Признаки делимости всех натуральных чисел. Основные признаки делимости

Два целых числа и равноостаточны при делении на натуральное число (или сравнимы по модулю ), если при делении на они дают одинаковые остатки, то есть существует такие целые числа что

Общие принципы построения

Пусть требуется определить, делится ли некоторое натуральное число на другое натуральное число Для этого будем строить последовательность натуральных чисел:

такую, что:

Тогда если последний член этой последовательности равен нулю, то делится на в противном случае на не делится.

Способ (алгоритм) построения такой последовательности и будет искомым признаком делимости на Математически он может быть описан с помощью функции определяющей каждый следующий член последовательности в зависимости от предыдущего:

Если требование равноделимости для всех членов последовательности заменить на более строгое требование равноостаточности, то последний член этой последовательности будет являться остатком от деления на а способ (алгоритм) построения такой последовательности будет признаком равноостаточности на В силу того, что из равенства остатка при делении на нулю следует делимость на , любой признак равноостаточности может применяться как признак делимости. Математически признак равноостаточности тоже может быть описан с помощью функции определяющей каждый следующий член последовательности в зависимости от предыдущего:

удовлетворяющей следующим условиям:

Примером такой функции, определяющей признак равноостаточности (и, соответственно, признак делимости), может быть функция

а последовательность, построенная с её помощью будет иметь вид:

По сути применение признака равноостаточности на базе этой функции эквивалентно делению при помощи вычитания.

Другим примером может служить общеизвестный признак делимости (а также равноостаточности) на 10.

Если последняя цифра в десятичной записи числа равна нулю, то это число делится на 10; кроме того, последняя цифра будет являться отстатком от деления исходного числа на 10.

Математически этот признак равноостаточности может быть сформулирован следующим образом. Пусть надо выяснить остаток от деления на 10 натурального числа представленного в виде

Тогда остатком от деления на 10 будет . Функция, описывающая это признак равноостаточности будет выглядеть как

Легко доказать, что эта функция удовлетворяет всем перечисленным выше требованиям. Причём последовательность, построенная с её помощью, будет содержать всего один или два члена.

Также легко видеть, что такой признак ориентирован именно на десятичное представление числа - так, например, если применять его на компьютере, использующем двоичную запись числа, то чтобы выяснить , программе пришлось бы сначала поделить на 10.

Для построения признаков равноостаточности и делимости чаще всего используется следующие теоремы:

Пример построения признаков делимости и равноостаточности на 7

Продемонстрируем применение этих теорем на примере признаков делимости и равноостаточности на

Пусть дано целое число

Тогда из первой теоремы полагая будет следовать, что будет равноостаточно при делении на 7 с числом

Запишем функцию признака равноостаточности в виде:

А из второй теоремы полагая и взаимно простое с 7, будет следовать, что будет равноделимы на 7 с числом

Учитывая, что числа и равноделимы на 7, запишем функцию признака делимости в виде:

И, наконец, остаётся найти такое , при котором для любого выполняется условие В данном случае и функция приобретает окончательный вид:

Признаки делимости в десятичной системе счисления

Признак делимости на 2

Соответствующая признаку функция (см. раздел ):

Признак делимости на 3

Эта функция помимо признака делимости задаёт и признак равноостаточности.

Признаки делимости на 11

Признак 1: число делится на тогда и только тогда, когда модуль разности между суммой цифр, занимающих нечётные позиции, и суммой цифр, занимающих чётные места делится на 11. Например, 9163627 делится на 11, так как делится на 11. Другой пример - 99077 делится на 11, так как делится на 11.

Соответствующая этому признаку функция:

Признак 2: число делится на 11 тогда и только тогда, когда на 11 делится сумма чисел, образующих группы по две цифры (начиная с единиц). Например, 103785 делится на 11, так как на 11 делятся и

Соответствующая признаку функция:

Эта функция помимо признака делимости задаёт и признак равноостаточности. Например, числа 123456, и равноостаточны при делении на 11.


