Описание процесса ректификации. Сущность процесса ректификации Процесс ректификации в ректификационной колонне можно останавливать

Ректификация — процесс разделения смесей взаимно растворимых компонентов, различающихся по температурам кипения, путем противоточного многократного контактирования неравновесных жидкости и пара. Контактирование осуществляется, как правило, в колонных аппаратах на тарельчатых или насадочных контактных устройствах противоточно — пар снизу вверх, жидкость сверху вниз.

Колонный аппарат представляет собой вертикальную стальную трубу с размещенными внутри контактными устройствами. В тарельчатых колоннах контакт происходит ступенчато на отдельных ступенях, называемых тарелками (ситчатые, колпачковые, клапанные и т.д.), обычно путем барботажа пара сквозь слой жидкости или путем распылительного перемешивания, или другим способом, обеспечивающим максимально эффективный тепло- и массообмен. В насадочных колоннах контакт осуществляется непрерывно между паром и жидкой пленкой в слое насадки с развитой поверхностью, которой заполнена колонна (щебень, кольца, пружины, сетки и т.п.).

Жидкость, относительно богатая легкокипящими компонентами, имеющая относительно более низкую температуру, поступает на контактное устройство сверху. Пар, богатый высококипящими компонентами, имеющий более высокую температуру, поступает на контактное устройство снизу. На контактном устройстве жидкость и пар стремятся к равновесию путем тепло- и массообмена. Если равновесие между паром и жидкостью, покидающими контактное устройство достигается, то такое контактное устройство называется теоретической ступенью или теоретической тарелкой.

Простая дистилляция («самогонный аппарат») обеспечивает однократный хороший контакт жидкости и пара и эквивалентна одной теоретической ступени. Реальные тарелки промышленных колонн имеют эффективность 0,3...0,8 теоретической ступени. Для насадочных колонн есть величина, называемая высотой эквивалентной теоретической тарелке, — это высота слоя насадки, массообменная эффективность которого эквивалентна одной теоретической ступени. Эта высота может быть 100...600мм. На контактных устройствах пар обогащается низкокипящим компонентом, а жидкость высококипящим. Проходя последовательно ряд ступеней, жидкость и пар достигают заданных концентраций компонентов. Вверху колонны концентрируется низкокипящие компоненты, внизу — высококипящие. Наращивая число ступеней, можно получить любую заданную четкость разделения компонентов. По высоте колонны концентрации компонентов меняются иногда весьма нелинейно.

В аппаратах непрерывной ректификации сырье вводят примерно на середине высоты колонны, т.е. на ту тарелку, где концентрации компонентов примерно равны таковым у сырья. Сверху колонны отбирают дистиллят, богатый низкокипящими компонентами. Снизу отбирают остаток, богатый высококипящими компонентами. Пары с верхней тарелки колонны охлаждаются в конденсаторе, часть в виде паров или жидкости отбирается как дистиллят, остальное возвращается в колонну в виде жидкости. Жидкость с нижней тарелки нагревается в кипятильнике, часть жидкости отбирается как нижний продукт (остаток), остальное в виде пара возвращается в колонну.

Отношение массового расхода жидкости, поступающей из конденсатора в колонну, к массовому расходу дистиллята называется флегмовым числом . Отношение массового расхода паров из кипятильника к массовому расходу остатка называется паровым числом . Эти числа характеризуют режим работы верхней (выше питания) и нижней (ниже питания) секций колонны. Чем выше флегмовое (и паровое) число, тем легче (меньшим числом ступеней) достигается заданная четкость раделения смеси ректификацией, но также возрастают удельные затраты энергии и уменьшается производительность колонны. Флегмовое (и паровое) число не может быть меньше определенного минимального, при котором заданная четкость ректификации не достигается при сколь угодно большом числе ступеней.

При периодической ректификации в кипятильник соответствующего объема (называемый кубом колонны) загружается порция сырья, в процессе ректификации сырье не добавляют и состав кубового остатка непрерывно меняется от состава сырья до заданного высококипящего остатка. Соответственно сверху колонны отбирают дистиллят изменяющегося по времени состава. Если число компонентов смеси невелико (2...5), а количество ступеней и флегмовое число достаточны для сравнительно четкого разделения, то состав дистиллята и температура на верхней тарелке изменяется ступенчато, вначале дистиллят состоит из концентрированного самого низкокипящего компонента (назовем его первым компонентом), затем следует короткий переходный период, когда дистиллят представляет собой смесь переменного состава, в которой концентрация первого компонента убывает, а концентрация второго компонента возрастает, далее дистиллят состоит из концентрированного второго компонента, и т.д. для всех компонентов. Дистиллят переходных периодов традиционно называют bad cuts, его смешивают со следующей порцией сырья.

