Ось симметрии двух точек. Что такое ось симметрии

Точки М и М1 называются симметричными относительно заданной прямой L , если эта прямая является серединным перпендикуляром к отрезку МM1 (рис 1). Каждая точка прямой L симметрична сама себе. Преобразование плоскости, при котором каждая точка отображается на симметричную ей точку относительно данной прямой L , называется осевой симметрией с осью L и обозначается SL : SL (M) = M1 .

Точки М и М1 взаимно симметричны относительно L , поэтому SL (M1 )=M . Следовательно, преобразование, обратное осевой симметрии, есть та же осевая симметрия: SL -1 = SL , SL ° SL = E . Иначе говоря, осевая симметрия плоскости является инволютивным преобразованием.

Образ данной точки при осевой симметрии можно просто построить, пользуясь только одним циркулем. Пусть L - ось симметрии, A и B - произвольные точки этой оси (рис 2). Если и SL (M) = M1 , то по свойству точек серединного перпендикуляра к отрезку имеем: AM = AM1 и BM = BM1 . Значит, точка M1 принадлежит двум окружностям: окружности с центром A радиуса AM и окружности с центром B радиуса BM (M - данная точка). Фигура F и её образ F1 при осевой симметрии называются симметричными фигурами относительно прямой L (рис 3).

Теорема. Осевая симметрия плоскости есть движение.

Если А и В - любые точки плоскости и SL (A) = A1 , SL (B) = B1 , то надо доказать, что A1 B1 = AB . Для этого введем прямоугольную систему координат OXY так, чтобы ось OX совпала с осью симметрии. Точки А и В имеют координаты А(x1 ,-y1 ) и B(x1 ,-y2 ) .Точки А1 и В1 имеют координаты A1 (x1 ,y1 ) и B1 (x1 ,y2 ) (рис 4 - 8). По формуле расстояния между двумя точками находим:

Из этих соотношений ясно, что АВ=А1 В1 , что и требовалось доказать.

Из сравнения ориентаций треугольника и его образа получаем, что осевая симметрия плоскости есть движение второго рода .

Осевая симметрия отображает каждую прямую на прямую. В частности, каждая из прямых, перпендикулярных оси симметрии, отображается этой симметрией на себя.


Теорема. Прямая, отличная от перпендикуляра к оси симметрии, и её образ при этой симметрии пересекаются на оси симметрии или ей параллельны.

Доказательство. Пусть дана прямая, не перпендикулярная оси L симметрии. Если m ? L= P и SL (m)=m1 , то m1 ?m и SL (P)=P , поэтому Pm1 (рис 9). Если же m || L , то m1 || L , так как в противном случае прямые m и m1 пересекались бы в точке прямой L , что противоречит условию m ||L (рис 10).


В силу определения равных фигур, прямые, симметричные относительно прямой L , образуют с прямой L равные углы (рис 9).

Прямая L называется осью симметрии фигуры F , если при симметрии с осью L фигура F отображается на себя: SL (F) =F . Говорят, что фигура F симметрична относительно прямой L .

Например, всякая прямая, содержащая центр окружности, является осью симметрии этой окружности. Действительно, пусть М - произвольная точка окружности щ с центром О , ОL , SL (M)= M1 . Тогда SL (O) = O и OM1 =OM , т. е. M1 є щ . Итак, образ любой точки окружности принадлежит этой окружности. Следовательно, SL (щ)=щ .

Осями симметрии пары непараллельных прямых служат две перпендикулярные прямые, содержащие биссектрисы углов между данными прямыми. Осью симметрии отрезка является содержащая его прямая, а также серединный перпендикуляр к этому отрезку.