Продолжим знакомство с признаками делимости . Сейчас мы изучим признак делимости на 6 . Сначала приведем его формулировку. Дальше рассмотрим примеры применения признака делимости на 6 . После этого докажем признак делимости на 6 . В заключение остановимся на примерах, в которых доказывается делимость на 6 значений некоторых выражений.

Навигация по странице.

Признак делимости на 6, примеры

Формулировка признака делимости на 6 объединяет в себе признак делимости на 2 и признак делимости на 3 . Она такова: если запись целого числа оканчивается одной из цифр 0 , 2 , 4 , 6 или 8 , а также сумма цифр в записи числа делится на 3 , то такое число делится на 6 ; если же нарушено хотя бы одно из указанных условий, то число не делится на 6 . Другими словами, целое число делится на 6 тогда и только тогда, когда это число делится на 2 и на 3 .

Итак, признак делимости на 6 применяется в два этапа:

  • На первом этапе проверяется делимость числа на 2 . Для этого рассматривается последняя цифра в записи числа. Если запись числа оканчивается цифрой 2 , то это число делится на 2 , и для дальнейшей проверки его делимости на 6 переходим ко второму этапу. Если же последняя цифра в записи числа отлична от 0 , 2 , 4 , 6 или 8 , то число не делится на 2 , следовательно, не делится и на 6 .
  • На втором этапе проверяется делимость числа на 3 . Для этого вычисляется сумма цифр исходного числа и проверяется, делится ли она на 3 (например, при помощи признака делимости на 3 ). Если сумма цифр делится на 3 , то число делится на 3 , и, учитывая его делимость на 2 (установленную на предыдущем этапе), можно делать вывод о делимости числа на 6 . Если же сумма цифр исходного числа не делится на 3 , то это число не делится на 3 , следовательно, не делится и на 6 .

Теперь можно рассмотреть конкретные примеры применения признака делимости на 6 .

Пример.

Делится ли число 8 813 на 6 ?

Решение.

Для ответа на поставленный вопрос воспользуемся признаком делимости на 6 . Так как запись числа 8 813 оканчивается цифрой 3 , то можно делать вывод, что число 8 813 на 6 не делится.

Ответ:

Нет.

Пример.

Возможно ли разделить 934 на 6 без остатка?

Решение.

Число 934 оканчивается цифрой 4 , поэтому первое условие признака делимости на 6 выполняется. Проверим, делится ли сумма цифр числа 934 на 3 . Имеем 9+3+4=16 , а 16 на 3 не делится. Следовательно, второе условие признака делимости на 6 не выполняется, поэтому исходное число на 6 не делится.

Ответ:

Нет.

Пример.

Делится ли число −7 269 708 на 6 ?

Решение.

Последней цифрой в записи данного числа является 8 , значит первое условие признака делимости на 6 выполнено. Теперь находим сумму цифр числа −7 269 708 , имеем 7+2+6+9+7+0+8=39 . Так как 39 делится на 3 (39:3=13 ), то можно делать вывод о делимости исходного числа на 6 .

Ответ:

Да, делится.

В заключение этого пункта отметим, что для проверки делимости заданного числа на 6 можно выполнить деление непосредственно, а не прибегать к признаку делимости на 6 .

Доказательство признака делимости на 6

Приведем доказательство признака делимости на 6 . Для удобства используем формулировку этого признака в форме необходимого и достаточного условия.

Теорема.

Для делимости целого числа a на 6 необходимо и достаточно, чтобы число a делилось на 2 и на 3 .

Доказательство.

Сначала докажем необходимость, то есть докажем, что если целое число a делится на 6 , то оно делится на 2 и на 3 .

Для этого нам понадобится следующее свойство делимости : если целое число a делится на b , то произведение m·a , где m – любое целое число, тоже делится на b .