Если четкость разделения невелика и/или количество компонентов велико (нефтяные смеси), то ступенчатость состава дистиллята становится незаметной, состав дистиллята и температура на верхней тарелке меняются непрерывно. Многокомпонентные смеси могут быть разделены на индивидуальные компоненты повторной ректификацией узких фракций дистиллятов, содержащих уже небольшое число компонентов. Особенности ректификации нефтяных смесей обусловлены требованиями к качеству разделения на фракции и тем, что нефтяные смеси состоят из тысяч компонентов. Многокомпонентность нефтяных смесей обуславливает непрерывный состав дистиллята при периодической ректификации для любого практически достижимого числа ступеней и флегмового числа.

Качество разделения на фракции определяется по результатам простой дистилляции (стандарт ASTM D86) проб данной фракции, по температурам 5% и 95% отгона. Стандартами на соответствующие нефтепродукты определяется, что перекрытие температур 95% и 5% отгона между соседними фракциями должно быть не более 10...15С. Например, если 95% бензиновой фракции, полученной на данной колонне, отгоняется по D86 не более чем при 180С, то 5% дизельной фракции, полученной на этой же колонне, должно отгоняться по D86 не менее чем при 170С.

Ректификация применяется для разделения жидких смесей на компоненты или фракции, различающиеся летучестью, (фугитивностью), и осуществляется путем многократного двустороннего массо-и теплообмена между противоточно движущимися паровым и жид­костным потоками - флегмой.

Взаимодействие фаз при ректификации представляет собой диф­фузию легколетучего компонента (л.л.к.) из жидкости в пар и труд­нолетучего компонента (т.л.к.) из пара в жидкость. Способ контак­тирования потоков может быть ступенчатый (в тарельчатых колон­нах) или непрерывный (в насадочных колоннах).

Назначение контактных устройств (тарелок, насадки) состоит в создании условий, способствующих максимальному приближению парового и жидкостного потоков. Чтобы эти потоки могли обмени­ваться веществом и энергией, они должны быть неравновесны друг к другу. При контактировании парового и жидкостного потоков в результате массо- и теплообмена величина неравновесности уменьшается затем потоки отделяются один от другого, и процесс про­должается путем нового контактирования этих фаз уже на другой смежной ступени, с другими жидкими и паровыми потоками. В результате многократно повторяющегося на последовательных тарелках (ступенях), контактирования движущихся в противотоке по высоте колонны жидкости и пара состав взаимодействующих фаз существенно изменяется: паровой поток при движении вверх обога­щается л.л.к., а жидкостный, стекая вниз, обедняется им, т. е. обо­гащается т.л.к. При достаточно большом пути контактирования противоположно движущихся потоков можно получить пар, выхо­дящий из верхней части колонны, представляющий собой более или менее чистый л.л.к., конденсация которого дает дистиллят, а из нижней части колонны - сравнительно чистый т.л.к., так называе­мый кубовый остаток.

Флегма образуется в результате частичной конденсации паров, выходящих из верхней части колонны, в специальных теплообменных: аппаратах - дефлегматорах - или вводится в колонну в виде питания. Для создания парового потока в колонне в ее ниж­нюю часть вводят определенное количество тепла непосредственным впуском греющего пара (случай открытого обогрева колонны) или подачей его в специальный теплообменник, через поверхность теп­лопередачи которого тепло передается кипящему кубовому остатку (случай закрытого обогрева).

Чаще разделяемую смесь (питание) в жидком, парообразном или смешанном виде подают в середину колонны (рис. 2) между концентрационной, или укрепляющей и отгонной, или исчерпывающей частью колонны. Верхнюю тарел­ку отгонной части колонны называют питающей тарелкой. Колонна, имеющая концентрационную и отгонную части, назы­вается полной ректификационной колонной (рис. 2а). В такой колонне создаются наиболее благоприятные условия для получения в практически чистом виде обоих компонентов бинарной смеси, однако возможно и самостоятельное действие отгонной и концентрационной колонны. Такие колонны именуют неполными.


Рис. 2 Схемы ректификационных колон

1 – дефлегматор; 2 – колонна; А – разделяемая смесь; В – вода; Д – дистиллят; П – пар; О – остаток.

Из нижней части неполной отгонной колонны (рис. 2б) в жидком виде отводится практически чистый т.л.к., над верхней тарелкой получается пар, несколько обогащенный л.л.к. В неполную концентрационную колонну, (рис. 2в) разделяемую смесь вводят в парообразном виде под ее нижнюю тарелку. Из верхней части концентрационной колонны отводят в парообразном, виде практически чистый л.л.к., а с нижней тарелки получается флегма, несколько обогащенная т.л.к. В отличие от полной ректификационной колонны в неполных колоннах для дальнейшего обогащения дистиллята отгонной колон­ны л.л.к. или остатка концентрационной колонны т.л.к. нужна их до­полнительная ректификация.