Свойства осевой симметрии

  • 1. При осевой симметрии образом прямой является прямая, образом параллельных прямых являются параллельные прямые
  • 3. Осевая симметрия сохраняет простое отношение трех точек.
  • 3. При осевой симметрии отрезок переходит в отрезок, луч - в луч, полуплоскость - в полуплоскость.
  • 4. При осевой симметрии угол переходит в равный ему угол.
  • 5. При осевой симметрии с осью d всякая прямая, перпендикулярная оси d остается на месте.
  • 6. При осевой симметрии ортонормированный репер переходит в ортонормированный репер. При этом точка М с координатами х и у относительно репера R переходит в точку M` с теми же самыми координатами х и у, но относительно репера R`.
  • 7. Осевая симметрия плоскости переводит правый ортонормированный репер в левый и, наоборот, левый ортонормированный репер - в правый.
  • 8. Композиция двух осевых симметрий плоскости с параллельными осями есть параллельный перенос на вектор, перпендикулярный данным прямым, длина которого в два раза больше расстояния между данными прямыми

Рассмотрим теперь оси симметрии сторон треугольника. Напомним, что осью симметрии отрезка является перпендикуляр, восставленный к отрезку в его середине.

Любая точка такого перпендикуляра одинаково удалена от концов отрезка. Пусть теперь - перпендикуляры, проведенные через середины сторон ВС и АС треугольника ABC (рис. 220) к этим сторонам, т. е. оси симметрии этих двух сторон. Точка их пересечения Q одинаково удалена от вершин В и С треугольника, так как лежит на оси симметрии стороны ВС, точно так же она и одинаково удалена от вершин А и С. Следовательно, она одинаково удалена от всех трех вершин треугольника, в том числе от вершин А и В. Значит, она лежит на оси симметрии третьей стороны АВ треугольника. Итак, оси симметрии трех сторон треугольника пересекаются в одной точке. Эта точка одинаково удалена от вершин треугольника. Следовательно, если провести окружность радиусом, равным расстоянию этой точки от вершин треугольника, с центром в найденной точке, то она пройдет через все три вершины треугольника. Такая окружность (рис. 220) называется описанной окружностью. Обратно, если представить себе окружность, проходящую через три вершины треугольника, то ее центр обязан находиться на равных расстояниях от вершин треугольника и потому принадлежит каждой из осей симметрии сторон треугольника.

Поэтому у треугольника имеется только одна описанная окружность: вокруг данного треугольника можно описать окружность, и притом только одну; центр ее лежит в точке пересечения трех перпендикуляров, восставленных к сторонам треугольника в их серединах.

На рис. 221 показаны окружности, описанные вокруг остроугольного, прямоугольного и тупоугольного треугольников; центр описанной окружности лежит в первом случае внутри треугольника, во втором - на середине гипотенузы треугольника, в третьем - вне треугольника. Это проще всего следует из свойств углов, опирающихся на дугу окружности (см. п. 210).

Так как любые три точки, не лежащие на одной прямой, можно считать вершинами треугольника, то можно утверждать, что через три любые точки, не принадлежащие прямой, проходит единственная окружность. Поэтому две окружности имеют не более двух общих точек.

«Симметрия » в переводе с греческого означает «соразмерность» (повторяемость). Симметричные тела и предметы состоят из равнозначных, правильно повторяющихся в пространстве частей. Особенно разнообразна симметрия кристаллов. Различные кристаллы отличаются большей или меньшей симметричностью. Она является их важнейшим и специфическим свойством, отражающим закономерность внутреннего строения.

По более точному определению симметрия – это закономерная повторяемость элементов (или частей) фигуры или какого-либо тела, при которой фигура совмещается сама с собой при некоторых преобразованиях (вращение вокруг оси, отражение в плоскости). Подавляющее большинство кристаллов обладает симметрией.

Понятие симметрии включает в себя составные части – элементы симметрии. Сюда относятся плоскость симметрии , ось симметрии , центр симметрии , или центр инверсии .

Плоскость симметрии делит кристалл на две зеркально равные части. Обозначается она буквой Р. Части, на которые плоскость симметрии рассекает многогранник, относятся одна к другой, как предмет к своему изображению в зеркале разные кристаллы имеют различное количество плоскостей симметрии, которое ставится перед буквой Р. Наибольшее количество таких плоскостей у природных кристаллов – девять 9Р. В кристалле серы насчитывается 3Р, а у гипса только одна. Значит, в одном кристалле может быть несколько плоскостей симметрии. В некоторых кристаллах плоскость симметрии отсутствует.

