Радон — невидимый убийца.  Газ радон в помещениях

Литература


ВВЕДЕНИЕ

Везде и повсюду нас окружает атмосферный воздух. Из чего он состоит? Ответ не составляет труда: из 78,08 процента азота, 20,9 процента кислорода, 0,03 процента углекислого газа, 0,00005 процента водорода, около0,94 процента приходится на долю так называемых инертных газов. Последние были открыты всего лишь в конце прошлого столетия. Радон образуется при радиоактивном распаде радия и в ничтожных количествах встречается в содержащих уран материалах, а также в некоторых природных водах.

Актуальность исследований.По данным Международной комиссии по радиологической защите (МКРЗ), Научного комитета по действию атомной радиации (НКДАР) ООН наибольшая часть дозы облучения (около 80 % от общей), получаемой населением в обычных условиях, связана именно с природными источниками радиации. Более половины этой дозы обусловлено присутствием газа радона и его дочерних продуктов распада (ДПР) в воздухе зданий, в которых человек проводит более 70 % времени.

Радон - благородный инертный газ, приобретает в жизни человека все большее значение. К сожалению, преимущественно оно негативно – радон радиоактивен и потому опасен. А поскольку он непрерывно выделяется из почвы, то и распространен по всей земной коре, в подземной и поверхностной воде, в атмосфере, присутствует в каждом доме.

В цивилизованном обществе уже пришло сознание, что радоновая опасность является крупной и непростой комплексной проблемой, так как радиоэкологические процессы, вызываемые радоном, происходят на трех структурных уровнях материи: ядерном, атомно-молекулярном и макроскопическом. Поэтому решение ее подразделяется на задачи диагностики и технологии последующей нейтрализации воздействия радона на человека и биологические объекты.

В настоящее время после длительного отказа ведущих мировых держав от испытаний ядерного оружия риск получить значительную дозу облучения в сознании большинства людей связывается с действием атомных электростанций. Особенно после Чернобыльской катастрофы. Однако следует знать, что опасность облучения есть, даже если вы находитесь в собственном доме. Угрозу здесь представляет природный газ - радон и тяжелометаллические продукты его распада. Действие их человечество испытывает на себе на протяжении всего времени существования.

Цель работы: Исследование природы радона, его соединений, влияние на человека, а так же исследование источников поступления радона в здание и оценка эффективности применения в качестве радонозащитных покрытий различных материалов.

ОБЩИЕ СВЕДЕНИЯ О РАДОНЕ

Уже с ХVI века людям было известно о гибельных последствиях пребывания в некоторых местностях и зонах, но о самом газе никто еще и не догадывался. В поселках рудокопов в горах южной Германии женщины по нескольку раз шли под венец: мужей уносила загадочная быстротекущая болезнь – «горняцкая чахотка». Практиковавшие в тех местах врачи упоминали о существовании забоев, в которых при отсутствии должной вентиляции люди испытывали одышку и усиленное сердцебиение, часто теряли сознание и иногда погибали. При этом ни на вкус, ни на запах в воздухе не обнаруживалось каких-либо примесей. Поэтому и неудивительно, что тогда считали - людей губят потревоженные горные духи. И только великий Парацельс, работавший врачом в такой же местности, писал о необходимости очищения воздуха в рудниках: «Мы обязаны предотвращать соприкосновение организма с эманациями металлов, ибо, если организм поврежден ими единожды, излечения уже не может быть».

Окончательно с «горняцкой чахоткой» разобрались только в 1937 г., установив, что эта болезнь есть ни что иное, как одна из форм рака легких, вызываемая высокой концентрацией радона.

Радоновая проблема изучается с самых ранних этапов развития ядерной физики, но особенно серьезно и масштабно она стала выявляться после моратория на ядерные взрывы и благодаря рассекречиванию полигонов. При сравнении эффектов облучения оказалось, что в каждой квартире, в каждой комнате есть свои локальные ядерные радоновые «полигончики».

Изотопы радона сорбируются (поглощаются) твердыми веществами. Наиболее продуктивным в этом отношении является уголь, поэтому угольные шахты должны находиться под усиленным вниманием правительства. Это же относится ко всем отраслям промышленности, потребляющим данный вид топлива.

Сорбированные атомы радона очень мобильны и продвигаются от поверхности твердого вещества в глубинные слои. Это относится к органическим и неорганическим коллоидам, биологическим тканям, что существенно обостряет радоновую опасность. Сорбирующие свойства веществ существенно зависят от температуры ранее адсорбированных компонентов, влагонасыщенности и многих других параметров. Эти свойства желательно привлекать к разработке различных антирадоновых средств.

В Казахском национальном университете им. Аль-Фараби измерены высотные профили распределения радона по этажам зданий, в помещениях и на открытом воздухе. Известные закономерности подтвердились, но найдены и иные, которые экспериментально применяются для разработки антирадоновых технических средств. Установлено, что несколько раз в месяц содержание радона в приземной атмосфере может увеличиться во много раз. Эти «радоновые бури» сопровождаются резким увеличением радиоактивности в воздухе, не только способствуя развитию рака легких, но вызывая и функциональные нарушения у практически здоровых людей - примерно у 30% появляются одышка, учащенное сердцебиение, приступы мигрени, бессонница и т.д. Особую же опасность возмущения представляют для больных и пожилых людей, а также малышей.

Оказалось, что возникновение радоново-аэроионных бурь связано с физическими процессами, происходящими на Солнце, с появлением темных пятен на поверхности светила. Интересное предположение о возможном механизме, связывающем солнечную активность со значительным увеличением содержания радона, было сделано московским ученым А.Э. Шемьи-Заде. Проанализировав данные по радоновой активности атмосферы, полученные в Средней Азии, Прибалтике, Швеции и т.д., он выявил корреляцию уровня радоновой активности земной атмосферы с солнечными и геомагнитными процессами в различные годы и в разных регионах.

Концентрация радона в микропорах горных пород (обычных гранитах и базальтах) в миллионы раз выше, чем в приземной атмосфере и достигает 0,5-5,0 Бк/м3. Активность радона принято измерять в числе его распадов в 1 м3 - 1 Беккерель (Бк) соответствует одному распаду в секунду. Этот радон, как показали расчеты ученого, вследствие магнитострикционного сжатия-растяжения в высокочастотном поле геомагнитных возмущений «выжимается» из выходящих на поверхность микропор. Амплитуда магнитострикции, происходящей в постоянном по величине магнитном поле Земли, под действием малых геомагнитных возмущений пропорциональна содержанию магнетита в породе (обычно до 4 %), а частота определяется геомагнитными вариациями. Амплитуда магнитострикционного сжатия горных пород в поле геомагнитных возмущений очень мала, однако эффект вытеснения радона обусловлен во-первых высокой частотой возмущений, а во-вторых – высокой концентрацией газа. Оказывается, если в столбе атмосферного воздуха сечением в один километр «размешать» слой, выделенный из горных пород толщиной всего в один миллиметр, то концентрация радона в этом столбе возрастет в 10 раз.

ИСТОРИЯ ОТКРЫТИЯ

После открытия радия, когда ученые с большим увлечением познавали тайны радиоактивности, было установлено, что твердые вещества, находившиеся в близком соседстве с солями радия, становились радиоактивными. Однако спустя несколько дней радиоактивность этих веществ исчезла бесследно.

Радон открывали неоднократно, и в отличие от других подобных историй каждое новое открытие не опровергало, а лишь дополняло предыдущие. Дело в том, что никто из ученых не имел дела с элементом радоном - элементом в обычном для нас понимании этого слова. Одно из нынешних определений элемента - «совокупность атомов с общим числом протонов в ядре», т. е. разница, может быть лишь в числе нейтронов. По существу элемент - совокупность изотопов. Но в первые годы нашего века еще не были открыты протон и нейтрон, не существовало самого понятия об изотонии.

Изучая ионизацию воздуха радиоактивными веществами, супруги Кюри заметили, что различные тела, находящиеся вблизи радиоактивного источника, приобретают радиоактивные свойства, которые сохраняются не которое время после удаления радиоактивного препарата. Мария Кюри-Склодовская назвала это явление индуцированной активностью. Другие исследователи и, прежде всего Резерфорд, пытались в 1899/1900 гг. объяснить это явление тем, что радиоактивное тело образует некоторое радиоактивное истечение, или эманацию (от лат. emanare - истекать и emanatio - истечение), пропитывающие окружающие тела. Однако, как оказалось, это явление свойственно не только препаратам радия, но и препаратам тория и актиния, хотя период индуцированной активности в последних случаях меньше, чем в случае радия. Обнаружилось также, что эманация способна вызывать фосфоресценцию некоторых веществ, например осадка сернистого цинка. Менделеев описал этот опыт, продемонстрированный ему супругами Кюри, весной 1902 г.

Вскоре Резерфорду и Содди удалось доказать, что эманация - это газообразное вещество, которое подчиняется закону Бойля и при охлаждении переходит в жидкое состояние, а исследование ее химических свойств показало, что эманация представляет собой инертный газ с атомным весом 222 (установленным позднее). Название эманация (Emanation) предложено Резерфордом, обнаружившим, что ее образование из радия сопровождается выделением гелия. Позднее это название было изменено на "эманация радия (Radium Emanation - Rа Em)" с тем, чтобы отличать ее от эманаций тория и актиния, которые в дальнейшем оказались изотопами эманации радия. В 1911 г. Рамзай, определивший атомный вес эманации радия, дал ей новое название "нитон (Niton)" от лат. nitens (блестящий, светящийся); этим названием он, очевидно, желал подчеркнуть свойство газа вызывать фосфоресценцию некоторых веществ. Позже, однако, было принято более точное название радон (Radon) - производное от слова "радий". Эманации тория и актиния (изотопы радона) стали именовать тороном (Thoron) и актиноном (Actinon).

Прежде всего, что за годы, прошедшие со дня открытия радона, его основные константы почти не уточнялись и не пересматривались. Это свидетельство высокого экспериментального мастерства тех, кто определил их впервые. Лишь температуру кипения (или перехода в жидкое состояние из газообразного) уточнили. В современных справочниках она указана совершенно определенно - минус 62° С.