Орошение флегмой, необходимое для осуществления процесса ректификации, в отгонных колоннах достигается подачей питания в жидком виде на верхнюю тарелку. В полных и укрепляющих ко­лоннах орошение проводят за счет части конденсата пара, выходящего из верхней части колонны. Остальной пар образует дистил­лят - верхний продукт колонны, поэтому орошение и отбор дистил­лята количественно связаны между собой.

Отношение количества горячего (при температуре конденсации) орошения или флегмы (L) к количеству дистиллята (D) называет­ся флегмовым числом (R):

R=L/D = (G - D)/D, (1)

где G - количество пара, выходящего из колонны.

Флегмовое число может изменяться от 0 до ∞. При R=0 не бу­дет массообмена и обогащения пара л.л.к. При R =∞ весь конден­сат паров, выходящий из колонны, полностью поступает на ороше­ние; в этом случае отбор дистиллята равен нулю, колонна работает «на себя» (при установившемся процессе нижний продукт колонны будет иметь тот же состав, что и исходное питание). Практически колонна должна работать при 0

Отбирать дистиллят можно после частичной или полной конден­сации пара (рис. 3). В 1 варианте обеспечивается дополнительное обогащение дистиллята л.л.к. вследствие частичной конденсации пара и массообмена между флег­мой и паром при противоточном движении их в дефлегматоре. Во 2варианте пар, выходящий из колонны, дистиллят и флегма имеют одинаковый состав, и дефлегматор не дает никакого укреп­ляющего эффекта. В спиртовой промышленности обычно исполь­зуют первый вариант.

Рис. 3. Способы орошения колонн: 1 - дефлегматор; 2 - колонна; 3 - кон­денсатор.

Тепло конденсации пара обыч­но отводят водой, продуктами, подлежащими нагреванию, или воздухом в специальных воздуш­ных дефлегматорах.

Открытый обогрев колонн при­меним в том случае, когда грею­щий пар не оказывает отрица­тельного влияния на качество ко­нечных продуктов, не взаимодействует с продуктами ректификации и не образует новых, трудноразделимых систем в колонне. При от­крытом обогреве конденсат греющего пара смешивается с конеч­ным продуктом разделения (остатком). Закрытый обогрев требует наличия пара более высоких параметров.

Процесс массообмена между паровым и жидкостным потоками на контактных устройствах определяется величиной поверхности контакта фаз (F m 2), средней разностью концентраций, или сред­ней движущей силой процесса (∆С кг/кг), и коэффициентом массопередачи, отнесенным к 1 м 2 поверхности фазового контакта [К кг/(м 2 *ч)]. Коэффициент массопередачи зависит от природы ве­щества и гидродинамического режима контакта фаз. Количество вещества, перешедшего из одной фазы в другую (в кг/ч), опреде­ляется равенством

М=К*F*∆C (2)

Конструкция контактного устройства должна обеспечивать воз­можно большую величину массообмена на нем. Это достигается в первую очередь созданием развитой поверхности контакта фаз. Та­релки ректификационных колонн могут быть колпачковые, решетча­тые, чешуйчатые, клапанные и др. (рис. 4). Насадочная колонна представляет собой цилиндр, наполненный насадкой - телами с развитой поверхностью (кольца, шары, седла, сетки, блоки, пакеты, рейки и т. д.). Пар и жидкость контактируют на поверхности насад­ки при противоточном движении.

Работа контактных устройств оценивается пропускной способностью по пару и жидкости, способностью разделять рабочую смесь, диапазоном устойчивой работы, гидравлическим сопротивлением и др.

Пропускная способность по пару и жидкости определяет произ­водительность колонн, или удельный съем конечного продукта с единицы поперечного сечения колонн.

Способность разделять перегоняемую смесь называют эффективностью контактного устройства или колонны в целом и обычно оценивают числом теоретических тарелок (ступеней изменения концентраций), или числом единиц переноса. Эффективность тарельчатых колонн, как правило, оценивают числом теоретических тарелок (т.т.).

Допустим, поступающая на тарелку жидкость (рис. 5, а) содержит X i +1л.л.к., а покидающая ее - X * i ; проходящий через тарелку пар соответственно содержит Y i и у* i +1 того же компонента. Если тарелка обеспечивает контакт пара и жидкости, в результате которого покидающие тарелку пар Y*. i +1 и жидкость Х* i будут равновесны, то такая тарелка имеет эффективность, равную одной теоретической тарелке.

Рис. 4. Типы тарелок:

a - ситчатые (чешуйчатые): 1 - сосливными стаканами; 2 -без стаканов (решетчатые); б- колпачковые: 1 - одноколпачковые,;. 2 - многоколпачковые и клапаны клапановых таре­лок; в: 1 -- круглые; 2 - прямоугольные.

Рис. 5. Теоретическая тарелка в диаграмме Х-Y

Практически такое равновесие почти никогда не достигается. Теоретическая тарелка является идеальной тарелкой и служит эталоном для оценки эффективности реальных тарелок.

