной мутации, которая одновременно с созданием нового органа должна была породить и соответствующий инстинкт добычи пищи.

С этого момента Кено овладевает финалистическая идея о том, что сложные органы, подобные глазу позвоночных животных, крылу птицы или электрическим органам рыб, образуются не путем постепенных мелких и случайных изменений, аккумулируемых отбором, а только сразу, в результате одного неделимого акта под действием имманентной живому «зародышевой изобретательности». При этом новые органы должны с самого момента своего возникновения обладать полным совершенством. Прибегать к дарвиновскому способу объяснения с помощью мелких усовершенствований, по мнению Кено, в данном случае бессмысленно, поскольку до полного сформирования новые органы не способны функционировать и совершенно бесполезны.

К концу 40-х годов Кено окончательно разочаровывается в мутационной теории, ограничив сферу ее приложения расо- и видообразованием (микроэволюция). Отказывается он также и от теории преадаптации. Перейдя бесповоротно на позиции финализма, Кено теперь твердо считает, что крупномасштабная эволюция, связанная со становлением типов организации, управляется неизвестным нематериальным агентом психической природы и не имеет ничего общего с эволюцией в пределах вида.

Аналогичную метаморфозу во взглядах испытал также генетик и энергичный критик неоламаркизма и дарвинизма Э. Гийено. Из сказанного видно, что по вопросу о движущих силах внутривидовой и надвидовой эволюции единства не было уже среди самых зачинателей генетики. Его и трудно было бы ожидать, поскольку генетике как экспериментальной науке с ее длительное время остававшимся практически единственным методом гибридологического анализа оказалось недоступным изучение поведения признаков надвидовых таксонов, которые либо не скрещиваются, либо не менделируют. Исследователи периода развития классической генетики занимались преимущественно изучением распределения в потомстве менделистических признаков, характеризующих внутривидовые подразделения, в лучшем случае виды. Поэтому неудивительно, что их соображения о факторах надвидовой эволюции (если они вообще ею интересовались) были основаны в большей мере на умозрении, научной интуиции, чем на фактических данных. Однако и в этих условиях были высказаны догадки, намного опередившие уровень науки того времени.

Положения мутационной теории

Современные уточнения

Мутации возникают внезапно, без всяких переходов.

существует особый тип мутаций, накапливающихся в течение ряда поколений (прогрессирующая амплификация в интронах).

Успех в выявлении мутаций зависит от числа проанализированных особей.

без изменений

Мутантные формы вполне устойчивы.

при условии 100%-ной пенетрантности (мутантному генотипу соответствует мутантный фенотип) и 100%-ной экспрессивности (одна и та же мутация проявляется у разных особей в равной степени)

Мутации характеризуются дискретностью (прерывистостью); это качественные изменения, которые не образуют непрерывных рядов, не группируются вокруг среднего типа (моды).

существуют ликовые мутации, в результате которых происходит незначительное изменение характеристик конечного продукта

растекающаяся мутация leaky mutation - ликовая (растекающаяся) мутация.Форма миссенс-мутации , при которой мутантный фермент обладает сниженной активностью либо снижен уровень его синтеза; Л.м. в регуляторных элементах генов проявляются в неполной блокировке их экспрессии.

Одни и те же мутации могут возникать повторно.

это касается генных мутаций; хромосомные аберрации уникальны и неповторимы

В настоящее время принято следующее определение мутаций:

Мутации - это качественные изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Организм, во всех клетках которого обнаруживается мутация, называется мутантом .

В ряде случаев мутация обнаруживается не во всех соматических клетках организма; такой организм называют генетической мозаикой . Это происходит, если мутации появляются в ходе онтогенеза - индивидуального развития.

И, наконец, мутации могут происходить только в генеративных клетках (в гаметах, спорах и в клетках зародышевого пути - клетках-предшественницах спор и гамет). В последнем случае организм не является мутантом, но часть его потомков будет мутантами.

Различают «новые» мутации (возникающие de novo) и «старые» мутации. Старые мутации - это мутации, появившиеся в популяции задолго до начала их изучения; обычно о старых мутациях идет речь в генетике популяций и в эволюционной теории. Новые мутации - это мутации, появляющиеся в потомстве немутантных организмов (+ АА Ч? АА > Аа ); обычно именно о таких мутациях идет речь в генетике мутагенеза.