Еще надо добавить, что ушло в прошлое представление об абсолютной химической инертности радона, как, впрочем, и других тяжелых благородных газов. Еще до войны член-корреспондент Академии наук СССР Б.А. Никитин в ленинградском Радиевом институте получил и исследовал первые комплексные соединения радона - с водой, фенолом и некоторыми другими веществами. Уже из формул этих соединений: Rn 6H 2 O, Rn 2CH 3 С 6 H 5 , Rn 2С 6 Н 5 ОН - видно, что это так называемые соединения включения, что радон в них связан с молекулами воды или органического вещества лишь силами Ван-дер-Вальса. Позже, в 60-х годах, были получены и истинные соединения радона. По сложившимся к этому времени теоретическим представлениям о галогенидах благородных газов, достаточной химической стойкостью должны обладать соединения радона: RnF 2 , RnF 4 , RnCl 4 , RnF 6 .

Фториды радона были получены сразу же после первых фторидов ксенона, однако точно идентифицировать их не удалось. Скорее всего, полученное малолетучее вещество представляет собой смесь фторидов радона.

Радон, открытый Дорном, это самый долгоживущий изотоп элемента № 86. Образуется при α-распаде радия-226. Массовое число этого изотопа - 222, период полураспада - 3,82 суток. Существует в природе как одно из промежуточных звеньев в цепи распада урана-238.

Эманация тория (торон), открытая Резерфордом и Оуэнсом, член другого естественного радиоактивного семейства - семейства тория. Это изотоп с массовым числом 220 и периодом полураспада 54,5 секунды.

Актинон, открытый Дебьерном, тоже член радиоактивного семейства тория. Это третий природный изотоп радона и из природных - самый короткоживущий. Его период полураспада меньше четырех секунд (точнее 3,92 секунды), массовое число - 219.

Всего сейчас известно 19 изотопов радона с массовыми числами 204 и от 206 до 224. Искусственным путем получено 16 изотопов. Нейтронодефицитные изотопы с массовыми числами до 212 получают в реакциях глубокого расщепления ядер урана и тория высокоэнергичными протонами. Эти изотопы нужны для получения и исследования искусственного элемента астата. Эффективный метод разделения нейтронодефицитных изотопов радона разработали недавно в Объединенном институте ядерных исследований.

ФИЗИЧЕСКИЕ СВОЙСТВА РАДОНА

Благородные газы – бесцветные одноатомные газы без цвета и запаха.
Инертные газы обладают более высокой электропроводностью по сравнению с другими газами и при прохождении через них тока ярко светятся: гелий ярко-жёлтым светом, потому что в его сравнительно простом спектре двойная жёлтая линия преобладает над всеми другими; неон огненно красным светом, так как самые яркие его линии лежат в красной части спектра.
Насыщенный характер атомных молекул инертных газов сказывается и в том, что инертные газы имеют более низкие точки сжижения и замерзания, чем другие газы с тем же молекулярным весом.

Радон светится в темноте, без нагревания испускает тепло, со временем образует новые элементы: один из них - газообразный, другой - твердое вещество. Он в 110 раз тяжелее водорода, в 55 раз тяжелее гелия, в 7 с лишним раз тяжелее воздуха. Один литр этого газа весит почти 10 г (точнее 9,9 г).

Радон - бесцветный газ, химически совершенно инертный. Радон лучше других инертных газов растворяется в воде (в 100 объемах воды растворяется до 50 объемов радона). При охлаждении до минус 62°С радон сгущается в жидкость, которая в 7 раз тяжелее воды (удельный вес жидкого радона почти равен удельному весу цинка). При минус 71°С радон "замерзает". Количество радона, выделяемое солями радия, очень мало, и чтобы получить 1 л радона, нужно иметь более 500 кг радия, в то время как на всем земном шаре в 1950 г. его было получено не более 700 г.

Радон - радиоактивный элемент. Испуская α-лучи, он превращается в гелий и твердый, тоже радиоактивный элемента который является одним из промежуточных продуктов в цепи радиоактивных превращений радия.

Естественно было ожидать, что столь химически инертные вещества, как инертные газы, не должны влиять и на живые организмы. Но это не так. Вдыхание высших инертных газов (конечно в смеси с кислородом) приводит человека в состояние, сходное с опьянением алкоголем. Наркотическое действие инертных газов обуславливается растворением в нервных тканях. Чем выше атомный вес инертного газа, тем больше его растворимость и тем сильнее его наркотическое действие.

Ко времени открытия радона, типичного представителя благородных газов, существовало мнение, что элементы этой группы химически инертны и не способны образовывать истинные химические соединения. Известны были лишь клатраты, образование которых происходит за счет сил Ван-дер-Ваальса. К их числу относятся гидраты ксенона, криптона и аргона, которые получаются сжатием соответствующего газа над водой до давления, превышающего упругость диссоциации гидрата при данной температуре. Для получения аналогичных клатратов радона и обнаружения его по изменению упругости пара потребовалось бы практически недоступное количество этого элемента. Новый метод получения клатратных соединений благородных газов был предложен Б.А. Никитиным и состоял в изоморфном соосаждении молекулярного соединения радона с кристаллами специфического носителя. Изучая поведение радона при процессах соосаждения его с гидратами сернистого газа и сероводорода, Никитин показал, что существует гидрат радона, который изоморфно соосаждается с SO 2Ч6 H 2 O и H 2 S Ч6 H 2 O. Масса радона в этих опытах составляла 10-11 г. Аналогично получены клатратные соединения радона с рядом органических соединений, например с толуолом и фенолом.

Исследования химии радона возможны лишь с субмикроколичествами этого элемента при использовании в качестве специфических носителей соединений ксенона. Следует, однако, учитывать, что между ксеноном и радоном находится 32 элемента (наряду с 5d-, 6s- и 6р-происходит заполнение 4f-орбит), что определяет большую металличность радона по сравнению с ксеноном.

Первое истинное соединение радона -дифторид радона - было получено в 1962 г. вскоре после синтеза первых фторидов ксенона. RnF 2 образуется как при непосредственном взаимодействии газообразных радона и фтора при 400°С, так и при окислении его дифторидом криптона, ди- и тетрафторидами ксенона и некоторыми другими окислителями. Дифторид радона устойчив до 200° С и восстанавливается до элементарного радона водородом при 500°С и давлении H 2 , равном 20 МПа. Идентификация дифторида радона осуществлена путем изучения его сокристаллизации с фторидами и другими производными ксенона.

Ни с одним окислителей не получено соединение радона, где его степень окисления была бы выше +2. Причиной этого является большая устойчивость промежуточного продукта фторирования (RnF+X-) по сравнению с аналогичной формой ксенона. Это обусловлено большей ионностью связи в случае радонсодержащей частицы. Как показали дальнейшие исследования, преодолеть кинетический барьер реакций образования высших фторидов радона можно либо введением в реакционную систему дифторида никеля, обладающего наивысшей каталитической активностью в процессах фторирования ксенона, либо осуществлением реакции фторирования в присутствии бромида натрия. В последнем случае большая, чем у дифторида радона, фтордонорная способность фторида натрия позволяет конвертировать RnF+ в RnF 2 в результате реакции: RnF+SbF 6 + NaF = RnF2 + Na+SbF 6 . RnF 2 фторируется с образованием высших фторидов, при гидролизе которых образуются высшие оксиды радона. Подтверждением образования соединений радона в высших валентных состояниях является эффективная сокристаллизация ксенатов и радонатов бария.

Долгое время не находили условий, при которых благородные газы могли бы вступать в химическое взаимодействие. Они не образовывали истинных химических соединений. Иными словами их валентность равнялась нулю. На этом основании было решено новую группу химических элементов считать нулевой. Малая химическая активность благородных газов объясняется жёсткой восьмиэлектронной конфигурацией внешнего электронного слоя. Поляризуемость атомов растёт с увеличением числа электронных слоёв. Следовательно, она должна увеличиваться при переходе от гелия к радону. В этом же направлении должна увеличиваться и реакционная способность благородных газов.
Так, уже в 1924 году высказывалась идея, что некоторые соединения тяжелых инертных газов (в частности, фториды и хлориды ксенона) термодинамически вполне стабильны и могут существовать при обычных условиях. Через девять лет эту идею поддержали и развили известные теоретики - Полинг и Оддо. Изучение электронной структуры оболочек криптона и ксенона с позиций квантовой механики привело к заключению, что эти газы в состоянии образовывать устойчивые соединения с фтором. Нашлись и экспериментаторы, решившие проверить гипотезу, но шло время, ставились опыты, а фторид ксенона не получался. В результате почти все работы в этой области были прекращены, и мнение об абсолютной инертности благородных газов утвердилось окончательно.

Исторически первым и наиболее распространенным является радиометрический метод определения радона по радиоактивности продуктов его распада и сравнению ее с активностью эталона.

Изотоп 222Rn может быть определен и непосредственно по интенсивности собственного α-излучения. Удобным методом определения радона в воде является экстракция его толуолом с последующим измерением активности толуольного раствора с помощью жидкостного сцинтилляционного счетчика.

При концентрациях радона в воздухе значительно ниже предельно допустимых определение его целесообразно проводить после предварительного концентрирования путем химического связывания подходящими окислителями, например BrF 2 SbF 6 , O 2 SbF 6 и др.

ПОЛУЧЕНИЕ

Для получения радона через водный раствор любой соли радия продувают воздух, который уносит с собой образующийся при радиоактивном распаде радия радон. Далее воздух тщательно фильтруют для отделения микрокапель раствора, содержащего соль радия, которые могут быть захвачены током воздуха. Для получения собственно радона из смеси газов удаляют химически активные вещества (кислород, водород, водяные пары и т. Д.), остаток конденсируют жидким азотом, затем из конденсата отгоняют азот и другие инертные газы (аргон, неон и т.д).

Как указывалось ранее, источником получения естественного изотопа 222Rn является 226Ra. В равновесии с 1 г радия находится 0,6 мкл радона. Попытки выделения радона из неорганических солей радия показали, что даже при температуре, близкой к температуре плавления, радон из них полностью не извлекается. Высокой эманирующей способностью обладают соли органических кислот (пальмитиновой, стеариновой, капроновой), а также гидроксиды тяжелых металлов. Для приготовления высокоэманирующего источника соединение радия, как правило, соосаждается с бариевыми солями указанных органических кислот или гидроксидами железа и тория. Эффективным является также выделение радона из водных растворов солей радия. Обычно растворы радия оставляют на некоторое время в ампуле для накопления радона; через определенные промежутки времени радон откачивают. Выделение радона после очистки, как правило, осуществляется физическими методами, например, адсорбцией активированным углем с последующей десорбцией при 350°С.