Мерой эффективности ре­альной, или действительной, та­релки является коэффици­ент полезного дейст­вия (КПД) ее. В практике оп­ределяют КПД не отдельной тарелки, а средний КПД таре­лок всей колонны или значительного ее участка, который равен отношению числа тарелок (п) , необходимых для осуществления заданного разделения смеси, к числу реальных (N), необходимых для той же цели:

Величина КПД тарелок зависит от их конструкции, диаметра колонны, межтарелочного расстояния, скорости пара, загрузки колон­ны, физических свойств разделяемой смеси и многих других факто­ров, поэтому обычно КПД определяют опытным путем.

Эффективность работы насадочных колонн оценивают, числомединиц переноса, предъявляющим собой изменение концентрации в колонне, отнесенное к единице движущей силы. Чаще поль­зуются высотой насадки, эквивалентной одной единице переноса (ВЭЕП). Она изменяется в широких пределах в зависимости от конструкции и размера насадки, а также гидродинамического ре­жима работы; колонны. Для мелкой насадки ВЭЕП может состав­лять несколько миллиметров, для крупной (обладающей высокой пропускной способностью по пару и жидкости) - 1-1,5 м.

В спиртовом производстве наибольшее распространение получили колпачковые (капсульные) тарелки. Многоколпачковые тарелки применяют в колоннах для разделения жидкостей, не содержащих взвешенных частиц, одноколпачковые - для разделения жидкостей со взвешенными частицами. Реже применяют ситчатые тарелки, которые имеют отверстия 2,5-3,5 мм (для разгонки первых из упомянутых жидкостей) и 8-12 мм (для вторых). В последние годы в спиртовой промышленности начали применять тарелки новых типов: решетчатые провальные (без сливных устройств), чешуйчатые и клапанные. Они обладают большей пропускной способностью по пару и жидкости.

При выборе типа тарелки учитывают ее удельную производи­тельность, эффективность, экономичность конструкции, а также способность обеспечивать оптимальные условия работы колонны для заданного технологического режима.

Устойчивая работа тарелок должна соответствовать таким на­грузкам по пару и жидкости, при которых достигаются наиболее интенсивный их контакт и высокая эффективность. При больших нагрузках по пару может происходить большой унос жидкости с тарелки на тарелку, на тарелке может накапливаться жидкость сверх допустимого количества. Верхний предел нагрузки по пару характеризуется «захлебыванием» тарелок. Внешний признак за­хлебывания - резкое повышение давления в нижней части колонны и понижение давления в верхней. При нагрузках по пару, прибли­жающихся к минимально допустимым, часть жидкости (флегмы) переходит с тарелки на тарелку, не вступая в контакт с паром. Большая нагрузка по жидкости также может привести к захлебы­ванию колонны. Максимально допустимая нагрузка по жидкости определяется количеством ее, необходимым для создания активной зоны контакта обменивающихся сред.

На работу тарелок большое влияние оказывает межтарелочное расстояние. Оно определяется в. первую очередь необходимостью создания условий для контакта пара и жидкости, происходящего в зонах барботажа, пены и брызг. Эти зоны расположены последова­тельно над тарелкой и должны вмещаться между смежными тарел­ками. Высота каждой зоны определяется физическими свойствами разделяемой жидкости, конструкцией тарелки, нагрузкой по пару и обычно находится опытным путем. При работе с жидкостями, дающими рыхлую пену, унос жидкости в основном происходит за счет хлопьев пены, обладающих высокой парусностью, Для колонн, перерабатывающих жидкости, не пенящиеся и не содержащие взве­шенных частиц, обычно принимаемое межтарелочное расстояние 178-230 мм; для колонн, перерабатывающих жидкости со взвешен­ными частицами, - 280-500 мм.

Коэффициент полезного действия тарелок в силу различных ус­ловий эксплуатации колонн может изменяться в пределах 0,35- 0,65.

Одним из наиболее распространенных методов разделения жидких однородных смесей, состоящих из двух или большего числа компонентов, является перегонка (дистилляция и ректификация). В широком смысле перегонка представляет собой процесс, включающий частичное испарение разделяемой смеси и последующую конденсацию образующихся паров, осуществляемые однократно или многократно. В результате конденсации получается жидкость, состав которой отличается от состава исходной смеси.

Ректификация представляет собой процесс многократного частичного испарения жидкости и конденсации паров. Процесс осуществляется путем контакта потоков пара и жидкости, имеющих различную температуру, и проводятся обычно в колонных аппаратах. При каждом контакте из жидкости испаряется преимущественно низкокипящий компонент (НКК), которым обогащаются пары, а из паров конденсируются преимущественно высококипящий компонент (ВКК), переходящий в жидкость. Такой двусторонний обмен компонентами, повторяемый многократно, позволяет получить, в конечном счете, пары, представляющие собой почти чистый НКК. Эти пары после конденсации в отдельном аппарате дают дистиллят (ректификат) и флегму - жидкость, возвращаемую для орошения колонны и взаимодействия с поднимающимися парами. Пары получают путем частичного испарения снизу колонны остатка, являющегося почти чистым ВКК.