Мутация - это случайное явление, т.е. невозможно предсказать: где, когда и какое изменение произойдет. Можно только оценить вероятность мутации в популяциях, зная фактические частоты определенных мутаций. Например, вероятность появления у кишечной палочки устойчивости к тетрациклину равна 10- 10 (одна десятимиллиардная), поскольку лишь одна из 10 миллиардов клеток обнаруживает устойчивость к этому антибиотику (зато все потомство этой бактерии будет устойчивым к тетрациклину).

Установлено, что мутабильность гена (т.е. частота появления определенной мутации) зависит от природы гена: существуют гены, склонные к мутированию, и относительно стабильные гены.




  • Основные положения мутационной теории (Гуго де Фриз)

  • Мутации - это наследственные изменения.

  • Мутации- редкие события, передающиеся по наследству.

  • Мутации возникают спонтанно.

  • Мутации могут быть полезными, вредными или нейтральными







  • Генные мутации, геномные мутации,. хромосомные мутации:

  • --- связаны с изменениями внутри гена

  • --- связаны с изменениями структуры хромосом

  • --- приводят к изменению числа хромосом


Полиплоидия

  • Полиплоидия - кратное увеличение числа хромосом.

  • Анэуплоидия - утеря или появление лишних хромосом в результате нарушения мейоза


Генеративные мутации

  • Генеративные мутации

  • ХХУ; ХУУ- синдром Клайнфельтера.

  • ХО- синдром Шершевского- Тернера.

  • Аутосомные мутации

  • Синдром Патау (по 13 хромосоме).

  • Синдром Эдвардса(по 18 хромосоме).

  • Синдром Дауна (по 21 хромосоме).


  • ХХY и XXXY – синдром Кляйнфельтера . Частота встречаемости 1:400 – 1:500. Кариотип – 47, XXY, 48, XXXY и др. Фенотип мужской. Женский тип телосложения, гинекомастия. Высокий рост, относительно длинные руки и ноги. Слабо развит волосяной покров. Интеллект снижен.



    X0 – синдром Шерешевского -Тернера (моносомия Х). Частота встречаемости 1:2000 – 1:3000. Кариотип 45,Х. Фенотип женский. Соматические признаки: рост 135 – 145 см, крыловидная кожная складка на шее (от затылка к плечу), низкое расположение ушей, недоразвитие первичных и вторичных половых признаков. В 25% случаев имеются пороки сердца и аномалии работы почек. Интеллект страдает редко.



Трисомия по 13-й хромосоме

    Трисомия по 13-й хромосоме (синдром Патау) обнаруживается у новорожденных с частотой около 1:5000 - 1:7000 и связана с широким спектром пороков развития. Для СП характерны множественные врожденные пороки развития головного мозга и лица. Это группа ранних нарушений формирования головного мозга, глазных яблок, костей мозговой и лицевой частей черепа. Окружность черепа обычно уменьшена. Лоб скошенный, низкий; глазные щели узкие, переносье запавшее, ушные раковины низко расположенные и деформированные. Типичный признак СП - это расщелины верхней губы и неба


  • Болезнь, обусловленная аномалией хромосомного набора (изменением числа или структуры аутосом), основными проявлениями которой являются умственная отсталость, своеобразный внешний облик больного и врожденные пороки развития. Одна из наиболее распространенных хромосомных болезней, встречается в среднем с частотой 1 на 700 новорожденных.






Замена оснований:

  • Замена оснований:

  • а ) фенилкетонурия. Проявление: нарушение расщепления фенилаланина; этим обусловлено слабоумие, вызываемое гиперфенилаланинемией. При своевременно назначенной и соблюдаемой диете (питание, обедни фенилаланином) и применении определенных медикаментов, клинические проявления этого заболевания практически отсутствуют

  • б) серповидно- клеточная анемия.

  • в) синдром Морфана.


  • Первичная структура гемоглобина здоровых (1) и больных серповидно- клеточной анемией (2).

  • 1) - вал- гис-лей-тре – про-глут. к-та- глу-лиз

  • 2) - вал- гис-лей-тре – валин - глу-лиз




  • Высокий выброс адреналина, характерный для заболевания, способствует не только развитию сердечно-сосудистых осложнений, но и появлению у некоторых лиц особой силы духа и умственной одаренности. Способы лечения неизвестны. Считают, что ею болели Паганини, Андерсен, Чуковский.