Помимо физических методов улавливания радона (адсорбционные, криогенные и др.), эффективное выделение радона из газовой смеси может быть достигнуто путем превращения его под действием окислителей в нелетучую химическую форму. Так, радон практически количественно может быть поглощен солями состава ClF 2 SbF 6 , BrF 2 SbF 6 , O 2 SbF 6 и некоторыми жидкими фторогалидами в результате образования нелетучих солей состава RnF+X-, где X- - сложный анион.

Выделение искусственно получаемых изотопов радона, в основном 211Rn (Т = 14 ч), связано с отделением его от материала мишени - тория и сложной смеси продуктов реакций глубокого отщепления.

НАХОЖДЕНИЕ В ПРИРОДЕ

Радон в ничтожных количествах находится в растворенном состоянии в водах минеральных источников, озер и лечебных грязях. Он находится в воздухе, наполняющем пещеры, гроты, глубокие узкие долины. В атмосферном воздухе количество радона измеряется величинами порядка 5·10-18 % - 5·10-21 % по объему.

Входит в состав радиоактивных рядов 238 U, 235 U и 232 Th. Ядра радона постоянно возникают в природе при радиоактивном распаде материнских ядер. Равновесное содержание в земной коре 7·10 −16 % по массе. Ввиду химической инертности радон относительно легко покидает кристаллическую решётку «родительского» минерала и попадает в подземные воды, природные газы и воздух. Поскольку наиболее долгоживущим из четырёх природных изотопов радона является 222 Rn, именно его содержание в этих средах максимально.

Концентрация радона в воздухе зависит в первую очередь от геологической обстановки (так, граниты, в которых много урана, являются активными источниками радона, в то же время над поверхностью морей радона мало), а также от погоды (во время дождя микротрещины, по которым радон поступает из почвы, заполняются водой; снежный покров также препятствует доступу радона в воздух).

ПРИМЕНЕНИЕ РАДОНА

Справедливости ради нельзя не отметить и некоторые лечебные свойства радона, связанные с применением так называемых радоновых ванн. Они оказываются полезными при лечении ряда хронических заболеваний: язвенной болезни двенадцатиперстной кишки и желудка, ревматизма, остеохондроза, бронхиальной астмы, экзем и др. Радонотерапия может заменить плохо переносимые лекарства. В отличие от сероводородных, углекислых, грязевых ванн, радоновые переносятся гораздо легче. Но подобные процедуры должны проводиться под строгим контролем специалистов, так как лечебные дозы газа в радоновых ваннах значительно ниже предельно допустимых норм. В этом случае польза и вред радона конкурируют друг с другом. Так, специалисты подсчитали, что отрицательный эффект при приеме сеанса из 15 радоновых ванн по 15 минут каждая равносилен выкуриванию 6 сигарет (считается, что одна сигарета может сократить срок жизни на 15 минут). Поэтому возможный вред от радоновых ванн считается несущественным при лечении заболеваний.

При определении дозы радиации вредной для здоровья человека существуют две концепции. Первая исходит из представления о том, что есть некая пороговая доза, ниже которой радиация не только безвредна, но даже полезна для организма. Эта теория возникла, очевидно, по аналогии с представлением о малых дозах ядов, помогающих лечить ряд болезней, или малых доз алкоголя, улучшающих самочувствие человека. Однако если малые дозы ядов или алкоголя попросту активизируют отдельные клетки организма, то даже незначительные дозы излучения попросту уничтожают их. Поэтому авторы придерживаются другой, беспороговой концепции. Согласно ей вероятность заболевания раком прямо пропорциональна полученной в течение жизни дозы радиации. А значит не существует никакой минимальной дозы, ниже которой радиация была бы безвредной.

Радон используется в сельском хозяйстве для активации кормов домашних животных, в металлургии в качестве индикатора при определении скорости газовых потоков в доменных печах, газопроводах. В геологии измерение содержания радона в воздухе и воде применяется для поиска месторождений урана и тория, в гидрологии - для исследования взаимодействия грунтовых и речных вод.

Радон находит широкое применение для исследования твердофазных превращений. Основой этих исследований является эманационный метод, позволяющий изучать зависимость скорости выделения радона от физических и химических превращений, происходящих при нагревании твердых веществ, содержащих радий.

Радон применяется также при изучении диффузии и явлений переноса в твердых телах, при исследовании скорости движения и обнаружения утечек газов в трубопроводах.

Во всем мире прилагаются громадные усилия для решения проблемы прогноза землетрясений, но тем не менее мы часто оказываемся бессильны перед неожиданным натиском стихии земных недр. Поэтому не прекращаются поиски новых предвестников сейсмических событий. Исследования последних лет привели к идее прогноза сейсмических событий на основе изучения процесса выделений (эксгаляции) газа радона из массива горных пород. Анализ этих данных возвращает нас к старой теории упругой отдачи Джильберта-Рейда (1911 год), согласно которой накопление энергии в массиве горных пород перед землетрясением и сброс этой энергии в процессе землетрясения происходят в областях, где эти породы испытывают упругую деформацию.

Способ прогноза землетрясений, заключающийся в проведении режимных наблюдений изменения концентрации радона в массиве горных пород, отличается тем, что производят бурение специальных наблюдательных скважин, глубина которых менее глубины уровня грунтовых вод и в каждой из этих скважин непрерывно регистрируют динамику выделения радона из массива горных пород и суммарное количество сейсмической энергии, поступившей в каждую наблюдательную скважину. И по серии наблюдений во времени выделяют зоны с последовательным уменьшением или увеличением выделения радона с учетом поступившей сейсмической энергии, указанные зоны наносят на карту исследуемого района и по площади зоны динамического уменьшения выделения радона судят о положении эпицентра и магнитуде ожидаемого землетрясения, а по динамике уменьшения и/или увеличения выделения радона в наблюдательных скважинах судят о времени ожидаемого сейсмического события.

РАДОН В УРАЛЬСКОМ РЕГИОНЕ

Практически самая высокая в России загрязненность воздуха связана не только с тем, что на Урале со времен заводчиков Демидовых сосредоточены крупнейшие промышленные предприятия страны. Почва и старые Уральские горы изобилуют разломами, которые излучают радон, проникающий в наши дома. По количеству точек, где это происходит, Свердловская область находится на втором месте в стране.

Но когда же так громко заговорили о проблеме радона у нас на Урале? В конце 80-х, когда появился первый меодический документ по контролю радона в жилищах. Затем вышло постановление екатеринбургской мерии о том, что во всем сдаваемом жилье должны проводиться измерения радона. А в 94 году начала реализовываться Федеральная целевая программа «Радон». В ней была и региональная часть, которая, в частности, касалась Свердловсой области.

Ранее финансирование ее, в частности из экологического Фонда, шло активнее, да и качественных измерений было больше. Институт промышленной экологии УрО РАН участвовал в этой программе и проводил в год несколько сот измерений. В итоге сейчас имеются материалы о проведении измерений более чем в трех тысячах жилищ Свердловской области.

На фоне карты Уральского региона достаточное количество населенных пунктов находится в местах с относительно высоким уровнем радоновой опасности. Грубо говоря территории Свердловской области разделили на 2 части. В первой уровень радоновой опасности относительно выше чем во второй, а в другой относительно ниже чем в первой. Доверять можно лишь реальным измерениям.

По данным полученным институтом промышленной экологии УрО РАН, высоким уровнем облучения радоном подвергается 50 тысяч человек.

В 1,1 процент жилищ Свердловской области объемная активность радона превышает гигиенический норматив для существующих зданий. Один процент соответствует, примерно 20 тысячам жилищ в Свердловской области.

ПУТИ РЕШЕНИЯ РАДОНОВОЙ ПРОБЛЕМЫ

В настоящее время остаётся актуальной проблема облучения людей радиоактивным газом радоном. Ещё в XVI веке отмечена большая смертность горняков Чехии, Германии. В 50 – е годы ХХ века появились объяснения этому факту. Было доказано, что радиоактивный газ радон, присутствующий в шахтах урановых рудников, оказывает губительное действие на организм человека. Интересно проследить, как изменилось отношение к проблеме влияния радона в наши дни.

Анализ научно – популярных изданий показывает долю внутреннего облучения от различных источников радиации.

Таблица 1

Из таблицы следует, что 66% внутреннего облучения определяется земными радионуклидами. Согласно оценкам учёных радон и его дочерние продукты распада обеспечивают примерно ¾ годовой эффективной дозы облучения, которую получает население от земных источников радиации.

По оценкам учёных радон – 222 с точки зрения вклада в суммарную дозу облучения в 20 раз мощнее других изотопов. Этот изотоп изучается больше других и называется просто радоном. Основными источниками радона являются почва и строительные материалы.

Все строительные материалы, почва, земная кора содержат радионуклиды радия – 226 и тория – 232. В результате распада этих изотопов возникает радиоактивный газ – радон. Кроме этого при α – распадах образуются ядра, находящиеся в возбуждённом состоянии, которые переходя в основное состояние испускают γ – кванты. Эти γ – кванты формируют радиоактивный фон помещений, в которых мы находимся. Интересен тот факт, что радон, являясь инертным газом, не образует аэрозолей, т.е. не присоединяется к пылинкам, тяжёлым ионам и т.д. Из – за химической инертности и большого периода полураспада радон – 222 может мигрировать по трещинам, порам почвы и породы на большие расстояния, причём длительно (около 10 дней).

Долго вопрос о биологическом влиянии радона оставался открытым. Оказалось, что при распаде все три изотопа радона образуют дочерние продукты распада (ДПР). Они являются химически активными. Большая часть ДПР, присоединяя электроны, становятся ионами, легко присоединяются к аэрозолям воздуха, становясь его составной частью. Принцип регистрации радона в воздухе основан на регистрации ионов ДПР. Попадая в дыхательные пути ДПР радона, вызывают радиационные повреждения лёгких и бронхов.