Процессы ректификации осуществляются в аппаратах, технологическая схема которых зависит от назначения аппарата и давления в нем, а конструкция - от способа организации контакта фаз.

При ступенчатом осуществлении процесса ректификации в колонных аппаратах контакт пара и жидкости может происходить в противотоке (на тарелках провального типа), в перекрестном токе (на колпачковых тарелках), в прямотоке (струйные тарелки).

Если процесс ректификации осуществляется непрерывно во всем объеме колонного аппарата, то контакт пара и жидкости при движении обеих фаз может происходить только в противотоке. Современные ректифицирующие аппараты можно классифицировать в зависимости от технологического назначения, давления и внутреннего устройства, обеспечивающего контакт между паром и жидкостью.



По технологическому назначению ректификационные аппараты подразделяются на колонны атмосферно-вакуумных установок, термического и каталитического крекингов, вторичной перегонки нефтепродуктов, а также для ректификации газов, стабилизации легких нефтяных фракций и т.д.

К современным ректификационным аппаратам предъявляются следующие требования: высокая разделительная способность и производительная способность, достаточная надежность и гибкость в работе, низкие эксплуатационные расходы, небольшой вес и простота, техничность конструкции.

Последние требования не менее важны чем первые, поскольку они не только определяют капитальные затраты, но и в значительной мере влияют на величину, эксплутационных расходов, обеспечивают легкость и удобства изготовления аппарата, монтажа и демонтажа, ремонта, контроля, испытания, а также безопасность эксплуатации и пр.

Кроме перечисленных выше требований ректификационные аппараты должны отвечать также требованиям государственных стандартов, ведомственных нормалей и инспекций Гостехнадзора.

Технологическая схема аппарата зависит от состава разделяемой смеси, требований к качеству получаемых продуктов, от возможностей уменьшения энергетических затрат, назначения аппарата, его места в технологической цепочке всей установки и от многих других факторов.

Процесс ректификации жидких смесей осуществляется на ректификационных установках, состоящих из нескольких аппаратов. Рассмотрим принцип разделения двухкомпонентной смеси ректификацией на примере работы подобной установки (рис. 10.1). Подлежащая разделению смесь непрерывно подается в ректификационную колонну через ввод, расположенный несколько выше середины корпуса колонны. Введенная жидкая смесь опускается по контактным устройствам (тарелкам) в нижнюю часть колонны, называемую кубом. Навстречу потоку жидкости поднимается пар, образующийся в результате кипения жидкости в кубе колонны. Образующиеся пары содержат в основном НКК и некоторое количество ВКК. При взаимодействии пара с жидкостью на тарелках колонны ВКК конденсируется и уносится вниз колонны потоком жидкости. За счет этого в поднимающихся парах возрастает количество НКК . Таким образом, при подъеме паров они обогащаются НКК , в то время как жидкость, стекающая вниз, обогащается ВКК .

Исходная смесь из промежуточной емкости 1 центробежным насосом 2 подается в теплообменник 3, где подогревается до температуры кипения. Нагретая смесь поступает на разделение в ректификационную колонну 5 на тарелку питания, где состав жидкости равен составу исходной смеси. Стекая вниз по колонне, жидкость взаимодействует с под­нимающимся вверх паром, образующимся при кипении кубовой жидкости в кипятильнике 4. Начальный состав пара примерно равен составу кубового остатка, т. е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обо­гащается легколетучим компонентом

Рис. 10.1. Принципиальная схема ректификационной установки:

1 - ёмкость для исходной смеси; 2, 9 - насосы; 3- теплообменник- подогреватель исходного сырья; 4 – кипятильник; 5 – ректификационная колонна; 6 – дефлегматор; 7 – холодильник дистиллята; 8 – емкость для сбора дистиллята; 10 – холодильник кубовой жидкости; 11 – емкость для кубовой жидкости.

Для более полного обо­гащения верхнюю часть колонны орошают в соответствии с за­данным флегмовым числом жидкостью (флегмой), которая получается в дефлегматоре 6 путем конденсации пара, выходящего из колонны. Часть конденсата выводится из де­флегматора в виде готового продукта разделения - дистиллята, который охлаждается в теплообменнике 7, и направляется в промежуточную емкость 8.

Из кубовой части колонны насосом 9 непрерывно выводится кубовая жидкость - продукт, обогащенный труднолетучим компонентом, который охлаждается в теплообменнике 10 и напра­вляется в емкость 11.