    Гемофилия (кровоточивость). Причина: генная мутация. Проявление: недостаточное развитие факторов свертывания крови (тромбокиназ), сильно затягивающееся время свертывания крови; при ранениях большие потери крови. Наследование сопряжено с полом; ген, ответственный за болезнь, расположен в Х-хромосоме, рецессивен. Ген этой болезни наследуется по материнской линии. Гомозиготность, как правило, летальна .


  • Медико-генетическое консультирование при беременности в возрасте 35 лет и старше, наличии наследственных болезней в родословной

  • Исключение родственных браков


  • Мутагены- факторы, вызывающие мутации: биологические, химические физические.

  • Физические факторы (различные виды ионизирующей радиации, ультрафиолетовое излучение, лучи Рентгена)

  • Химические факторы (инсектициды, гербициды, свинец, наркотики, алкоголь, некоторые лекарственные препараты и др.вещества)

  • Биологические факторы (вирусы оспы, ветряной оспы, эпидемического паротита, гриппа, кори, гепатита и др.)



  • Мутантный сорт пшеницы Новосибирская 67 был получен после обработки семян исходного сорта Новосибирская 7 рентгеновскими лучами



  • Медико-генетическое консультирование при беременности в возрасте 35 лет и старше, наличии наследственных болезней в родословной. Современные возможности медико-генетического консультирования позволяют определить во время планирования беременности риск наследственных заболеваний

  • Исключение родственных браков


  • Содействовать сохранению нормальной экологической обстановки;

  • Не ухудшать не сейчас ни в будущем экологию родного края;

  • Не употреблять алкогольные напитки;

  • Не курить;

  • Не принимать наркотические средства;

  • Полноценно питаться;

  • Заниматься спортом.


  • Николай Иванович Вавилов (1887–1943) – русский ботаник, генетик, растениевод, географ. Сформулировал закон гомологических рядов наследственной изменчивости. Создал учение о центрах происхождения культурных растений.


МУТАЦИОННАЯ ИЗМЕНЧИВОСТЬ

В основе этой изменчивости лежат мутации. Основная причина возникновения новых признаков и свойств у живых организмов – это проявление мутаций. Мутации – это изменения генотипа, происходящие под влиянием факторов внешней или внутренней среды. Мутации имеют принципиальные отличия от модификаций (табл. 3).

Таблица 3

Сравнение модификаций и мутаций

Впервые термин «мутация » был предложен в 1901 г. голландским ученым Гуго де Фризом , описавшим самопроизвольные мутации у растений и создавший мутационную теорию.

1. Мутации возникают внезапно, без всяких переходов. Чаще бывают рецессивными, реже – доминантными.

2. Вызываются внешними и внутренними факторами.

3. Мутации стойко передаются из поколения в поколение, наследственны.

4. Это качественные изменения, которые, как правило, не образуют непрерывного ряда вокруг средней величины признака.

5. Мутировать может любая часть организма, т.е. мутации возникают в разных направлениях, они не направленны. Мутации могут быть вредными, полезными и нейтральными.

6. Успех в выявлении мутаций зависит от числа проанализированных особей.

7. Одни и те же мутации могут возникать повторно.

8. Мутации являются и элементарным эволюционным материалом, и ненаправляющим элементарным эволюционным фактором.

9. Мутационный процесс – источник резерва наследственной изменчивости популяций.

Мутации появляются редко, но приводят к внезапным скачкообразным изменениям признаков, которые передаются из поколения в поколение. Мутационный процесс идет постоянно, с накоплением мутаций в генотипах. А если учесть, что число генов в организме велико, то можно сказать, что в генотипах всех живых организмов имеется значительное число генных мутаций. Мутации – это крупнейший биологический фактор, обусловливающий огромную наследственную изменчивость организмов, что дает материал для эволюции.

Мутациями называются внезапные, стойкие, ненаправленные, скачкообразные изменения хромосом или единиц наследственности – генов, влекущие за собой изменения наследственных признаков. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов. Сходство между комбинативной и мутационной изменчивостью заключается в том, что в обоих случаях потомство получает набор генов каждого из родителей.

Мутационная изменчивость является одним из главных факторов эволюционного процесса. В результате мутаций могут возникать полезные признаки, которые под действием естественного отбора дадут начало новым видам и подвидам. Подавляющее число мутаций неблагоприятно или даже смертельно для организма, так как они разрушают отрегулированный на протяжении миллионов лет естественным отбором целостный генотип.