Так как a делится на 6 , то понятие делимости позволяет нам записать равенство a=6·q , где q – некоторое целое число. В записанном произведении множитель 6 делится и на 2 и на 3 , тогда из указанного выше свойства делимости следует, что произведение 6·q делится и на 2 и на 3 . Этим доказана необходимость.

Чтобы признак делимости на 6 оказался полностью доказанным, осталось доказать достаточность. Докажем, что если целое число a делится на 2 и на 3 , то оно делится на 6 .

Здесь нам потребуется теорема из статьи основная теорема арифметики . Вот ее формулировка: если произведение нескольких целых положительных и отличных от единицы множителей делится на простое число p , то хотя бы один множитель делится на p .

Так как целое число a делится на 2 , то существует такое целое число q , что a=2·q . Но целое число a=2·q делится и на 3 , откуда 2·q должно делиться на 3 . Так как 2 на 3 не делится, то в силу указанной выше теоремы на 3 должно делиться q . Тогда существует такое целое число q 1 , что q=3·q 1 . Следовательно, a=2·q=2·3·q 1 =6·q 1 . Из полученного равенства следует делимость числа a на 6 . Этим доказана достаточность.

Другие случаи делимости на 6

В этом пункте мы остановимся на способах доказательства делимости на 6 значения заданного при указанном значении переменной. В этих случаях (когда целое число задано не в явном виде) непосредственное деление и применение признака делимости на 6 часто невозможно, поэтому нужен другой подход к решению.

Один из подходов основан на утверждении: если один из целых множителей в произведении делится на заданное число, то и все произведение делится на это число. То есть, если заданное выражение представить в виде произведения, в котором один из множителей будет делиться на 6 , то этим будет доказана делимость на 6 исходного выражения. Осталось обговорить способы представления в виде произведения.

Иногда представить заданное выражение в виде нужного произведения позволяет . Рассмотрим пример.

Пример.

Делится ли на 6 значение выражения при некотором натуральном n .

Решение.

Число 7 равно сумме 6+1 , поэтому . Теперь применим формулу бинома Ньютона, после чего проведем необходимые преобразования:

Так мы пришли к произведению, которое делится на 6 , так как оно содержит множитель 6 , а значение выражения в скобках является натуральным числом при любом натуральном n (так как сумма и произведение натуральных чисел есть натуральное число). Следовательно, значение исходного выражения при любом натуральном n делится на 6 .

Ответ:

Да.

Если выражение задано в виде многочлена, то иногда получить произведение с множителем, делящимся на 6 , позволяет . После чего переменной n в полученном разложении придаются значения n=6·m , n=6·m+1 , n=6·m+2 , …, n=6·m+5 , где m – целое число. Если будет показана делимость при каждом таком n , то этим будет доказана делимость исходного выражения на 6 при любом целом n .

Пример.

Докажите, что при любом целом n значение выражения делится на 6 .

Решение.

Разложение на множители данного выражения имеет вид .

При n=6·m имеем . В полученном произведении содержится множитель 6 , поэтому оно делится на 6 при любом целом m .

Из школьной программы многие помнят, что существуют признаки делимости. Под данным словосочетанием понимают правила, которые позволяют достаточно быстро определить, является ли число кратным заданному, не совершая при этом непосредственную арифметическую операцию. Данный способ основан на действиях, совершаемых с частью цифр из записи в позиционной

Самые простые признаки делимости многие помнят из школьной программы. Например, то, что на 2 делятся все числа, последняя цифра в записи которых четная. Данный признак наиболее легко запомнить и применять на практике. Если говорить о способе деления на 3, то для многозначных чисел применяется следующее правило, которое можно показать на таком примере. Необходимо узнать, будет ли 273 кратно трем. Для этого выполняем следующую операцию: 2+7+3=12. Полученная сумма делится на 3, следовательно, и 273 будет делиться на 3 таким образом, что в результате получится целое число.