Таким образом, в ректификационной колонне осуществляется непрерывный неравновесный процесс разделения исходной бинарной смеси на дистиллят с высоким содержанием легко­летучего компонента и кубовой остаток, обогащенный трудно­летучим компонентом.

Ректификацию многокомпонентных смесей, а они в практике встречаются чаще, чем двухкомпонентные, протекает по рассмотренной выше схеме, хотя число используемой при этом аппаратуры увеличивается.

В ректификационных установках используют главным образом аппараты двух типов: колонны со ступенчатым контактом фаз (тарельчатые) и непрерывным контактом (пленочные и насадочные).

Ректификацию многокомпонентных смесей можно проводить в различной последовательности, с использованием многих простых колонн (на одну меньше числа компонентов исходной смеси) и с использованием одной сложной колонны.

Для процесса ректификации в основном применяют тарельчатые колонны. В них устанавливают горизонтальные тарелки с устройствами, обеспечивающими хороший контакт между жидкостью и паром.

Диаметр колонны определяют в зависимости от производительности установки и скорости паров в колонне, которую выбирают в пределах 0,6 - 1,0 м/с . Находят применение ректификационные колонны различных размеров: от небольших колонн диаметром 300 - 400 мм до высокопроизводительных установок, с колоннами диаметром 6, 8, 10, 12 м и более.

Высота колонны зависит от числа тарелок и расстояния между ними. Чем меньше расстояние между тарелками, тем ниже колонна. Однако при уменьшении расстояния между тарелками увеличивается унос брызг и возникает опасность перебросав жидкости с нижних тарелок на верхние, что существенно уменьшает к.п.д. установки. Расстояние между тарелками обычно принимают в зависимости от диаметра колонны с учетом возможности ремонта и чистки колонны. Рекомендуемые расстояния между тарелками ректификационных колонн в зависимости от их диаметра приведены ниже:

Диаметр колонны, мм до 800, 800 - 1600, 1600 - 2000

Расстояние между тарелками, мм 200 -350, 350 - 400, 400 - 500

Диаметр колонны, мм от 2000 - 2400 и свыше 2400

Расстояние между тарелками, мм 500 - 600, свыше 600.

Число тарелок ректификационной колонны или высота насадки определяются технологическим расчетом; оно зависит от физико-химических свойств разделяемых компонентов, требуемой чистоты разделения и к.п.д. тарелки. Обычно ректификационные колонны имеют 10 - 30 тарелок, но колонны для разделения смесей с близкими температурами кипения насчитывают сотни тарелок и имеют соответственно высоту до 30 - 90 м .

Ректификационные колонны работают обычно при атмосферном или небольшим избыточным давлением. Ограниченное применение находят вакуумные колонны и колонны, работающие при повышенном давлении. Ректификацию под вакуумом применяют в том случае, когда хотят снизить температуру в колонне, что бывает необходимо при разделении компонентов с высокой температурой кипения или веществ, нестойких при высокой температуре. Ректификацию под повышенным давлением используют для разделения сжиженных газов и легколетучих жидкостей.

Ректификация - сложный массотеплообменный процесс разделения жидких смесей, состоящих из нескольких взаиморастворимых компонентов. Ректификация основана на многократном частичном испарении жидкости и конденсации ее паров или на однократном испарении смеси с последующей многоступенчатой конденсацией компонентов.

Ректификация - наиболее совершенный и распространенный способ перегонки растворов. Перегонка основана на различной температуре кипения компонентов жидкости. Так, если жидкость является бинарной, то есть состоит из двух компонентов, например бензола с температурой кипения 80° С и толуола с температурой кипения 110° С, то при перегонке этой жидкости пар будет содержать большее количество низкокипящего компонента (бензола). Следовательно, в процессе перегонки жидкая фаза обедняется, а паровая фаза обогащается низкокипящим компонентом (бензолом).

Ректификация позволяет производить глубокое разделение смесей и получать компоненты в чистом виде. Она нашла широкое применение в химической, нефтехимической, нефтеперерабатывающей, пищевой и других отраслях промышленности.

Ректификация представляет собой процесс многократного частичного испарения жидкости и конденсации паров. При каждом цикле «испарение - конденсация» из жидкости испаряется преимущественно низкокипящий (летучий) компонент, которым обогащаются пары, а из паров конденсируется преимущественно высококипящий компонент (труднолетучий), переходящий в жидкость. Такой процесс обмена компонентами между жидкостью и паром, повторяемый многократно, в конечном счете позволяет получить пары почти чистого низкокипящего компонента. Эти пары после конденсации в отдельном аппарате дают готовый продукт - ректификат. Остаток жидкости после испарения из него низкокипящего компонента представляет собой почти чистый высококипящий компонент.

Ректификация осуществляется в специальных аппаратах - ректификационных колоннах, которые являются основными эле­ментами ректификационных установок.