Способностью к мутированию обладают все живые организмы. У каждой конкретной мутации есть какая-то причина, хотя в большинстве случаев она неизвестна. Однако общее количество мутаций можно резко увеличить, используя различные способы воздействия на организм.

Факторы, вызывающие мутации, получили название мутагенных факторов (рис. 17).

Рис. 17. Классификация мутагенных факторов.

Во-первых, сильнейшим мутагенным действием обладает ионизирующее излучение. Радиация увеличивает число мутаций в сотни раз. Во-вторых, мутации вызывают вещества, которые действуют, например, на ДНК, разрывая цепочку нуклеотидов. Есть вещества, действующие и на другие молекулы, но также дающие мутации. Например, колхицин, приводящий к одному из видов мутаций – полиплоидии. В-третьих, к мутациям приводят и различные физические воздействия, например, повышение температуры окружающей среды.

Классификации мутаций

Мутации можно объединять в группы – классифицировать по характеру проявления, по месту или по уровню их возникновения.

Классификация 1 . Мутации по механизму возникновения (рис. 18).

Причинами мутаций могут быть как естественные нарушения в метаболизме клеток (спонтанные мутации ), так и действие различных факторов внешней среды (индуцированные мутации ). Мутации в естественных условиях случаются редко – одна мутация определенного гена на 1 000 – 100 000 клеток.

Рис. 18. Мутации по механизму возникновения.

Классификация 2 . Мутации по характеру проявления (рис. 19).

Рис. 19. Мутации по характеру проявления.

Мутации чаще рецессивные , так как доминантные проявляются сразу же и легко "отбрасываются" отбором.

Классификация 3 . Мутации по месту возникновения (рис. 20).

Рис. 20. Мутации по месту возникновения.

Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными . Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и затрагивают лишь часть тела (глаза разного цвета), не передаются потомству при половом размножении. Но при бесполом размножении (вегетативном), если организм развивается из соматической клетки или группы клеток, имеющих изменившийся – мутировавший – ген, мутации могут передаваться потомству. Такие мутации называют соматическими .

Классификация 4 . Мутации по адаптивному значению (рис. 21).

Рис. 21. Мутации по адаптивному значению.

Мутации бывают полезные, вредные и нейтральные. Полезные мутации – мутации, которые приводят к повышенной устойчивости организма (устойчивость тараканов к ядохимикатам), в конечном итоге, повышают приспособленность особей. Понятие «приспособленность» подразумевает жизнеспособность, плодовитость (фертильность) и конкурентоспособность особей. Вредные мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными , а несовместимые с жизнью – летальными . Вредные мутации: глухота, дальтонизм. Нейтральные мутации никак не отражаются на жизнеспособности организма (цвет глаз, группа крови).

Классификация 5 . Мутации по месту локализации в клетке (рис. 22).

Рис. 22. Мутации по месту локализации в клетке.

Мутации делятся на ядерные и внеядерные (или митохондриальные).

Классификация 6 . Мутации по характеру изменения фенотипа (рис. 23).

Рис. 23. Мутации по характеру изменения фенотипа.

Мутации могут быть биохимическими, физиологическими, анатомо-морфологическими.

Классификация 7 . Мутации по характеру изменения гена (рис. 24).

Рис. 24. Мутации по характеру изменения гена.

Мутации бывают прямые и обратные. Последние встречаются гораздо реже. Обычно прямая мутация связана с дефектом функции гена. Вероятность вторичной мутации в обратную сторону в той же точке очень мала, чаще мутируют другие гены.

Классификация 8 . Мутации по уровню их возникновения или характеру изменений в генотипе (рис. 25).

Рис. 25. Мутации по характеру изменений в генотипе.

Генные мутации (точковые ) представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка (синонимичная замена ). Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию (несинонимичная замена ). Именно генные мутации обусловливают развитие большинства наследственных форм патологии.

Наиболее частыми моногенными заболеваниями являются; муковисцидоз, гемохроматоз, адреногенитальный синдром, фенилкетонурия, нейрофиброматоз, миопатии Дюшенна-Беккера, дальтонизм, гемофилия, серповидноклеточная анемия (рис. 26) и ряд других заболеваний.

Рис. 26. Механизм возникновения серповидноклеточной анемии.

Клинически они проявляются признаками нарушений обмена веществ (метаболизма) в организме. Мутация может заключаться:

1) в замене основания в кодоне, это так называемая миссенс-мутация (от англ. “mis” – ложный, неправильный + лат. “sensus” – смысл) – замена нуклеотида в кодирующей части гена, приводящая к замене аминокислоты в полипептиде (рис. 27);

Рис. 27. Мисенс и нонсенс мутации.