Какими путями радон появляется в воздухе. Проанализировав данные можно выделить следующие источники атмосферного радона:

Таблица 2

Радон освобождается из почвы и воды повсюду, однако в разных точках земного шара его концентрация в наружном воздухе различна. Средний уровень концентрации радона в воздухе примерно равен 2 Бк/м 3 .

Оказалось, что основную часть дозы обусловленную радоном человек получает находясь в закрытом, непроветренном помещении. В зонах с умеренным климатом концентрация радона в закрытом помещении примерно в 8 раз выше, чем в наружном воздухе. Поэтому нам было интересно узнать, что является основным источником радона в доме. Анализ данных печати приведён в таблице:

Таблица 3

Из приведённых данных следует, что объёмная активность радона в воздухе помещений формируется в основном из почвы. Концентрация радона в почве определяется содержанием в ней радионуклидов радия-226, тория-228, строением почвы и влажностью. Строение и структура земной коры определяет диффузионные процессы атомов радона, их миграционную способность. Миграция атомов радона увеличивается с увеличением влажности почвы. Эмиссия радона из почвы имеет сезонный характер.

Повышение температуры вызывает расширение пор в почве, а следовательно, увеличивает выделение радона. Кроме того, повышение температуры усиливает испарение воды, с которой в окружающее пространство выносится радиоактивный газ радон. Повышение атмосферного давления способствует проникновению воздуха вглубь почвы, концентрация радона при этом падает. Напротив, при понижении внешнего давления богатый радоном грунтовый газ устремляется к поверхности и концентрация радона в атмосфере увеличивается.

Важным фактором, уменьшающим поступление радона в помещение, является выбор территории для строительства. Кроме почвы и воздуха источником радона в доме являются строительные материалы. Испарение радона из гранул микрочастиц породы или стройматериала называется эксхаляцией. Эксхаляция радона из строительных материалов зависит от содержания в них радия, плотности, пористости материала, параметрами помещения, толщины стен, вентиляции помещений. Объёмная активность радона в воздухе помещения всегда выше, чем в атмосферном воздухе. Для характеристики строительных материалов вводится понятие длины диффузии радона в веществе.

Из стены выходят только те атомы радона, которые находятся в порах материала на глубине не большей, чем длина диффузии. На схеме представлены пути проникновения в помещение:

·Через щели в монолитных полах;

·Через монтажные соединения;

·Через трещины в стенах;

·Через промежутки вокруг труб;

·Через полости стен.

По оценкам исследований скорость поступления радона в одноэтажный дом составляет 20 Бк/м 3 час, при этом вклад бетона и других стройматериалов в эту дозу составляет всего 2 Бк/м 3 час. Содержание радиоактивного газа радона в воздухе помещений определяется содержанием в стройматериалах радия и тория. Применение в производстве стройматериалов с использованием безотходных технологий сказывается на объёмной активности радона в помещении. Использование кальций – силикатных шлаков, полученных при переработке фосфатных руд, пустых пород из отвалов обогатительных фабрик уменьшает загрязнение окружающей среды, удешевляет производство стройматериалов, человека радоном. Особенно высокой удельной активностью обладают блоки из фосфогинса, квасцовых глинистых сланцев. С 1980 г. производство такого газобетона прекращено из – за высокой концентрации радия и тория.

При оценках радонового риска всегда надо помнить, что вклад собственно радона в облучение относительно невелик. При радиоактивном равновесии между радоном и его дочерних продуктов распада(ДПР) этот вклад не превышает 2%. Поэтому доза облучения легких от ДПР радона определяется величиной, эквивалентной равновесной объемной активности (ЭРОА) радона:

С Rn экв = n Rn F Rn = 0,1046n RaA + 0,5161n RaB + 0,3793n RaC ,

где n Rn , n RaA , n RaB , n RaC – объемные активности радона и его ДПР Бк/м 3 , соответственно; F Rn –коэффициент равновесия, который определяется как отношение эквивалентной равновесной объемной активности радона в воздухе к реальной объемной активности радона. На практике всегда F Rn < 1 (0,4–0,5).

Нормативы ЭРОА радона в воздухе жилых зданий,Бк/м:

Ещё одним источником радона в помещениях является природный газ. При сгорании газа радон накапливается в кухне, котельных, прачечных и распространяются по зданию. Поэтому очень важно в местах сгорания природного газа иметь вытяжные шкафы.

В связи с наблюдаемым сегодня в мире строительным бумом опасность радонового заражения необходимо учитывать при выборе и строительных материалов, и мест постройки домов.

Оказывается, что глинозем, применявшийся десятилетиями в Швеции, кальций-силикатный шлак и фосфоргипс, широко использовавшиеся при изготовлении цемента, штукатурки, строительных блоков, также обладают высокой радиоактивностью. Однако основным источником радона в помещениях являются не строительные материалы, а грунт под самим домом, даже если этот грунт содержит вполне приемлемую активность радия - 30-40 Бк/м3. Наши дома построены как бы на губке, пропитанной радоном! Расчеты показывают, что если в обычной комнате объемом 50 м3, присутствует всего 0,5 м3 почвенного воздуха, то активность радона в ней составляет 300-400 Бк/м3. То есть дома представляют собой коробки, улавливающие радон, «выдыхаемый» землей.

Можно привести следующие данные содержания свободного радона в различных горных породах

При строительстве новых зданий предусматриваются (должны предусматриваться.) выполнение радонозащитных мероприятий; ответственность за проведение таких мероприятий, а также за оценку доз от природных источников и осуществление мероприятий по их снижению, Федеральным законом “О радиационной безопасности населения” N3-Ф3 от 9.01.96г. и разработанными на его основе Нормами радиационной безопасности НРБ-96 от 10.04.96г, возлагается на администрацию территорий . Основные направления (мероприятия) Региональных и Федеральных программ “Радон” 1996-2000 гг. следующие:

· Радиационно-гигиеническое обследование населения и народно-хозяйственных объектов;

· Радиоэкологическое сопровождение строительства зданий и сооружений.

· Разработка и реализация мероприятий по снижению облучения населения.

· Оценка состояния здоровья и осуществление профилактических медицинских мероприятий для групп радиационного риска.

· Приборно-методическое и метрологическое обеспечение работ.

· Информационное обеспечение.

· Решение этих проблем требует значительных финансовых затрат.


ЗАКЛЮЧЕНИЕ

В проблеме радона остается много нерешенных вопросов. С одной стороны, они имеют чисто научный интерес, а с другой – без их решения сложно проводить какие-либо практические работы, например в рамках Федеральной программы «Радон».

Кратко эти проблемы можно сформулировать в следующем виде.

1. Модели радиационных рисков при облучении радоном получены на основе анализа данных по облучению шахтеров. До сих пор неясно, насколько справедлив перенос этой модели риска на облучение в жилищах.

2. Достаточно неоднозначна проблема определения эффективных доз облучения при воздействии ДПР радона и торона. Для корректного перехода от ЭРОА радона или торона к эффективной дозе необходимо принимать во внимание такие факторы, как доля свободных атомов и распределение активности по размерам аэрозолей. Публикуемые в настоящее время оценки связи иногда различаются в насколько раз.

3. До сих пор не существует надежной формализованной математической модели, описывающей процессы накопления радона, торона и их ДПР в атмосфере помещений с учетом всех путей поступления, параметров строительных материалов, покрытий и т.п.

4. Существуют проблемы, связанные с уточнением региональных особенностей формирования доз облучения от радона и его ДПР


1. Андруз, Дж. Введение в химию окружающей среды. Пер. с англ. – М: Мир, 1999. – 271 с.: ил.

2. Ахметов, Н.С. Общая и неорганическая химия. Учеб. для вузов / Н.С. Ахметов. – 7-е изд., стер. – М.: Высш.шк., 2008. – 743 с., ил.

3. Буторина, М.В. Инженерная экология и менеджмент: Учебник / М.В. Буторина и др.: под ред. Н.И. Иванова, И.М. Фадина.- М.: Логос, 2003. – 528 с.:ил.

4. Девакеев Р, Инертные газы: история открытия, свойства, применение. [Электронный ресурс] / Р. Девакеев. – 2006. – Режим доступа: www.ref.uz/download.php?id=15623

5. Колосов, А.Е. Радон 222,его влияние на человека. [Электронный ресурс] / А.Е. Колосов. Московская средняя школа имени Ивана Ярыгина, 2007. – Режим доступа: ef-concurs.dya.ru/2007-2008/docs/03002.doc

6. Короновский Н.В., Абрамов В.А. Землетрясения: Причины, последствия, прогноз // Соросовский Образовательный Журнал. 1998. № 12. С. 71-78.

7. Коттон, Ф. Современная неорганическая химия, 2 часть. Пер. с англ. / Ф.Коттон, Дж. Уилкинсон: под ред. К.В. Астахова.- М.: Мир, 1969. –495 с.:ил.

8. Нефёдов, В.Д. Радиохимия. [Электронный ресурс] / В.Д. Нефёдов и др. – М: Высшая школа,1985. – Режим доступа: http://www.library.ospu.odessa.ua/online/books/RadioChimie/Predislov.html

9. Николайкин, Н.И. Экология: учебник дл вузов [Тест]/Н.И. Николайкин.- М.: Дрофа, 2005.- с.421-422

10. Уткин, В.И. Газовое дыхание Земли / В.И. Уткин // Соросовский Образовательный Журнал. - 1997. - № 1. С. 57–64.

11. Уткин, В.И. Радон и проблема тектонических землятрясений [Электронный ресурс] / В.И. Уткин Уральский государственный профессионально-педагогический университет, 2000. – Режим доступа: http://www.pereplet.ru/obrazovanie/stsoros/1133.html

12. Уткин, В.И. Радоновая проблема в экологии [Электронный ресурс] / В.И. Уткин Уральский государственный профессионально-педагогический университет, 2000. – Режим доступа: http://209.85.129.132/search?q=cache:zprKCPOwKBcJ:www.pereplet.ru/nauka/Soros/pdf

13. Хуторянский, Я, Радоновый портрет: версия уральских экологов/ Я. Хуторянский // Стройкомплекс среднего Урала. -2003. -№1. С 52-55.

Радиоактивные элементы естественного и техногенного происхождения окружают человека повсюду.

Попадая в организм они оказывают губительное воздействие на клетки.