Относительно элементов ограничения плоскость симметрии может занимать следующее положение:

  1. проходит через ребра;
  2. лежать перпендикулярно к ребрам в их серединах;
  3. проходить через грань перпендикулярно к ней;
  4. пересекать гранные углы в их вершинах.

В кристаллах возможны следующие количества плоскостей симметрии: 9Р, 7Р, 6Р, 5Р, 4Р, 3Р, 2Р, Р, отсутствие плоскости симметрии.

Ось симметрии

Ось симметрии – воображаемая ось, при повороте вокруг которой на некоторый угол фигура совмещается сама с собой в пространстве. Она обозначается буквой L. У кристаллов при вращении вокруг оси симметрии на полный оборот одинаковые элементы ограничения (грани, ребра, углы) могут повторяться только 2, 3, 4, 6 раз. Соответственно этому оси будут называться осями симметрии второго, третьего, четвертого и шестого порядка и обозначаться: L2, L3, L4 и L6.Порядок оси определяется числом совмещений при повороте на 360⁰С.

Ось симметрии первого порядка не принимается во внимание, так как ею обладают вообще не фигуры, в том числе и несимметричные. Количество осей одного и того же порядка пишут перед буквой L: 6L6, 3L4 и т.п.

Центр симметрии

Центр симметрии – это точка внутри кристалла, в которой пересекаются и делятся пополам линии, соединяющие одинаковые элементы ограничения кристалла (грани, ребра, углы). Обозначается она буквой С. Практически присутствие центра симметрии будет сказываться в том, что каждое ребро многогранника имеет параллельное себе ребро, каждая грань – такую же параллельную себе зеркально-обратную грань. Если же в многограннике присутствуют грани, не имеющие себе параллельных, то такой многогранник не обладает центром симметрии.

Достаточно поставить многогранник гранью на стол, чтобы заметить, имеется ли сверху такая же параллельная ей зеркально-обратная грань. Конечно, на параллельность нужно проверить все типы граней.

Существует ряд простых закономерностей, по которым сочетаются друг с другом элементы симметрии. Значение этих правил облегчает их нахождение.

  1. Линия пересечения двух или нескольких плоскостей является осью симметрии. Порядок такой оси равен числу пересекающихся в ней плоскостей.
  2. L6 может присутствовать в кристалле только в единственном числе.
  3. С L6 не могут комбинироваться ни L4, ни L3, но может сочетаться L2 причем L6 и L2 должны быть перпендикулярны; в таком случае присутствует 6L2.
  4. L4 может встречаться в единственном числе или трех взаимно перпендикулярных осей.
  5. L3 может встречаться в единственном числе или с 4L3.

Степенью симметрии называется совокупность всех элементов симметрии, которыми обладает данный кристалл.

Кристалл, имеющий форму куба, обладает высокой степенью симметрии. В нем присутствуют три оси симметрии четвертого порядка (3L4), проходящие через середины граней куба, четыре оси симметрии третьего порядка (4L3), проходящие через вершины трехгранных углов, и шесть осей второго порядка (6L2), проходящих через середины ребер. В точке пересечения осей симметрии располагается центр симметрии куба (С). Кроме того, в кубе можно провести девять плоскостей симметрии (9Р). Элементы симметрии кристалла можно изобразить кристаллографической формулой.

Для куба формула имеет вид: 9P, 3L4, 4L3, 6L2, C.

Русский ученый А.В. Гадолин в 1869 г. показал, что у кристаллов возможны 32 различных сочетания элементов симметрии, составляющих классы (виды) симметрии. Таким образом, класс объединяет группу кристаллов с одинаковой степенью симметрии.

Что же такое ось симметрии? Это множество точек, которые образуют прямую, являющуюся основой симметрии, то есть, если от прямой отложили определенное расстояние с одной стороны, то оно отразится и в другую сторону в таком же размере. Осью может выступать все, что угодно, — точка, прямая, плоскость и так далее. Но об этом лучше говорить на наглядных примерах.