2) в таком изменении кодонов, которое приведет к остановке считывания информации, это так называемая нонсенс-мутация (от лат. “non” – нет + “sensus” – смысл) – замена нуклеотида в кодирующей части гена, приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции (рис. 27);

3) в нарушении считывания информации, сдвиге рамки считывания, называемом фреймшифтом (от англ. “frame” – рамка + “shift” – сдвиг, перемещение), когда молекулярные изменения ДНК приводят к изменению триплетов в процессе трансляции полипептидной цепи;

4) в замене нуклеотидов (рис. 28): транзиции – мутация, обусловленная заменой одного пуринового основания на другое или пиримидинового на другое пиримидиновое; трансверсия (от лат. “transversus” – повернутый в сторону, отведенный) – мутация, обусловленная заменой пуринового основания (аденин, тимин) на пиримидиновое (гуанин, цитозин) и наоборот. В отличие от транзиций, трансверсии иногда называют сложными или перекрестными заменами, т. к. происходит изменение ориентации пурин – пиримидин в мутантном сайте двуцепочечной молекулы нуклеиновой кислоты.

Рис. 28. Типы замен нуклеотидов.

Известны и другие типы генных мутаций.

По типу молекулярных изменений выделяют :

1) делеции (от лат. “deletio” – уничтожение), когда происходит утрата сегмента ДНК размером от одного нуклеотида до гена;

2) дупликации (от лат. “duplicatio” – удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

3) инверсии (от лат. “inversio” – перевертывание), т. е. поворот на 180° сегмента ДНК размерами от двух нуклеотидов до фрагмента, включающего несколько генов;

4) инсерции (от лат. “insertion” – прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Молекулярные изменения, затрагивающие от одного до нескольких нуклеотидов, рассматривают как точечную мутацию .

Принципиальным и отличительным для генной мутации является то, что она приводит к изменению генетической информации и может передаваться от поколения к поколению.

Определенная часть генных мутаций может быть отнесена к нейтральным мутациям, поскольку они не приводят к каким-либо изменениям фенотипа. Например, за счет вырожденности генетического кода одну и ту же аминокислоту могут кодировать два триплета, различающихся только по одному основанию. С другой стороны, один и тот же ген может изменяться (мутировать) в несколько различающихся состояний.

Например, ген, контролирующий группу крови системы АВ0, имеет три аллеля: 0, А и В, сочетания которых определяют 4 группы крови. Группа крови системы АВ0 является классическим примером генетической изменчивости нормальных признаков человека.

Именно генные мутации обусловливают развитие большинства наследственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными , или моногенными болезнями , т.е. заболеваниями, развитие которых детерминируется мутацией одного гена.

Таким образом, генные мутации приводят к появлению новых признаков.

Рис. 29. Виды хромосомных мутаций.

Хромосомные мутации (хромосомные аберрации) – это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению генотипа. Причиной этого может быть разрыв хромосомы на фрагменты и восстановление её в новых сочетаниях.

Несмотря на то, что хромосомные аберрации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные (рис. 29).

Внутрихромосомные мутации – аберрации в пределах одной хромосомы. К ним относятся:

- делеции (от лат. “deletio” – уничтожение) – утрата одного из участков хромосомы, внутреннего или терминального (рис. 30).

Рис. 30. Схематическое изображение делеции.

А – нормальная хромосома, Б – делетированная хромосома.

Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, делеция в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития). Этот симптомокомплекс известен как синдром Лежена или синдром "кошачьего крика", поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье (рис. 31);

Рис. 31. А – дети с синдромом Лежена в возрасте 8 месяцев, 2, 4 и 8 лет соответственно; Б – хромосомный набор больного с синдромом Лежена: групповая (от А до G) и индивидуальная идентификация хромосом (стрелкой указан дефект короткого плеча хромосомы 5-й пары, вторая хромосома не изменена).

- дупликации (от лат. “duplcatio” – удвоение) – удвоение (или умножение) какого-либо участка хромосомы (рис. 32). Например, дупликация по одному из коротких плеч 9-й хромосомы обусловливает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития.

Рис. 32. Схематическое изображение дупликации. А – нормальная хромосома, Б – дуплицированная хромосома.