Признаки делимости на 5 и 10 будут следующие. В первом случае запись будет оканчиваться на цифры 5 или 0, во втором случае только на 0. Для того чтобы узнать, кратно ли делимое четырем, следует поступить следующим образом. Необходимо вычленить две последние цифры. Если это два нуля или число, которое делится на 4 без остатка, то и все делимое будет кратно делителю. Нужно отметить, что перечисленные признаки используются только в десятичной системе. Они не применяются в других способах счисления. В таких случаях выводятся свои правила, которые зависят от основания системы.

Признаки деления на 6 следующие. 6 в том случае, если оно кратно и 2, и 3. Для того чтобы определить, делится ли число на 7, нужно удвоить последнюю цифру в его записи. Полученный результат вычитается из первоначального числа, в котором не учитывается последняя цифра. Данное правило можно рассмотреть на следующем примере. Необходимо узнать, кратно ли 364. Для этого 4 умножается на 2, получается 8. Далее выполняется следующее действие: 36-8=28. Полученный результат кратен 7, а, следовательно, и первоначальное число 364 можно разделить на 7.

Признаки делимости на 8 звучат следующим образом. Если три последних цифры в записи числа образуют число, которое кратно восьми, то и само число будет делиться на заданный делитель.

Узнать, делится ли многозначное число на 12, можно следующим образом. По перечисленным выше признакам делимости необходимо узнать, кратно ли число 3 и 4. Если они могут выступать одновременно делителями для числа, то с заданным делимым можно проводить и операцию деления на 12. Подобное правило применяется и для других сложных чисел, например, пятнадцати. При этом делителями должны выступать 5 и 3. Чтобы узнать, делится ли число на 14, следует посмотреть, кратно ли оно 7 и 2. Так, можно рассмотреть это на следующем примере. Необходимо определить, можно ли 658 разделить на 14. Последняя цифра в записи четная, следовательно, число кратно двум. Далее мы 8 умножаем на 2, получаем 16. Из 65 нужно вычесть 16. Результат 49 делится на 7, как и все число. Следовательно, 658 можно разделить и на 14.

Если две последние цифры в заданном числе делятся на 25, то и все оно будет кратно этому делителю. Для многозначных чисел признак делимости на 11 будет звучать следующим образом. Необходимо узнать, кратна ли заданному делителю разность сумм цифр, которые стоят на нечетных и четных местах в его записи.

Нужно отметить, что признаки делимости чисел и их знание очень часто значительно упрощает многие задачи, которые встречаются не только в математике, но и в повседневной жизни. Благодаря умению определить, кратно ли число другому, можно быстро выполнять различные задания. Помимо этого, применение данных способов на занятиях математики поможет развивать у студентов или школьников, будет способствовать развитию определенных способностей.


Серию статей о признаках делимости продолжает признак делимости на 3 . В этой статье сначала дана формулировка признака делимости на 3 , и приведены примеры применения этого признака при выяснении, какие из данных целых чисел делятся на 3 , а какие – нет. Дальше дано доказательство признака делимости на 3 . Также рассмотрены подходы к установлению делимости на 3 чисел, заданных как значение некоторого выражения.

Навигация по странице.

Признак делимости на 3, примеры

Начнем с формулировки признака делимости на 3 : целое число делится на 3 , если сумма его цифр делится на 3 , если же сумма цифр данного числа не делится на 3 , то и само число не делится на 3 .

Из приведенной формулировки понятно, что признаком делимости на 3 не удастся воспользоваться без умения выполнять . Также для успешного применения признака делимости на 3 нужно знать, что из всех на 3 делятся числа 3 , 6 и 9 , а числа 1 , 2 , 4 , 5 , 7 и 8 – не делятся на 3 .

Теперь можно рассмотреть простейшие примеры применения признака делимости на 3 . Выясним, делится ли на 3 число −42 . Для этого вычисляем сумму цифр числа −42 , она равна 4+2=6 . Так как 6 делится на 3 , то в силу признака делимости на 3 можно утверждать, что и число −42 делится на 3 . А вот целое положительное число 71 на 3 не делится, так как сумма его цифр равна 7+1=8 , а 8 не делится на 3 .