Из природных наиболее опасных в этом плане считается радиоактивный газ радон, который образуется повсеместно при распаде радиоактивных элементов радия и урана, тория и актиния, а также и других.

Допустимая доза радона для человека в 10 раз меньше допустимой дозы бета и гамма- излучений.

Всего через 1 час после внутривенного введения даже небольшой дозы радона в 10 микрокюри в кровь экспериментального кролика, у него резко сокращается количество лейкоцитов в крови и затем начинают поражаться лимфатические узлы и кроветворные органы, селезенка, костный мозг.


Радон в природе

Радон - это газ, не имеющий цвета и запаха, ядовит и радиоактивен. Радон легко растворяется в жидкости (воде) и жировых тканях живых организмов.

Радон довольно тяжел, он в 7,5 раз тяжелее веса воздуха, поэтому он "обитает" в толще земных пород и понемногу выделяется в атмосферный воздух в смеси с увлекающими его на поверхность потоками других, более легких газов, таких как водород, углекислый газ, метан, азот и др.

Из-за своей химической инертности радон может длительно мигрировать по трещинам, порам почвы и трещинам пород на большие расстояния, пока не попадёт в наш дом .

Концентрация радона в воздухе во многом зависит от геологической обстановки местности, например, граниты, содержащие много урана, являются активными источниками радона, а в то же время над поверхностью морей и океанов концентрация радона мало.

Концентрация зависит также от погоды и времени года - во время дождя микротрещины, по которым радон поступает из почвы, заполняются водой, снежный покров также препятствует доступу радона в воздух). Замечено, что перед землетрясениями концентрация радона в воздухе повышается, вероятно, из-за более активного обмена воздуха в грунте при росте микросейсмической активности.

В природе радона очень мало, это один из наименее распространенных на планете химических элементов. Наука содержание радона в атмосфере оценивает в 7 10–17% по весу. Но и в земной коре его очень мало – он образуется в основном из уникального сверхредкого радия. Тем не менее эти немногочисленные атомы радона очень заметны с помощью специальных измерительных приборов.


Радон в жилом доме

Основные составляющие радиационного фона жилого помещения в большой степени зависят от человека. В наш дом радон попадает из почвы участка, на котором стоит дом, через стены, фундамент здания, с водопроводной водой, а затем оседает и концентрируется на нижних этажах, подвальных помещениях и поднимается с воздушными потоками на верхние этажи здания.


Большое значение при защите зданий от радона имеют, как конструктивных решения зданий, так и качество строительных материалов, применённые системы вентиляции, используемый зимний кладочный раствор . Строительные материалы в разной степени, в зависимости от их качества, так же содержат дозу радиоактивных элементов.

Большую опасность может представлять поступление газа радона с водными парами при пользовании саун, душей, ванн, парных. Радон содержится также и в природном газе, поэтому при использовании газовых плит на кухне рекомендуется установить вытяжку для защиты от накопления и концентрирования радона.

Согласно Федерального Закон РФ "О радиационной безопасности населения" и норм радиационной безопасности, при проектировании любых здания среднегодовая активность изотопов радона в воздухе помещений не должна превышать норм в противном случае возникает вопрос о разработке и проведении защитных мероприятий, а иногда и о сносе или перепрофилировании здания.

Чтобы самостоятельно обезопасить свой дом от этого вредного радиоактивного газа, необходимо тщательно заделать щели и трещины в стенах и полах, поклеить обои, герметизировать подвальные помещения, а так же чаще проветривать помещение - концентрация газа радона в не проветренном помещении может быть в 8 раз больше.

В настоящее время многие страны проводят экологический мониторинг концентрации газа радона в зданиях. Установлено, что в районах геологических разломов коры концентрации радона в помещениях могут быть огромные и существенно превышать средние показатели по остальным регионам.


Влияние на живые организмы

Ученые установили, что газ радон даёт наибольший вклад в радиоактивное облучение человека - более 50% общей дозы радиации, получаемой человеком от природных и техногенных радионуклидов.

Основная часть облучения человека происходит от продуктов распада газа радона - изотопов свинца, висмута и полония. Продукты этого распада попадая в легкие человека вместе с воздухом, задерживаются в них, а распадаясь, выделяют альфа-частицы, которые поражают клетки эпителия.

Такой распад ядер радона в легочной ткани вызывает "микроожоги", а повышенная концентрация радона в воздухе может привести к раку лёгких. Дополнительно альфа-частицы вызывают необратимые повреждения в хромосомах клеток костного мозга человека, а это увеличивает риск вероятности развития лейкозов. Наиболее уязвимыми для газа радона являются половые, кроветворные и иммунные клетки.

Все частицы ионизирующей радиации способны повреждать наследственный код человека, никак себя не проявляя до тех пор, пока клетка не начнёт делиться. Тогда речь уже может идти и о мутациях клеток, приводящих к сбоям в жизнедеятельности организма человека.

Очень опасно сочетание воздействия двух ядов - радона и курения. Установлено, что радон является вторым по частоте после курения фактором, вызывающим рак лёгких . В свою очередь рак лёгких, который вызван радоновым облучением, в мире является шестой по частоте из причиной смерти от рака.

Не столько сам газ радон задерживается в организме, а сколько радиоактивные продукты его распада. Исследователи, работавшие с твердым радоном, подчеркивают непрозрачность этого вещества. А причина непрозрачности одна: моментальное оседание твердых продуктов распада.

Эти продукты "выдают" весь комплекс излучений:

Альфа-лучи – малопроникающие, но очень энергичные;

Бета-лучи;

Жесткое гамма-излучение.


Польза радона

Радон используют в медицинской практике для приготовления радоновых ванн, издавна занимающих заметное место в арсенале курортов и физиотерапии. Известно, что растворенный в ультрадозах в воде радон оказывает положительное воздействие, как на центральную нервную систему, так и на многие другие функции организма.

Однако роль самого радона-222 здесь минимальна, т.к. он испускает лишь альфа-частицы, основная масса которых задерживается водой и не попадает на кожу. Но вот активный налет продуктов распада газа радона продолжает действовать на организм и после прекращения процедуры. Считается, что радоновые ванны - это эффективное средство лечения многих заболеваний (сердечно-сосудистых, кожных, заболеваний нервной системы).

Радоновую воду также прописывают внутрь для воздействия на органы пищеварения. Эффективными считаются и радоновые грязи, вдыхание обогащенного радоном воздуха.

Но нужно учитывать , что как всякое сильнодействующее средство, радоновые процедуры требуют постоянного контроля врача и очень точной дозировки. Нужно знать, что при некоторых заболеваниях человека радонотерапия абсолютно противопоказана.

Медицина использует для процедур как природные родоновые воды, так и искусственно приготовленные. В медицине радон получают из радия, которого клинике вполне достаточно всего несколько миллиграммов, чтобы в течение очень длительного периода ежедневно подготавливать десятки радоновых ванн.

Зоологами радон используется в сельскохозяйственном производстве для активации кормов домашних животных.

В металлургической промышленности радон применяется в качестве индикатора при определении скорости газовых потоков в доменных печах, газопроводах.

Геологам радон помогает найти залежи урана и тория, гидрологам - помогает исследовать взаимодействия между грунтовыми и поверхностными водами. Изменение концентрации газа радона в подземных водах применяется для прогноза землетрясений и извержений вулканов сейсмологами .

Про радон можно справедливо сказать: самый тяжелый, самый дорогой, самый редкий, но и самый опасный для человека газ из всех существующих газов на Земле. Поэтому при эффективных и своевременных мерах защиты жилого здания от его непрошенного проникновения, радон можно заставить с пользой служить людям.


Обсуждение (комментариев 0) :

Срубами на Руси назывались деревянные сооружения, стены которых собирались из обработанных брёвен. Так строились избы, храмы, башни деревянных кремлей и другие сооружения деревянного зодчества. Строится дом-сруб и различные ограждения из дерева для террасы из брёвен хвойных и лиственных пород. Такая древесина должна быть сухой, без гнили, трещин, грибка и не заражёна жуком-древоедом.

Прошли времена, когда в СССР гражданам выделялись участки земли от 4 до 6 соток под огороды, на которых разрешалось строить одноэтажный домик размером не более 3 на 5 метров - своеобразный хозблок дачный для хранения садового инвентаря и другой дачной утвари круглогодично. Зато ещё тогда ко многим огородным участкам подводилось электричество, а водоснабжение на огородах обеспечивалось подведением труб с водой или рытьём колодцев.

Газ - одно из агрегатных состояний вещества. Газы присутствуют не только в воздухе на Земле, но и в космосе. Они ассоциируются с легкостью, невесомостью, летучестью. Самым легким является водород. А какой газ самый тяжелый? Давайте выясним это.

Самые тяжелые газы

Слово «газ» происходит от древнегреческого слова «хаос». Его частицы подвижны и слабо связаны друг с другом. Они движутся хаотично, заполняя собой все доступное им пространство. Газ может быть простым элементом и состоять из атомов одного вещества, а может быть соединением нескольких.

Самым простым тяжелым газом (в условиях комнатной температуры) является радон, его молярная масса 222 г/моль. Он радиоактивен и абсолютно бесцветен. После него наиболее тяжелым считается ксенон, атомная масса которого составляет 131 г/моль. Остальные тяжелые газы представляют собой соединения.

Среди неорганических соединений самым тяжелым газом при температуре +20 о С является фторид вольфрама (VI). Его молярная масса составляет 297,84 г/моль, а плотность - 12,9 г/л. В нормальных условиях он представляет собой бесцветный газ, на влажном воздухе он дымится и синеет. Гексафторид вольфрама очень активен, он легко превращается в жидкость при охлаждении.

Радон

Открытие газа произошло в период исследований по изучению радиоактивности. В ходе распада некоторых элементов ученые неоднократно отмечали некоторое вещество, испускаемое вместе с другими частицами. Э. Резерфорд назвал его эманацией.

Так была обнаружена эманация тория - торон, радия - радон, актиния - актинон. Позже было установлено, что все эти эманации являются изотопами одного и того же элемента - инертного газа. Роберт Грей и Уильям Рамзай впервые выделили его в чистом виде и провели измерения его свойств.

В периодической таблице Менделеева радон является элементом 18-й группы с атомным номером 86. Он расположен между астатом и францием. В нормальных условиях вещество является газом, не имеет вкуса, запаха и цвета.