- инверсии (от лат. “inversio” – перевертывание). В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180°. В результате нарушается только порядок расположения генов (рис. 33);

Рис. 33. Схематическое изображение инверсии.

А – нормальная хромосома, Б – инвертированная хромосома.

Межхромосомные мутации , или мутации перестройки – обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от лат. “trans” – за, через + “locus” – место) (рис. 34).

Рис. 34. Схематическое изображение транслокации хромосом.

А – нормальные хромосомы, Б – транслоцированные хромосомы.

Выделяют несколько разновидностей транслокаций. Это:

- реципрокная транслокация , когда две хромосомы обмениваются своими фрагментами;

- нереципрокная транслокация , когда фрагмент одной хромосомы транспортируется на другую. Возможно присоединение фрагмента к своей же хромосоме, но в новом месте – транспозиция (рис. 35);

Рис. 35. Реципрокная и нереципрокная транслокация.

- "центрическое" слияние (робертсоновская транслокация ) – соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч (рис. 36). При таких мутациях не только появляются хромосомы с новой морфологией, но и изменяется их количество в кариотипе.

При поперечном разрыве хроматид через центромеры "сестринские" хроматиды становятся "зеркальными" плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называют изохромосомами .

Рис. 36. Робертсоновская транслокация.

Как внутрихромосомные (делеции, инверсии и дупликации), так и межхромосомные (транслокации) аберрации и изохромосомы связаны с физическими изменениями структуры хромосом, в том числе с механическими разломами.

Описанные структурные изменения хромосом, как правило, сопровождаются изменением генетической программы, получаемой клетками нового поколения после деления материнской клетки, так как

1) изменяется количественное соотношение генов (при делециях и дупликациях),

2) меняется характер их функционирования в связи с изменением взаимного расположения в хромосоме (при инверсии и транспозиции) или с переходом в другую группу сцепления (при транслокации).

Чаще всего такие структурные изменения хромосом отрицательно сказываются на жизнеспособности отдельных соматических клеток организма, но особенно серьезные последствия имеют хромосомные перестройки, происходящие в предшественниках гамет.

Значение хромосомных аберраций . Однако, несмотря на неблагоприятные, как правило, последствия хромосомных мутаций, иногда они оказываются совместимыми с жизнью клетки и организма и обеспечивают возможность эволюции структуры хромосом, лежащей в основе биологической эволюции.

Так, небольшие по размеру делеции могут сохраняться в гетерозиготном состоянии в ряду поколений. Менее вредными, чем делеции, являются дупликации, хотя большой объем материала в увеличенной дозе (более 10% генома) приводит к гибели организма.

Нередко жизнеспособными оказываются робертсоновские транслокации, часто не связанные с изменением объема наследственного материала. Этим можно объяснить варьирование числа хромосом в клетках организмов близкородственных видов. Например, у разных видов дрозофилы количество хромосом в гаплоидном наборе колеблется от 3 до 6, что объясняется процессами слияния и разделения хромосом.

Возможно, существенным моментом в появлении вида Homo sapiens были структурные изменения хромосом у его обезьяноподобного предка. Установлено, что два плеча крупной второй хромосомы человека соответствуют двум разным хромосомам современных человекообразных обезьян (12-й и 13-й – шимпанзе, 13-й и-14-й – гориллы и орангутана). Вероятно, эта человеческая хромосома образовалась в результате центрического слияния по типу робертсоновской транслокации двух обезьяньих хромосом (рис 37).

К существенному варьированию морфологии хромосом, лежащему в основе их эволюции, приводят транслокации, транспозиции и инверсии. Анализ хромосом человека показал, что его 4, 5, 12 и 17-я хромосомы отличаются от соответствующих хромосом шимпанзе перицентрическими инверсиями.

Рис. 37. Плечи 2-ой пары хромосом человека

соответствуют 12 и 13 хромосомам шимпанзе.

Таким образом, изменения хромосомной организации, чаще всего оказывающие неблагоприятное воздействие на жизнеспособность клетки и организма, с определенной вероятностью могут быть перспективными, наследоваться в ряду поколений клеток и организмов и создавать предпосылки для эволюции хромосомной организации наследственного материала.

Геномные мутации приводят к изменению числа хромосом. К геномным мутациям относятся анеуплоидии и изменение плоидности структурно неизмененных хромосом. Выявляются цитогенетическими методами.