Симметрия

Для того чтобы понять, что такое ось симметрии, нужно вникнуть в само определение симметрии. Это соответствие определенного фрагмента тела относительно какой-либо оси, когда его структура неизменна, а свойства и форма такого объекта остаются прежними относительно его преобразований. Можно сказать, что симметрия — свойство тел к отображению. Когда фрагмент не может иметь подобного соответствия, это называется асимметрией или же аритмией.

Некоторые фигуры не имеют симметрии, поэтому они и называются неправильными или же асимметричными. К таким относятся различные трапеции (кроме равнобедренной), треугольники (кроме равнобедренного и равностороннего) и другие.

Виды симметрии

Также обсудим некоторые виды симметрии, чтобы до конца изучить это понятие. Их разделяют так:

  • Осевая. Осью симметрии является прямая, проходящая через центр тела. Как это? Если наложить части вокруг оси симметрии, то они будут равными. Это можно увидеть на примере сферы.
  • Зеркальная. Осью симметрии здесь является прямая, относительно которой тело можно отразить и получить обратное отображение. Например, крылья бабочки зеркально симметричны.
  • Центральная. Осью симметрии является точка в центре тела, относительно которой при всех преобразованиях части тела равны при наложении.
  • История симметрии

    Само понятие симметрии часто бывает отправной точкой в теориях и гипотезах ученых древних времен, которые были уверены в математической гармонии мироздания, а также в проявлении божественного начала. Древние греки свято верили в то, что Вселенная симметрична, потому что симметрия великолепна. Человек очень давно использовал идею симметрии в своих познаниях картины мироздания.

    В V веке до нашей эры Пифагор считал сферу самой совершенной формой и думал, что Земля имеет форму сферы и таким же образом движется. Также он полагал, что Земля движется по форме какого-то «центрального огня», вокруг которого должны были вращаться 6 планет (известные на то время), Луна, Солнце и все другие звезды.

    А философ Платон считал многогранники олицетворением четырех природных стихий:

    • тетраэдр — огонь, так как его вершина направлена вверх;
    • куб — земля, так как это самое устойчивое тело;
    • октаэдр — воздух, нет каких-либо объяснений;
    • икосаэдр — вода, так как тело не имеет грубых геометрических форм, углов и так далее;
    • образом всей Вселенной являлся додекаэдр.

    Из-за всех этих теорий правильные многогранники называют телами Платона.

    Симметрией пользовались еще зодчие Древней Греции. Все их постройки были симметричны, об этом свидетельствуют изображения древнего храма Зевса в Олимпии.

    Голландский художник М. К. Эшер также прибегал к симметрии в своих картинах. В частности, мозаика из двух птиц, летящих навстречу, стала основой картины «День и ночь».

    Также и наши искусствоведы не пренебрегали правилами симметрии, что видно на примере картины Васнецова В. М. «Богатыри».

    Что уж там говорить, симметрия — ключевое понятие для всех деятелей искусства на протяжении многих веков, но в XX веке ее смысл оценили также все деятели точных наук. Точным свидетельством являются физические и космологические теории, например, теория относительности, теория струн, абсолютно вся квантовая механика. Со времен Древнего Вавилона и, заканчивая передовыми открытиями современной науки, прослеживаются пути изучения симметрии и открытия ее основных законов.

    Симметрия геометрических фигур и тел

    Рассмотрим внимательнее геометрические тела. Например, осью симметрии параболы является прямая, проходящая через ее вершину и рассекающая данное тело пополам. У этой фигуры имеется одна единственная ось.

    А с геометрическими фигурами дело обстоит иначе. Ось симметрии прямоугольника — также прямая, но их несколько. Можно провести ось параллельно отрезкам ширины, а можно — длины. Но не все так просто. Вот прямая не имеет осей симметрии, так как ее конец не определен. Могла существовать только центральная симметрия, но, соответственно, и таковой не будет.