Газ в 7,5 раз плотнее воздуха. Он растворяется в воде лучше, чем другие благородные газы. В растворителях этот показатель ещё больше увеличивается. Из всех инертных газов он является наиболее активным, легко взаимодействуя с фтором и кислородом.

Радиоактивный газ радон

Одно из свойств элемента - радиоактивность. Элемент имеет около тридцати изотопов: четыре естественные, остальные - искусственные. Все они нестабильны и подвержены радиоактивному распаду. радона, точнее, его наиболее стабильного изотопа, составляет 3,8 сут.

Из-за высокой радиоактивности газ обладает флуоресценцией. В газообразном и жидком состоянии вещество подсвечивается голубым цветом. Твердый радон изменяет свою палитру от жёлтого до красного при охлаждении до температуры азота - около -160 о С.

Радон может быть очень токсичным для человека. В результате его распада образуются тяжелые нелетучие продукты, например, полоний, свинец, висмут. Они крайне плохо выводятся из организма. Оседая и накапливаясь, эти вещества отравляют организм. После курения радон является второй наиболее распространенной причиной возникновения рака легких.

Местонахождение и применение радона

Самый тяжелый газ является одним из редчайших элементов земной коры. В природе радон входит в состав руд с содержанием урана-238, тория-232, урана-235. При их распаде он высвобождается, попадая в гидросферу и атмосферу Земли.

Радон накапливается в речных и морских водах, в растениях и почве, в строительных материалах. В атмосфере его содержание увеличивается при активности вулканов и землетрясениях, при добыче фосфатов и работе геотермальных энергетических станций.

При помощи этого газа находят тектонические разломы, месторождения тория и урана. Его используют в сельском хозяйстве для активации кормов домашних животных. Радон применяют в металлургии, при изучении грунтовых вод в гидрологии, в медицине популярны радоновые ванны.

В продаже имеются различные модели бытовых дозиметров предназначенных для контроля над общим радиационным фоном в квартирах и частных домах. Но измерить радоновый фон им не получится, понадобится специальный радоновый радиометр и специалист, прошедший обучение работе с этим прибором, обработке и анализам полученных данных. Первенство в открытии химического элемента (1899 г.) принадлежит Эрнесту Резерфорду, хотя некоторые источники склонны признавать первооткрывателем немецкого химика Фридриха Дорна.

Что такое радон

Такое название получили радиоактивные одноатомные тяжёлые бесцветные газы, не имеющие запаха и вкуса. Химическая инертность элемента позволяет ему легко покидать кристаллические решётки природных минералов (того же гранита) и с восходящими воздушными потоками оседать в подземных водах, воздухе и природной газовой среде.

Газ свободно просачивается сквозь полиэтиленовые плёнки, но легко адсорбируется применением активированного угля и силикагелем. Они повсеместно распространены в природных условиях, хорошо растворяются в водных растворах и тяжелее воздуха почти в 7,5 раз. В жировых человеческих тканях и растворителях органического происхождения газ распространяется в 10-ки раз лучше, чем в водной среде.

Образование газа радон происходит при радиоактивном распаде урана в естественных условиях, что обуславливает его высокую концентрацию в скальных породах и грунтовых почвах, содержащих производные урана. Также происходит выделение газа из отходов горно-обогатительной переработки и в угольных шахтах.

На открытой местности концентрация газа чрезвычайно низка, но внутри закрытых помещений он обладает способностью к постепенному накапливанию. Радон в доме накапливается в почвах под зданием, поступает из строительных материалов, бытового газа и водных источников.

Нормы радиационной безопасности населения регламентируются Федеральным Законом РФ и прописаны в строительных нормах и правилах, но в большинстве проектов инженерных сооружений, включая жилые, об допустимых нормах только упоминается. Контроль соблюдения явно не достаточен. Хотя при превышении среднегодовой концентрации в воздухе внутри помещений радоновых изотопов необходимо предусматривать защитные мероприятия, а иногда и снос или перепрофилирование назначения зданий. Безопасной для человека считается плотность радонового потока на поверхности грунтового основания многоэтажного здания ≤ 80-ти мБк/м2, а для малоэтажных частных жилых построек в два раза меньше.

Влияние радона на организм человека

Вредность естественной радиоактивности воздушной среды на человеческий организм отмечалось уже в 16-ом столетии. Медики зафиксировали таинственную “горную болезнь”, от которой в немецких и чешских шахтах умирало в 50-ти раз больше рудокопов, чем прочих жителей этих районов. Современными учёными было зафиксировано, что причиной послужила высокая концентрация в шахтах радона.

Влияние на человека радона обусловлено его естественным распадом с образованием продуктов радиоактивного распада. При вдыхании человеком этих продуктов и попадании их в лёгкие, а также со слюной в пищеварительный тракт и желудок, происходит их дальнейший распад. В результате внутри тканей возникают микроожоги и клетки внутренних органов подвергаются бомбардировке α- и β-частицами. При этом происходит постепенное разрушение клеток и тканей, что способствует возникновению заболеваний онкологического характера.

Риск возникновения раковых опухолей возрастает у курящих людей. По статистике вызванный радоновыми облучениями рак лёгких — причина смертности в каждом 6-ом случае от общего числа раковых заболеваний и вторая (после курения) причина его вызывающая. Вывод — радон газ убийца. Но к какой степени это верно. Население, проживающее в горных районах, получает большую дозу радиоактивного облучения, чем проживающее на равнинной местности. Логично предполагать, что горцы должны бы были чаще болеть и раньше умирать, но их долголетие общеизвестный факт. Алтайская Белокуриха, с имеющимися мощными радоновыми источниками, является лечебным курортом с доисторических времён, на котором успешно лечилось ещё войска Чингиз - Хана. А такие курорты как: Сочи с легендарной Мацестой, Кисловодск, Карловы Вары и Яхимталле, в которых чрезвычайно высокая радиация? А как отнестись к тому, что в западной Чехии население веками пьёт и поливает свои приусадебные участки водой из колодцев, вырубленных непосредственно в рудном теле месторождений урана?

Радон вред и польза

Полезные свойства газа широко используются в следующих областях:

  1. Медицине в качестве радоновых ванн для лечения различных заболеваний. Лечебное воздействие оказывает водный раствор, содержащий ультра дозы химического элемента. Положительное действие на пищеварительный тракт оказывает и приём радоновой воды внутрь. Эффективно использование радоновых грязей для лечения женского бесплодия. А вдыхание воздуха, обогащённого радоном, целебно для лёгочной и центральной нервной системы. Процедуры проводятся с тщательной дозировкой и под постоянным врачебным контролем.
  2. В сельскохозяйственных комплексах по выращиванию домашнего скота для активации кормов.
  3. Геологи по концентрации газа в воде и воздухе осуществляют поиск урановых и ториевых месторождений, активных тектонических разломов, а гидрогеологи исследуют взаимодействия речных и грунтовых вод. Сейсмики по концентрации газа прогнозируют будущие землетрясения и извержения вулканов.
  4. В металлургической промышленности это хороший индикатор при помощи которого определяется скорость газового потока в доменной печи и подводящем газопроводе.
  5. В научных исследованиях твердофазных превращений.

Газ радон в помещениях накапливается из-за повышенной радиоактивности стройматериалов и грунтах под инженерными сооружениями. Основания большинства домов похожи на радоновые губки.

Основной фактор вредного воздействия на человеческое здоровье — высокий риск рака лёгких и поражения верхнего отдела желудка при высокой концентрации радона. Радон и продукты его распада, накапливаясь в тканях, сердце, надпочечниках, печени и других органах, вызывают появление и других серьёзных заболеваний и генетических изменений организма. Продукты полураспада растворяются в лимфе и крови, что вызывают массированное внутреннее облучение.

Основные способы защиты от радона домов

Для предотвращения проникновения радона в помещения предусматриваются следующие меры:

  1. При устройства подвала под домом вход должен быть с улицы, а лучше если это будет вообще отдельная постройка.
  2. Деревянные полы на первом этаже не рекомендуется устраивать на земляном основании, должна быть бетонная плита на щебёночной подготовке. Бетон, после нанесения грунтовочного слоя, промазывается 2-мя слоями горячих битумных мастик.
  3. Обязательно обеспечение эффективного проветривания пространства под полом с устройством постоянно открытых продухов.
  4. При высоком горизонте грунтовых вод необходимы кольцевые дренажи с пониженным местом для сброса вод.
  5. Исключение появления сырости под домом, обеспеченное качественной гидро-, пароизоляцией и вентиляцией. Недопустимо использование полимерных и полиэтиленовых плёнок.
  6. Выполнение ежедневного сквозного проветривания всей площади жилого дома ≥ 4-х часов, включая зимний период.
  7. Тщательное заделывание всех щелей в полах и стенах, герметизация входных и выводных отверстий при прокладке инженерных коммуникаций.
  8. В кухне, ванной и над каминами обязательна принудительная вентиляция.
  9. Применять конструкции и материалы, снабжённые сертификатом по радиационной безопасности.
  10. Использование воды из собственных скважин для приготовления пищи допускается только после обязательного фильтрования.
  11. Оборудование всех водостоков должно включать водяные затворы, трапы и сифоны.
  12. Вентиляция в доме должна быть приточной, а не вытяжной.
  13. Прекратить курение внутри помещений.

Радон это один из самых редких химических элементов, но продукты его распада присутствуют в незначительных количествах практически везде, поэтому необходимо обезопасить себя и своих домашних от его вредных воздействий.

РАДИАЦИОННАЯ ОПАСНОСТЬ
В ВОЗДУХЕ - РАДОН

«…более половины годовой дозы от всех
природных источников излучения человек
получает через воздух, облучая радоном
свои легкие во время дыхания»
СОРОСОВСКИЙ ОБРАЗОВАТЕЛЬНЫЙ ЖУРНАЛ, ТОМ 6,№3, 2000

ЧТО ПОЛЕЗНО ЗНАТЬ О РАДОНЕ И ДЕТЕКТОРЕ - ИНДИКАТОРЕ РАДОНА «СИРАД МР106 »?