Анеуплоидия – изменение числа хромосом в диплоидном наборе, некратное гаплоидному (2n + 1 → трисомия (увеличение), 2n ─ 1→ моносомия (уменьшение)).

Полиплоидия – увеличение числа наборов хромосом, кратное гаплоидному (2n + n).

Рис. 38. Полиплоиды капусты.

Частным случаем геномных мутаций является полиплоидия , т. е. кратное увеличение числа хромосом в клетках в результате нарушения их расхождения в митозе или мейозе. Соматические клетки таких организмов содержат 3n, 4n, 8n и т. п. хромосом в зависимости от того, сколько хромосом было в гаметах, образовавших этот организм. Полиплоидия часто встречается у бактерий и растений, но очень редко – у животных. Полиплоидны три четверти всех культивируемых человеком злаков. Если гаплоидный набор хромосом (n) для пшеницы равен 7, то основной сорт, разводимый в наших условиях, – мягкая пшеница – имеет по 42 хромосомы, т. е. 6n.

Полиплоидами являются окультуренная свекла, гречиха, капуста (рис. 38) и т. п. Как правило, растения-полиплоиды имеют повышенные жизнеспособность, размеры, плодовитость и т. п.

В настоящее время разработаны специальные методы получения полиплоидов. Например, растительный яд из безвременника осеннего – колхицин – способен разрушать веретено деления (рис. 39) при образовании гамет, в результате чего получаются гаметы, содержащие по 2n хромосом. При слиянии таких гамет в зиготе окажется 4n хромосом.

Рис. 39. Формирование веретена деления во время деления клетки.

Геномные мутации в животном и растительном мире многообразны, но у человека обнаружены только 3 типа геномных мутаций: тетраплоидия, триплоидия и анеуплоидия. При этом из всех вариантов анеуплоидий встречаются только трисомии по аутосомам, полисомии по половым хромосомам (три-, тетра- и пентасомии), а из моносомий встречаются только моносомия-Х.

У человека полиплоидия, а также большинство анеуплоидий являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

§ трисомия – наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре при синдроме Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, XXY, XYY);

§ моносомия – наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная моносомия у человека, совместимая с жизнью, – моносомия по X-хромосоме – приводит к синдрому Шерешевского-Тернера (45, Х0).

Причиной, приводящей к анеуплоидии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от всех других негомологичных хромосом. Термин "нерасхождение" означает отсутствие разделения хромосом или хроматид в мейозе или митозе. Утрата хромосом может приводить к мозаицизму , при котором имеется одна эуплоидная (нopмальная) клеточная линия, а другая – моносомная.

Нерасхождение хромосом наиболее часто наблюдается во время мейоза (рис. 40). Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки. Таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т.е. в клетке присутствуют три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией . Если моносомная зигота образуется по какой-либо аутосомной (не половой) хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

Рис. 40. Схема нерасхождения хромосом в гаметогенезе и результаты

оплодотворения.

Летальный или дизморфогенетический эффект хромосомных аномалий обнаруживается на всех стадиях внутриутробного онтогенеза (имплантация, эмбриогенез, органогенез, рост и развитие плода). Суммарный вклад хромосомных аномалий во внутриутробную гибель (после имплантации) у человека составляет 45 %. При этом, чем раньше прерывается беременность, тем вероятнее, что это обусловлено аномалиями развития эмбриона, вызванными хромосомным дисбалансом. У 2-4–недельных абортусов (эмбрион и его оболочки) хромосомные аномалии обнаруживают в 60-70 % случаев. В 1 триместре беременности хромосомные аномалии встречаются у 50 % абортусов. У плодов-выкидышей 2 триместра такие аномалии находят в 25-30 % случаев, а у плодов, погибших после 20 недели беременности, в 7 % случаев.

Наиболее тяжелые формы по дисбалансу хромосомного набора встречаются у ранних абортусов. Это полиплоидии (25 %), полные трисомии по аутосомам (50 %). Трисомии по некоторым аутосомам (1; 5; 6; 11; 19) встречаются крайне редко даже у элиминированных эмбрионов и плодов, что свидетельствует о большой морфогенетической значимости этих аутосом. Данные аномалии прерывают развитие в доимплантационном периоде или нарушают гаметогенез.

Высокая морфогенетическая значимость аутосом еще более отчетливо выражена при полных аутосомных моносомиях. Последние редко обнаруживаются даже в материале ранних спонтанных абортов из-за раннего летального эффекта такого дисбаланса.