Ректификационные колонны сложны по устройству, имеют большие габариты, пожаровзрывоопасны. Чтобы правильно оценить их пожаровзрывоопасность и обеспечить противопожарную защиту, следует знать их устройство, понимать суть процессов, в них происходящих.

Сущность процессов перегонки и ректификации рассмотрим на примере разгонки смеси бензол - толуол (с использованием графических зависимостей состава пара и жидкости от температуры кипения раствора): диаграммы t - х, у (температура - состав) и диаграммы у - х (состав пара - состав жидкости).

На рис. 13.1 представлена диаграмма t - х, у для смеси бензол-толуол.

Рис. 13.1. Изобарные кривые кипения и конденсации паров; I -кривая кипения раствора; //-кривая конденсации пара; х а - молекулярная доля легкокипящего компонента (бензола); у а - молекулярная доля легко-кипящего компонента в паровой фазе

Диаграмма имеет две ветви: нижняя представляет линию кипения жидкости, каждая точка которой отвечает температуре кипения смеси состава х а; верхняя - представляет линию конденсации пара, каждая точка которой отвечает температуре конденсации пара состава у а. По оси ординат отложена температура в градусах Цельсия, по оси абсцисс - молекулярная доля бензола (легкокипящего компонента) в растворе х а и молекулярная доля бензола в паровой фазе у а.

При пользовании диаграммой t - х, у на оси абсцисс находят состав жидкой смеси х а и из этой точки проводят вертикаль до пересечения с линией кипения. Точка пересечения указывает температуру кипения этой смеси. Если провести горизонталь до пересечения с линией конденсации, абсцисса точки пересечения укажет состав равновесного пара у а.

Например, пусть жидкость имеет концентрацию бензола 32% мольных (точка N) . Процесс нагревания идет по вертикали до пересечения с линией кипения. В точке а жидкость закипит при 98° С. Образующийся равновесный пар будет иметь концентрацию, соот­ветствующую точке б, находящейся на кривой конденсации. Абсцисса этой точки равна 53% мольным. Значит, у а = 53% мольных. Следовательно, при кипении раствора образующийся пар богаче легколетучим компонентом (по сравнению с кипящей жидкостью).

Если получающиеся при кипении пары отбирать и конденсировать, можно достигнуть частичного разделения раствора. Такое разделение растворов называют простой перегонкой.

Если получающийся при кипении пар частично сконденсировать, жидкость, получающаяся при конденсации, и оставшийся не-сконденсированным пар будут иметь разный состав. Пар будет содержать больше легкокипящего компонента, чем конденсат. Следовательно, при частичной конденсации происходит обогащение оставшегося (несконденсированного) пара легколетучим компонентом.

Допустим, исходный пар (см. рис. 13.1) имеет концентрацию бензола 53% мольных (точка б на кривой II). Охладим его" до 94°С (точка в). При этом часть пара сконденсируется; получится дистиллят, концентрация которого будет равна 43% мольным (точка д на кривой I). Оставшийся пар будет иметь концентрацию бензола 65% мольных (точка г на кривой II). Этот процесс, называемый перегонкой с дефлегмацией пара, также позво­ляет достигнуть частичного разделения растворов

Рис. 13.2. Кривые равновесия фаз (p 2 >р 1): х а - молекулярнаядоля легкокипящего ком­понента в растворе;

у а - молекулярная доля легкокипящего компонента в паровой фазе

При расчетах процессов ректификации обычно используют кривые фазового равновесия в виде диаграмм у - х (состав пара - состав жидкости). На рис. 13.2 представлена диаграмма у - х для жидкостей, растворимых в любых отношениях (типа бензол - толуол). По оси ординат откладывают мольную концентрацию легколетучего компонента в паре, по оси абсцисс - мольную концентрацию легколетучего компонента в жидкости. Диаграмму у-х можно построить, используя диаграмму t-x, у. Для ряда значений концентраций х а находят соответствующие равновесные значения концентраций у а (необходимо из точки на абсциссе, соответствующей х а, по вертикали подняться до пересечения с кривой кипения I; по горизонтали следует дойти до кривой конденсации II, а затем опуститься по вертикали до оси абсцисс и прочитать значение у а). Полученные точки наносят на диаграмму у-х и соединяют плавной кривой.

Применительно к идеальным растворам (подчиняющимся закону Рауля) кривые фазового равновесия можно построить на основе расчета. Для каждой температуры кипения раствора определяют молекулярную концентрацию легкокипящего компонента в растворе по уравнению

где р а и р б - давление насыщенного пара компонентов а и б над чистой жидкостью;

р Общ - общее давление пара над раствором, равное сумме парциальных давлений его компонентов.

По значению х а определяют парциальное давление легкокипящего компонента в паре:

p’ а =p а x а. (13.2)

По величине парциального давления находят молекулярную концентрацию легкокипящего компонента в паре:

Найденные значения х а и у а наносят на график диаграммы у -х и получают плавную кривую.