1. ВВЕДЕНИЕ

2. НЕОБХОДИМЫЕ ЗНАНИЯ О РАДОНЕ

Что такое радон?
Откуда берется радон?
Как действует радон на здоровье?
Как радон приводит к раку легких?
Когда радон стал причинять неприятности?
Нужно ли обследовать дома? Да.
Как радон проникает в дом?

3. ОБСЛЕДОВАНИЕ ДОМА

Как обнаружить радон?
Как организовать обследование дома?
Что означают результаты обследования?
Срочность принятия защитных мер.
Нужно ли учитывать другие факторы?

4. ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

1. ВВЕДЕНИЕ


Исторически вредное влияние естественной радиоактивности воздуха на человеческий организм было замечено еще в XVI веке, когда таинственная «горная болезнь» шахтеров привлекла внимание медиков: смертность от заболеваний легких среди рудокопов некоторых шахт Чехии и Германии была в 50 раз выше, чем среди прочего населения. Причина этого была объяснена уже в наше время - в воздухе этих шахт была высокая концентрация радона.
Предположения о возможности радиологически вредного воздействия радона на население возникли в конце 1960-х годов, когда американские специалисты обнаружили, что концентрация радона в воздухе жилых домов, особенно одноэтажных, часто превышала уровень, считающийся опасным даже для рудников. До 1980 года ни в одной стране мира не устанавливались нормативы на содержание радона в помещениях, и только в последние десятилетия были введены нормативы для существующих и проектируемых зданий, рекомендованные Международной комиссией по радиологической защите. В НАТО был даже создан специальный комитет по этой проблеме, а в США едва ли не в каждом доме теперь есть датчики уровня радона.
В нашей стране нормативы на содержание радона в воздухе жилых зданий были приняты в 1990 году, но аппаратура была сугубо профессиональной, а «радоновая проблема» до настоящего времени оставалась сферой интересов только специалистов в области радиометрии. Появление новых бытовых приборов-«индикаторов радона»-сделало возможным проведение обследования своего дома (квартиры) самостоятельно. Необходимый минимум знаний для проведения обследования приведён в Разделах 2 и 3. При составлении этих разделов была использована литература, данные о которой приведены в Разделе 4. Проводя обследование самостоятельно, помните, что необходимо внимательно изучить инструкцию изготовителя прибора и строго соблюдать все её требования, так как стоимость защитных мероприятий напрямую зависит от полученных результатов, а значит и от аккуратности проведения обследования.

Итак, радон - как его обнаружить, оценить реальность опасности и защититься от этой угрозы?

2.НЕОБХОДИМЫЕ ЗНАНИЯ О РАДОНЕ.

Что такое радон?

Радон - это радиоактивный газ, который повсеместно распространён в природе. Он почти в 7,5 раз тяжелее воздуха, хорошо растворяется в воде, не имеет цвета, вкуса и запаха.

Откуда берется радон?

Радон образуется в результате естественного радиоактивного распада урана, поэтому радон находится в высокой концентрации в почве и скальных породах, содержащих радиоактивные элементы. Радон может выделяться также из почв, содержащих определенные типы промышленных отходов, таких, как пустую породу горно-обогатительных предприятий и шахт.
На открытом пространстве концентрация радона настолько низка, что обычно не вызывает беспокойства. Однако внутри закрытых объемов (таких, как жилище) радон накапливается. Уровень содержания радона в помещении определяется как составом строительных материалов, так и концентрацией радона в почве под зданием. Ещё один источник поступления радона в жилые помещения - вода и природный газ. Концентрация радона в водопроводной воде чрезвычайно мала. Однако вода из некоторых источников, особенно из глубоких колодцев или артезианских скважин, содержит очень много радона - до 1400 кБк/м3*, или в 3000000 раз больше чем в озёрной или речной воде. В природный газ радон проникает под землёй. При переработке и в процессе хранения газа перед поступлением его к потребителю большая часть радона улетучивается, но концентрация радона в помещении может заметно возрасти, если кухонные плиты, отопительные и другие нагревательные устройства, в которых сжигается газ, не снабжены вытяжкой.

Как действует радон на здоровье?

Основное воздействие радона на здоровье - это повышенный риск развития рака легких. Конечно, не каждое превышение уровня приводит к развитию рака легких, однако факты показывают, что риск развития рака легких от действия радона зависит от концентрации радона.

*Бк (беккерель)- единица измерения активности радионуклида, равная одному спонтанному переходу из определённого ядерно-энергетического состояния нуклида за время 1 с.

Как радон приводит к раку легких?

Сам радон естественным образом распадается и образует продукты радиоактивного распада. При вдыхании радона и продуктов его распада в легкие процесс распада продолжается. Это приводит к маленьким вспышкам освобождаемой энергии уже внутри лёгочных тканей, они могут разрушаться, способствуя появлению онкологических заболеваний.

Когда радон стал причинять неприятности?

Беспокойство по поводу необычно высокой концентрации радона в помещениях впервые возникло в конце 1960-х годов, когда на западе США обследовались дома, построенные из материалов, содержащих промышленные отходы. Затем и в Европе столкнулись с этой проблемой. В Швеции, Финляндии (особенно в Хельсинки) и в Великобритании были обнаружены дома, в которых концентрация радона в тысячи раз превышала типичные значения в наружном воздухе. Причины - радоноопасность грунта и стройматериалов, а также борьба за экономию энергии. Для снижения потерь тепла дома в те годы стали особенно тщательно герметизировать. В результате на каждый киловатт электроэнергии, сэкономленной на отоплении благодаря герметизации помещений, шведы получили дополнительную дозу облучения. Кроме того, в Швеции в течение нескольких десятилетий при производстве бетона использовались местные глинозёмы - с их применением построили около 700 тысяч домов, впоследствии обнаружили, что эти глинозёмы очень радиоактивны. Из других строительных материалов часто упоминаются гранит и пемза, которые широко использовались в Германии и России. Ещё один популярный материал - фосфогипс (побочный продукт, получаемый при переработке фосфорных руд, дешёвый заменитель природного гипса), широко применялся при изготовлении строительных блоков, штукатурки, перегородок и цемента. В одной только Японии в 1974 году было израсходовано 3 млн. тонн этого материала. Люди, живущие в «фосфогипсовых» домах, подвергались облучению, на 30% более интенсивному, чем в обычных жилищах. Высокой радиоактивностью обладает отход производства алюминия - красная глина и соответственно кирпич, производившийся из этого сырья.

Нужно ли обследовать дома? Да.

Проблема состоит в том, что необходимо провести индивидуальное обследование каждого дома и, в случае необходимости, выбрать способ защиты от радона (обеспечение достаточного воздухообмена, бетонирование подвалов, покрытие герметизирующим составом поверхностей строительных конструкций и т. д.). Если вы подозреваете повышенное содержание радона в доме, то вы должны решиться или на самостоятельное проведение обследования, или обратиться в ваш региональный центр по защите от радиации для того, чтобы определить уровень содержания радона.

Как радон проникает в дом?

Радон - это газ, который может диффундировать по пустотам в почве и в материалах, из которых построен ваш дом. Радон может просачиваться через грунтовой пол, трещины в бетонном полу и стенах, через дренаж пола, водостоки, стыки, трещины или поры в стенах из пустотелых блоков.
Радон хорошо растворяется в воде, поэтому он содержится во всех природных водах, причем в глубинных грунтовых водах его, как правило, заметно больше, чем в поверхностных водостоках и водоемах. Например, в подземных водах его концентрация может быть в миллион раз выше, чем в озёрах и реках.
Радон попадает из воды в атмосферу помещения, выделяясь из пузырьков воздуха, содержащихся в воде. Наиболее интенсивно это происходит при разбрызгивании, испарении или кипении воды (например, в душевой или парилке). При использовании больших общественных накопителей воды, радон обычно не приносит вреда, т.к. испаряется до того, как вода попадает в дом.
Из строительных материалов радон выделяется, если использовались материалы со сравнительно высоким содержанием радия (урана, тория) или способные к выделению радиоактивных газов, при этом низкая радиоактивность по другим видам излучений не гарантирует безопасности по радону.
Однако основной, наиболее вероятный путь накопления радона в помещениях связан с выделением радона непосредственно из грунта, на котором построено здание.
В практике геологических исследований нередки случаи, когда слаборадиоактивные породы содержат в своих пустотах и трещинах радон в количествах, в сотни и тысячи раз больших, чем более радиоактивные горные породы. При сезонных колебаниях температуры и давления воздуха, радон выделяется в атмосферу. Возведение зданий и сооружений непосредственно над такими трещинными зонами приводит к тому, что в эти сооружения из недр Земли непрерывно поступает поток грунтового воздуха содержащего высокие концентрации радона, который, накапливаясь в воздухе помещений, cоздаёт серьезную радиологическую опасность для находящихся в них людей. Известны случаи, когда в производственных подвальных помещениях, снабженных вытяжной вентиляцией, концентрация радона за счет подсоса воздуха из почвы, достигала 8000 - 10 000 Бк/м3, что превышало нормы в 40 - 50 раз.
К настоящему времени в различных странах накоплена достаточно обширная информация о содержании радона в жилых и служебных помещениях. Эти данные постоянно пополняются и уточняются, поэтому представления о средних и предельных концентрациях радона в зданиях претерпевают изменения. С этой точки зрения интересны результаты обследования домов.

Содержание радона в зданиях.

Страна, регион

Число обследованных зданий

Концентрация радона, Бк/м3
Канада

13450

17 ± 4

Германия

5970

40 ± 2

Финляндия

2154

64± 3

Италия

1000

25± 3

Нидерланды

30± 5

Швейцария

Подвал

720± 120

1-й этаж

228± 68

2-й этаж

127± 36

Альпы

100

Подвал

926± 210

1-й этаж

267± 73

2-й этаж

171± 42

США

30000

72± 5

Великобритания

2000

12± 3

Уровень концентрации радона в атмосфере домов существенно зависит от естественной и искусственной вентиляции помещения, тщательности заделки окон, стыков стен и вертикальных коммуникационных каналов, частоты проветривания помещений и т.д. Например, наиболее высокие концентрации радона в жилых зданиях отмечаются в холодный период года, когда традиционно принимают меры к утеплению помещений и уменьшению обмена воздуха с окружающей средой. Однако правильно выполненная приточно-вытяжная вентиляция дает наилучшие результаты снижения радонового риска в существующих зданиях. Анализ активности радона показывает, что даже однократный воздухообмен за час снижает концентрацию радона практически в сто раз.