А делится ли на 3 число 0 ? Чтобы ответить на этот вопрос, признак делимости на 3 не понадобится, здесь нужно вспомнить соответствующее свойство делимости , которое утверждает, что нуль делится на любое целое число. Таким образом, 0 делится на 3 .

В некоторых случаях чтобы показать, что данное число обладает или не обладает способностью делиться на 3 , к признаку делимости на 3 приходится обращаться несколько раз подряд. Приведем пример.

Пример.

Покажите, что число 907 444 812 делится на 3 .

Решение.

Сумма цифр числа 907 444 812 равна 9+0+7+4+4+4+8+1+2=39 . Чтобы выяснить, делится ли 39 на 3 , вычислим его сумму цифр: 3+9=12 . А чтобы узнать, делится ли 12 на 3 , находим сумму цифр числа 12 , имеем 1+2=3 . Так как мы получили число 3 , которое делится на 3 , то в силу признака делимости на 3 число 12 делится на 3 . Следовательно, 39 делится на 3 , так как сумма его цифр равна 12 , а 12 делится на 3 . Наконец, 907 333 812 делится на 3 , так как сумма его цифр равна 39 , а 39 делится на 3 .

Для закрепления материала разберем решение еще одного примера.

Пример.

Делится ли на 3 число −543 205 ?

Решение.

Вычислим сумму цифр данного числа: 5+4+3+2+0+5=19 . В свою очередь сумма цифр числа 19 равна 1+9=10 , а сумма цифр числа 10 равна 1+0=1 . Так как мы получили число 1 , которое не делится на 3 , из признака делимости на 3 следует, что 10 не делится на 3 . Поэтому 19 не делится на 3 , так как сумма его цифр равна 10 , а 10 не делится на 3 . Следовательно, исходное число −543 205 не делится на 3 , так как сумма его цифр, равная 19 , не делится на 3 .

Ответ:

Нет.

Стоит заметить, что непосредственное деление данного числа на 3 также позволяет сделать вывод о том, делится ли данное число на 3 нацело, или нет. Этим мы хотим сказать, что не нужно пренебрегать делением в пользу признака делимости на 3 . В последнем примере, 543 205 на 3 , мы бы убедились, что 543 205 не делится нацело на 3 , откуда можно было бы сказать, что и −543 205 не делится на 3 .

Доказательство признака делимости на 3

Доказать признак делимости на 3 нам поможет следующее представление числа a . Любое натуральное число a мы можем , после чего позволяет получить представление вида , где a n , a n−1 , …, a 0 – цифры, стоящие слева направо в записи числа a . Для наглядности приведем пример такого представления: 528=500+20+8=5·100+2·10+8 .

Теперь запишем ряд достаточно очевидных равенств: 10=9+1=3·3+1 , 100=99+1=33·3+1 , 1 000=999+1=333·3+1 и так далее.

Подставив в равенство a=a n ·10 n +a n−1 ·10 n−1 +…+a 2 ·10 2 +a 1 ·10+a 0 вместо 10 , 100 , 1 000 и так далее выражения 3·3+1 , 33·3+1 , 999+1=333·3+1 и так далее, получим
.

И позволяют полученное равенство переписать так:

Выражение есть сумма цифр числа a . Обозначим ее для краткости и удобства буквой А , то есть, примем . Тогда получим представление числа a вида , которым и воспользуемся при доказательстве признака делимости на 3 .

Также для доказательства признака делимости на 3 нам потребуются следующие свойства делимости:

  • чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы a делился на модуль числа b ;
  • если в равенстве a=s+t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Теперь мы полностью подготовлены и можем провести доказательство признака делимости на 3 , для удобства этот признак сформулируем в виде необходимого и достаточного условия делимости на 3 .