    Следует также знать то, что некоторые тела имеют множество осей симметрии. Об этом догадаться несложно. Даже не нужно говорить о том, сколько осей симметрии имеет окружность. Любая прямая, проходящая через центр окружности, является таковой и этих прямых — бесконечное множество.

    У некоторые четырехугольников может быть две оси симметрии. Но вторые должны быть перпендикулярны. Это происходит в случае с ромбом и прямоугольником. В первом оси симметрии — диагонали, а во втором — средние линии. Множество таковых осей только у квадрата.

    Симметрия в природе

    Природа поражает множеством примеров симметрии. Даже наше человеческое тело устроено симметрично. Два глаза, два уха, нос и рот расположены симметрично относительно центральной оси лица. Руки, ноги и все тело в общем устроено симметрично оси, проходящей через середину нашего тела.

    А сколько примеров окружает нас постоянно! Это цветы, листья, лепестки, овощи и фрукты, животные и даже соты пчел имеют ярко выраженную геометрическую форму и симметрию. Вся природа устроена упорядоченно, всему есть свое место, что еще раз подтверждает совершенство законов природы, в которых симметрия — основное условие.

    Вывод

    Нас постоянно окружают какие-либо явления и предметы, например, радуга, капля, цветы, лепестки и так далее. Их симметрия — очевидна, в какой-то степени она обусловлена гравитацией. Часто в природе под понятием «симметрия» понимают регулярную смену дня и ночи, времен года и так далее.

    Подобные свойства наблюдаются везде, где есть порядок и равенство. Также и сами законы природы — астрономические, химические, биологические и даже генетические подчинены определенным принципам симметрии, так как имеют совершенную системность, а значит, сбалансированность имеет всеохватывающий масштаб. Следовательно, осевая симметрия — один из основополагающих законов мироздания в целом.

    «Симметрия вокруг нас» - Все виды осевой симметрии. Вращения. Греческое слово симметрия означает «пропорциональность», «гармония». Произвольная. Центральная относительно точки. Симметрия в пространстве. Вращения (поворотная). В геометрии есть фигуры, которые имеют. Симметрия. Осевая. Один вид симметрии. Вокруг нас. Центральная.

    «В мире симметрии» - Орнаменты, фризы имеют в своей основе периодически повторяющийся узор. Симметричны формы жука, червяка, гриба, листа, цветка и др. Большинство зданий зеркально симметричны. Во всем ли в жизни должна быть симметрия? Зачем надо знать о симметрии, изучая технические науки? Что такое симметрия? Симметрия в природе и технике.

    «Симметрия в искусстве» - Центрально- осевая симметрия в архитектуре. II.1. Пропорция в архитектуре. Палаццо Спада (Рим). По характеру своих творческих возможностей периодичность - универсальное явление. III. Ле-Корбюэье. Ритм является одним из основных элементов выразительности мелодии. Р. Декарт. Ж. А. Фабр. Геометрические методы изображения пространственных фигур:

    «Точка симметрии» - Фигуры, не имеющие осей симметрии. Точка О называется центром симметрии. Две точки А и А1 называются симметричными относительно О, если О середина отрезка АА1. Равнобочная трапеция имеет только осевую симметрию. Симметрия в природе. Прямоугольник и ромб, не являющиеся квадратами, имеют две оси симметрии.

    «Математическая симметрия» - Однако у сложных молекул, как правило, отсутствует симметрия. Палиндромы. Осевая. Центральная симметрия. Осевая симметрия. Типы симметрии. Симметрия в биологии. Вращательная симметрия. Симметрия в искусствах. ИМЕЕТ МНОГО ОБЩЕГО С ПОСТУПАТЕЛЬНОЙ СИММЕТРИЕЙ В МАТЕМАТИКЕ. Спиральная симметрия. Поступательная.

    «Виды симметрии» - Центральная симметрия является движением. Зеркальный двойник оказывается "вывернутым" вдоль направления перпендикулярного к плоскости зеркала. Осевая симметрия также является движением. Теорема. Параллельный перенос. Центральная симметрия. Виды движения. Понятие движения. Параллельный перенос – один из видов движения.

    Всего в теме 11 презентаций