3.ОБСЛЕДОВАНИЕ ДОМА

Как обнаружить радон?

Поскольку невозможно ни увидеть радон, ни почувствовать запах радона, для его обнаружения необходимо специальное оборудование. Существует разнообразное оборудование (как профессиональное, так и бытовое), предназначенное для постоянного либо периодического контроля содержания радона в помещениях и предусматривающее получение данных в процессе обследования. Это «AIR-CHEK» США, «RADHOME» Франция и другие. В России аналогичные бытовые приборы выпускаются под маркой в Московском инженерно - физическом институте (государственный университет). Детектор-индикатор радона «SIRAD MR-106 » является первым, разработанным в России бытовым индикатором радиоактивности воздуха - одного из самых опасных видов радиоактивности в силу своей высокой биологической эффективности (в 20 раз выше других видов излучения), и приводящую к внутреннему облучению. Невозможно обойтись без воздуха, поэтому он не должен быть опасен. Используя «SIRAD MR-106 » для периодической проверки атмосферы дома, вы всегда будете уверены в том, что ни природная, ни техногенная (возникшая в результате технической деятельности) радиоактивность воздуха не угрожает никому из живущих в вашем доме.

Как организовать обследование дома?

Проводя обследование, помните, что необходимо внимательно изучить инструкцию изготовителя прибора и строго соблюдать все её требования, так как стоимость защитных мероприятий напрямую зависит от полученных результатов, а значит и от аккуратности проведения обследования.

Что означают результаты обследования?

Помните, что можно практически полностью защититься от радона, просто стоимость защитных работ прямо зависит от того, насколько аккуратно проведено обследование и достоверны результаты.
Если опасность невелика, то и затраты будут небольшие - нередко достаточно тщательно окрасить или оклеить стены помещений.
Результаты обследования позволяют представить реальный риск от наличия радона в вашем доме. Наглядный способ представить риск, связанный с воздействием радона - это сравнение его с риском от других вредных воздействий. Согласно данным Департамента здравоохранения США находиться в помещении с концентрацией радона 7400 Бк/м^3 в 60 (шестьдесят!) раз более опасно, чем выкуривать две пачки сигарет в день, а воздействие воздуха с концентрацией 370 Бк/м^3 в течение года сопоставимо с 500 - кратным облучением лёгких при рентгеноскопии.

Срочность принятия защитных мер.

Предпринимать ли что-либо, и как срочно - поясняют приведенные ниже рекомендации, основанные на результатах обследования. Очевидно, что необходимо попытаться снизить уровень содержания радона настолько, насколько это возможно. Учитывая информацию последнего времени, считается, что уровень в большинстве домов может быть снижен до 100…150 Бк/м^3(в России норма для сдаваемых в эксплуатацию зданий 100 Бк/м^3, а эксплуатируемых - 200 Бк/м^3.). Помните, срочность действий зависит от концентрации радона. Чем выше уровень содержания радона в доме, тем быстрее нужно улучшать положение.

* Если ваши результаты составляют 7400 Бк/м^3 или выше:

Такой уровень является самым высоким из обнаруженных в домах. Жители должны предпринять все необходимое для снижения уровня как можно ниже. Рекомендуется сделать это в течение нескольких недель. Если это возможно, вы должны проконсультироваться с региональным центром здравоохранения или центром защиты от радиации и определить целесообразность временного отселения до тех пор, пока уровень радона в доме не будет снижен.

* Если ваши результаты составляют 740 -7400 Бк/м^3:

Такой уровень значительно выше допустимого для жилищ. Вы должны предпринять все необходимое для снижения уровня как можно ниже. Рекомендуется сделать это в течение нескольких месяцев.

* Если ваши результаты составляют 200 -740 Бк/м^3:

Такой уровень выше допустимого для жилищ. Вы должны предпринять все необходимое для снижения уровня до 150 Бк/м^3 или ниже. Мы рекомендуем сделать это в течение нескольких лет или раньше, если результаты ближе к верхней границе интервала.

* Если ваши результаты не превышают 150 Бк/м^3:

Такой уровень является допустимым для жилищ или незначительно превышает его.

Нужно ли учитывать другие факторы?

Основная информация о риске, приведенная в этом сообщении, так же, как и рекомендации по снижению риска, относятся к общему случаю. Ваши конкретные условия жизни могут повлиять на степень риска и вызвать необходимость дополнительных мер. Опасность воздействия радона зависит от количества радона, проникающего в помещение, и времени, которое вы в нём проводите. Перечисленные ниже меры помогут немедленно снизить риск от воздействия радона. Эти меры можно принять быстро и с незначительными затратами.

*Прекратите курить в доме - курение усиливает воздействие радона, связанные с радоном заболевания раком лёгких среди курильщиков в три раза выше, чем у не курильщиков.
*Проводите меньше времени в зонах дома с повышенной концентрацией радона, таких, как подвал.
*Чаще открывайте окна и включайте вентиляторы для более интенсивного поступления наружного воздуха в дом. Это особенно важно в отношении подвальных помещений.
*Если в вашем доме между полом первого этажа и грунтом есть вентилируемое пространство- держите заслонки продухов открытыми со всех сторон дома постоянно.

Выполнив перечисленное, приступайте к радикальным, рассчитанным на долгую службу мероприятиям, исключающим проникновение радона в ваш дом. Рекомендуем проводить контрольные обследования в ходе реконструкции, убеждаясь в правильности принятых мер, пусть атмосфера вашего дома будет по настоящему чистой и здоровой.

Доктор физико-математических наук,
профессор МИФИ Н.М.Гаврилов

4.ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ.

Сводный телефонный справочник организаций, действующих
в области охраны природы и защиты здоровья человека.

МосНПО "РАДОН" 491-0144, круглосуточно.

Сообщения о радиоактивных загрязнениях, о необходимости дезактивации помещений, территорий, объектов и предметов.

113-1191, с 9:30 до 17:30. Сообщения о ртутных загрязнениях и необходимости демеркуризации
Департамент природопользования и охраны окружающей среды 952-7288, круглосуточно Сообщения о фактах нарушения природоохранного законодательства и норм экологической безопасности
Госсанэпиднадзор 287-3141, круглосуточно Сообщения о нарушениях санитарных норм, обнаруженных инфекциях, случаях заражения, скоплении грызунов, опасных инфекциях у животных.
МосЦГМС (Московский
центр по гидрометеоро
логии и мониторингу
окружающей среды)
281-5456, круглосуточно Сообщения о загрязнении воздуха, воды и почвы
Главное управление по
делам гражданской
обороны и чрезвычайным ситуациям
995-9999 круглосуточно Сообщения о чрезвычайных ситуациях и происшествиях (крупные аварии и пожары
с человеческими жертвами, значительные выбросы химвеществ в атмосферу, разливы опасных жидкостей, обрушение зданий)

Межрегиональная Ассоциация обезвреживания
радиоактивных отходов - спецкомбинаты"РАДОН".

Шестнадцать спецкомбинатов "РАДОН" составляют разветвленную межрегиональную систему обезвреживания радиоактивных отходов. В 2000 году спецкомбинаты объединились в собственную Ассоциацию. За каждым комбинатом закреплены следующие территории:

1. МосНПО "Радон" — Московская, Брянская, Калужская, Тверская, Ярославская, Владимирская, Тульская, Рязанская, Костромская, Смоленская области.
2. Ленинградский СК — Ленинградская, Псковская, Новгородская, Вологодская, Калининградская области, Карелия.
3. Волгоградский СК — Волгоградская, Астраханская области, Калмыкия.
4. Нижегородский СК — Нижегородская, Ивановская, Кировская области, Мордовия, Республика Коми.
5. Грозненский СК — Северная Осетия, Дагестан, Чеченская, Ингушская, Кабардино-Балкарская республики.
6. Иркутский СК — Иркутская, Читинская области, Бурятская республика, Республика Тыва.
7. Казанский СК — Татарстан, Республика Марий Эл, Чувашская, Удмурдская республики.
8. Самарский СК — Самарская, Ульяновская, Оренбургская области.
9. Мурманский СК — Мурманская, Архангельская области.
10. Новосибирский СК -Новосибирская, Томская, Кемеровская, Омская области.
11. Ростовский СК - Ростовская область, Ставропольский, Краснодарский края.
12. Саратовский СК — Саратовская, Пензенская, Белгородская, Липецкая, Курская, Орловская, Тамбовская области.
13. Свердловский СК — Свердловская, Пермская, Тюменская области, Ханты-Мансийский, Ямало-Ненецкий национальные округа.
14. Уфимский СК — Башкортостан.
15. Челябинский СК — Челябинская, Курганская области.
16. Хабаровский СК — Камчатская, Сахалинская, Магаданская, Амурская области, Хабаровский, Приморский края, Республика Саха (Якутия).

Используемая литература, в которой, кроме того, можно найти дополнительную информацию о «радоновой проблеме»

1. ПАМЯТКА ПО РАДОНУ ДЛЯ ГРАЖДАН. «Что это и как с этим быть?». Агентство охраны окружающей среды США, Служба атмосферы и радиации. Департамент здравоохранения и гуманитарных служб США, Центр контроля болезней. Август 1986 г. ОРА 86 004.
2. РАДИАЦИЯ: Дозы, эффекты, риск. Пер. с англ., М.: Мир, 1998.
3. СОРОСОВСКИЙ ОБРАЗОВАТЕЛЬНЫЙ ЖУРНАЛ, ТОМ,№ 1, 1997
УТКИН В. И. Газовое дыхание земли.
4. СОРОСОВСКИЙ ОБРАЗОВАТЕЛЬНЫЙ ЖУРНАЛ, ТОМ 6,№ 3, 2000
УТКИН В. И. Радоновая проблема в экологии.
5. ЭКОЛОГИЧЕСКИЙ БЮЛЛЕТЕНЬ «Зелёный листок» №6(25),2001,стр.4. «ВНИМАНИЕ, РАДОН!»
6. А.Д.Власов, Б.П.Мурин. ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН В НАУКЕ И ТЕХНИКЕ. Справочник, М.: ЭАИ, 1990,стр. 63-64.