Теорема.

Для делимости целого числа a на 3 необходимо и достаточно, чтобы сумма его цифр делилась на 3 .

Доказательство.

Для a=0 теорема очевидна.

Если a отлично от нуля, то модуль числа a является натуральным числом, тогда возможно представление , где - сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то - целое число, тогда по определению делимости произведение делится на 3 при любых a 0 , a 1 , …, a n .

Если сумма цифр числа a делится на 3 , то есть, А делится на 3 , то в силу свойства делимости, указанного перед теоремой, делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и делится на 3 , тогда в силу того же свойства делимости число А делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Иногда целые числа задаются не в явном виде, а как значение некоторого при данном значении переменной. Например, значение выражения при некотором натуральном n является натуральным числом. Понятно, что при таком задании чисел для установления их делимости на 3 не поможет непосредственное деление на 3 , да и признак делимости на 3 удастся применить далеко не всегда. Сейчас мы рассмотрим несколько подходов к решению подобных задач.

Суть этих подходов заключается в представлении исходного выражения в виде произведения нескольких множителей, и если хотя бы один из множителей будет делиться на 3 , то в силу соответствующего свойства делимости можно будет сделать вывод о делимости на 3 всего произведения.

Иногда реализовать такой подход позволяет . Рассмотрим решение примера.

Пример.

Делится ли значение выражения на 3 при любом натуральном n ?

Решение.

Очевидно равенство . Воспользуемся формулой бинома Ньютона:

В последнем выражении мы можем вынести 3 за скобки, при этом получим . Полученное произведение делится на 3 , так как содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Следовательно, делится на 3 при любом натуральном n .

Ответ:

Да.

Во многих случаях доказать делимость на 3 позволяет . Разберем его применение при решении примера.

Пример.

Докажите, что при любом натуральном n значение выражения делится на 3 .

Решение.

Для доказательства применим метод математической индукции.

При n=1 значение выражения равно , а 6 делится на 3 .

Предположим, что значение выражения делится на 3 при n=k , то есть, делится на 3 .

Учитывая, что делится на 3 , покажем, что значение выражения при n=k+1 делится на 3 , то есть, покажем, что делится на 3 .

Данная статья раскрывает смысл признака делимости на 6 . Будет введена его формулировка с примерами решений. Ниже приведем доказательство признака делимости на 6 на примере некоторых выражений.

Признак делимости на 6, примеры

Формулировка признака делимости на 6 включает в себя признак делимости на 2 и на 3: если число оканчивается на цифры 0 , 2 , 4 , 6 , 8 , а сумма цифр делится без остатка на 3 , значит, такое число делится на 6 ; при отсутствии хотя бы одного условия заданное число на 6 не поделится. Иначе говоря, число будет делиться на 6 , когда оно поделится на 2 и на 3 .

Применение признака делимости на 6 работает в 2 этапа:

  • проверка делимости на 2 , то есть число должно оканчиваться на 2 для явной делимости на 2, при отсутствии цифр 0 , 2 , 4 , 6 , 8 в конце числа деление на 6 невозможно;
  • проверка делимости на 3 , причем проверка производится при помощи деления суммы цифр числа на 3 без остатка, что означает возможность делимости всего числа на 3 ; исходя из предыдущего пункта видно, что все число делится на 6 , так как выполняются условия для деления на 3 и на 2 .
Пример 1

Проверить, может ли число 8 813 делиться на 6 ?

Решение

Очевидно, что для ответа нужно обратить внимание на последнюю цифру числа. Так как 3 не делится на 2 , отсюда следует, что одно условие не выполняется. Получаем, что заданное число на 6 не поделится.

Ответ: нет.

Пример 2

Узнать, возможно ли деление числа 934 на 6 без остатка.

Решение

Ответ: нет.

Пример 3

Проверить делимость на 6 числа − 7 269 708 .