При расчетах процессов ректификации обычно используют диаграммы у-х, соответствующие атмосферному давлению. При других давлениях каждому значению давления соответствует своя кривая равновесия.

    Принцип процесса ректификации.

    Устройство ректификационных колонн.

    Причины повреждений ректификационных колонн и меры по их предупреждению.

    Пожарная опасность ректификационных установок. Меры профилактики пожаров.

Вопрос 1. Принцип ректификации

Процессы перегонки растворов, говоря иначе, разделения растворов на составляющие их компоненты, весьма распространены в современной технологии.

Например, разделение природных углеводородов нефти с целью получения моторных топлив и смазочных масел.

Выделение индивидуальных газов из их смесей происходит путем предварительного их сжижения с последующей разгонкой жидкой смеси.

Подавляющее большинство ЛВЖ и ГЖ (спирт, ацетон, уксусная кислота, бензол и его гомологи, бензин, керосин и многие другие продукты) получаются с использованием также процессов перегонки.

Различают простую перегонку и ректификацию.

Простой перегонкой называется процесс частичного испарения раствора и полной конденсации образующихся паров.

Ректификация же – это процесс разделения жидких однородных смесей на составляющие их компоненты в результате многократного противоточного взаимодействия пара с жидкостью.

Согласно первому закону Коновалова пар обогащается тем компонентом, прибавление которого к жидкости повышает давление пара над ней или понижает температуру кипения.

Идеальные смеси подчиняются закону Рауля, согласно которому парциальное давление компонента в системе равно давлению пара чистого компонента, умноженному на его мольную долю в растворе: P парц =P пара ·m

И согласно закону Дальтона парциальное давление компонента в газовой смеси равно общему давлению, умноженному на мольную долю этого компонента в смеси: P парц =P общ ·m

Схематично процесс ректификации можно представить следующим образом.

Где m 1 , m 2 , m 3 – количества поступившей на ректификацию смеси, образовавшегося дистиллята и остающегося остатка;

Х 1 , Х 2 , Х 3 – содержание (мольная доля) легколетучего компонента в них, соответственно.

Вопрос 2. Устройство ректификационных установок

Итак, ректификация – это процесс разделения жидких однородных смесей на составляющие их компоненты в результате многократного противоточного взаимодействия пара с жидкостью.

Процессы ректификации осуществляют на ректификационных установках.

Ректификационные колонны классифицируют:

по конструктивному исполнению: тарельчатые; насадочные.

в зависимости от рабочего давления: работающие под вакуумом; работающие при атмосферном давлении; работающие под давлением.

Тарелки различают : клапанные; струйные; ситчатые; колпачковые.

Давайте с вами рассмотрим, как осуществляется процесс ректификации.

В среднюю часть колонны поступает подлежащее ректификации сырье , нагретое до определенной температуры.

Сырье может подаваться в колонну в виде жидкости, паров или смеси паров и жидкости.

При входе сырья в колонну происходит процесс однократного испарения, в результате которого образуются пары и жидкость определенного состава, находящиеся в равновесии.

Для обеспечения ректификации необходимо в верхней части колонны навстречу парам организовать поток жидкости (флегмы, орошения). Для этого на верху колонны тем или иным способом отнимается тепло (тепло парциального конденсатора). За счет этого часть паров, поднимающихся с верхней тарелки, конденсируется, образуя необходимый нисходящий поток жидкости.

Флегмовое число – отношение количества возвращаемого в колонну дистиллята (флегмы) к количеству отобранного дистиллята в виде продукта.

Принципиальная схема ректификационной колонны показана на рисунке.

Поступление сырья

Поступление флегмы

Выход паров на дефлегматор

кипятильник

Выход кубового остатка

В нижней части колонны нужно обеспечить восходящий поток паров. Для этого в низ колонны тем или иным способом подводится тепло (тепло кипятильника) При этом часть жидкости, стекающей с нижней тарелки, испаряется, образуя поток паров.

При таком режиме: самая низкая температура будет вверху колонны, а самая высокая – внизу колонны.

Отбираемый сверху колонны продукт, обогащенный низкокипящим компонентом, называется ректификатом (или дистиллятом). А снизу колонны, отбираемый продукт, обогащенный высококипящим компонентом, называется остатком или кубовым (нижним) продуктом.

Та часть колонны, куда вводится сырье, называется секцией питания или эвапорационным пространством. Часть ректификационной колонны, находящаяся выше ввода сырья – верхней, концентрационной или укрепляющей, а ниже ввода сырья – нижней, отгонной или исчерпывающей .

В обеих частях колонны протекает один и тот же процесс ректификации.

На данном рисунке показана схема простых (I) и сложных (II) колонн:

а - полная; б- укрепляющая; в - отгонная; г – с отбором дополнительных продуктов сверху и снизу из основной колонны; д – с отбором дополнительного продукта сверху из отпарной колонны.