Решение

Переходим к последней цифре числа. Так как ее значение равняется 8 , то первое условие выполнимо, то есть 8 делится на 2 . Переходим к проверке на выполнимость второго условия. Для этого складываем цифры заданного числа 7 + 2 + 6 + 9 + 7 + 0 + 8 = 39 . Видно, что 39 делится на 3 без остатка. То есть получаем (39: 3 = 13) . Очевидно, что оба условия выполняются, значит, что заданно число разделится на 6 без остатка.

Ответ: да, делится.

Чтобы проверить делимость на 6 , можно выполнить непосредственно деление на число 6 без проверки признаков делимости на него.

Доказательство признака делимости на 6

Рассмотрим доказательство признака делимости на 6 с необходимыми и достаточными условиями.

Теорема 1

Для того, чтобы целое число a делилось на 6 , необходимо и достаточно, чтобы это число делилось на 2 и на 3 .

Доказательство 1

Для начала необходимо доказать, что делимость числа a на 6 обуславливает его делимость на 2 и на 3 . Использование свойства делимости: если целое число делится на b , тогда произведение m·a с m, являющимся целым числом, также делится на b .

Отсюда следует, что при делении a на 6 можно использовать свойство делимости для того, чтобы представить равенство в виде a = 6 · q , где q является некоторым целым числом. Такая запись произведения говорит о том, что наличие множителя дает гарантию деления на 2 и на 3 . Необходимость доказана.

Для полного доказательства делимости на 6 , следует доказать достаточность. Для этого нужно доказать, что если число делится на 2 и на 3 , то оно делится и на 6 без остатка.

Необходимо применение основной теоремы арифметики. Если произведение нескольких целых положительных и не равных единицам множителей делится на простое число p , тогда хотя бы один множитель делится на p .

Имеем, что целое число a поделится на 2 , тогда существует такое число q , когда a = 2 · q . Это же выражение делится на 3 , где 2 · q делится на 3 . Очевидно, что 2 на 3 не делится. Из теоремы следует, что q должно делиться на 3 . Отсюда получим, что имеется целое число q 1 , где q = 3 · q 1 . Значит, полученное неравенство вида a = 2 · q = 2 · 3 · q 1 = 6 · q 1 говорит о том, что число a будет делиться на 6 . Достаточность доказана.

Другие случаи делимости на 6

В данном пункте рассматриваются способы доказательств делимости на 6 с переменными. Такие случаю предусматривают другой метод решения. Имеем утверждение: если один из целых множителей в произведении делится на заданное число, то и все произведение поделится на это число. Иначе говоря, при представленном заданном выражении в виде произведения хотя бы один из множителей делится на 6 , то все выражение будет делиться на 6 .

Такие выражения проще решать при помощи подстановки формулы бинома Ньютона.

Пример 4

Определить, будет ли выражение 7 n - 12 n + 11 делиться на 6 .

Решение

Представим число 7 в виде суммы 6 + 1 . Отсюда получаем запись вида 7 n - 12 n + 11 = (6 + 1) n - 12 n + 11 . Применим формулу бинома Ньютона. После преобразований имеем, что

7 n - 12 n + 11 = (6 + 1) n - 12 n + 11 = = (C n 0 · 6 n + C n 1 · 6 n - 1 + . . . + + C n n - 2 · 6 2 · 1 n - 2 + C n n - 1 · 6 · 1 n - 1 + C n n · 1 n) - 12 n + 11 = = (6 n + C n 1 · 6 n - 1 + . . . + C n n - 2 · 6 2 + n · 6 + 1) - 12 n + 11 = = 6 n + C n 1 · 6 n - 1 + . . . + C n n - 2 · 6 2 - 6 n + 12 = = 6 · (6 n - 1 + C n 1 · 6 n - 2 + . . . + C n n - 2 · 6 1 - n + 2)

Полученное произведение делится на 6 , потому как один из множителей равняется 6 . Отсюда следует, что n может быть любым целым натуральным числом, причем заданное выражение поделится на 6 .

Ответ: да.

Когда выражение задается при помощи многочлена, тогда следует произвести преобразования. Видим, что требуется прибегнуть к разложению многочлена на множители. получим, что переменная n примет вид и запишется как n = 6 · m , n = 6 · m + 1 , n = 6 · m + 2 , … , n = 6 · m + 5 , число m является целым. Если делимость при каждом n будет иметь смысл, то делимость заданного числа на 6 при любом значении целого n будет доказана.

Пример 5

Доказать, что при любом значении целого n выражение n 3 + 5 n поделится на 6 .

Решение

Для начала разложим на множители заданное выражение и получим, что n 3 + 5 n = n · (n 2 + 5) . Если n = 6 · m , тогда n · (n 2 + 5) = 6 m · (36 m 2 + 5) . Очевидно, что наличие множителя числа 6 говорит о том, что выражение делится на 6 для любого целого значения m .

Если n = 6 · m + 1 , получаем

n · (n 2 + 5) = (6 m + 1) · 6 m + 1 2 + 5 = = (6 m + 1) · (36 m 2 + 12 m + 1 + 5) = = (6 m + 1) · 6 · (6 m 2 + 2 m + 1)

Произведение будет делиться на 6 , так как имеет множитель, равняющийся 6 .

Если n = 6 · m + 2 , то

n · (n 2 + 5) = (6 m + 2) · 6 m + 2 2 + 5 = = 2 · (3 m + 1) · (36 m 2 + 24 m + 4 + 5) = = 2 · (3 m + 1) · 3 · (12 m 2 + 8 m + 3) = = 6 · (3 m + 1) · (12 m 2 + 8 m + 3)

Выражение будет делиться на 6 , так как в записи имеется множитель 6 .

Таким же образом выполняется и для n = 6 · m + 3 , n = 6 · m + 4 и n = 6 · m + 5 . При подстановке придем к тому, что при любом целом значении m эти выражения будут делиться на 6 . Отсюда следует, что заданное выражение поделится на 6 при любом целом значении n .

Теперь рассмотрим на примере решения при помощи задействования метода математической индукции. Будет произведено решение по условию первого примера.

Пример 6

Доказать, что выражение вида 7 n - 12 n + 11 будет делиться на 6 , где примет любые целые значения выражения.

Решение

Данный пример решим по методу математической индукции. Алгоритм выполним строго пошагово.

Произведем проверку делимости выражения на 6 при n = 1 . Тогда получаем выражение вида 7 1 - 12 · 1 + 11 = 6 . Очевидно, что 6 поделится само на себя.

Возьмем n = k в исходном выражении. Когда оно будет делиться на 6 , тогда можно считать, что 7 k - 12 k + 11 будет делиться на 6 .

Перейдем к доказательству деления на 6 выражения вида 7 n - 12 n + 11 при n = k + 1 . Отсюда получим, что необходимо доказать делимость выражения 7 k + 1 - 12 · (k + 1) + 11 на 6 , причем следует учитывать то, что 7 k - 12 k + 11 делится на 6 . Преобразуем выражение и подучим, что

7 k + 1 - 12 · (k + 1) + 11 = 7 · 7 k - 12 k - 1 = = 7 · (7 k - 12 k + 11) + 72 k - 78 = = 7 · (7 k - 12 k + 11) + 6 · (12 k - 13)

Очевидно, что первое слагаемое будет делиться на 6 , потому как 7 k - 12 k + 11 делится на 6 . Второе слагаемое также делится на 6 , потому как один из множителей равен 6 . Отсюда делаем вывод, что все условия соблюдены, а значит, что вся сумма будет делиться на 6 .

Метод математической индукции доказывает, что заданное выражение вида 7 n - 12 n + 11 будет делиться на 6 , когда n примет значение любого натурального числа.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter