Распределение Максвелла по скоростям. Наиболее вероятная среднеквадратичная скорость движения молекулы

  • В большом числе случаев знание одних средних значений физических величин недостаточно. Например, знание среднего роста людей не позволяет планировать выпуск одежды различных размеров. Надо знать приблизительное число людей, рост которых лежит в определенном интервале.

    Точно так же важно знать числа молекул, имеющих скорости, отличные от среднего значения. Максвелл первым нашел, как эти числа можно определять.

Вероятность случайного события

В § 4.1 мы уже упоминали, что для описания поведения большой совокупности молекул Дж. Максвелл ввел понятие вероятности.

Как неоднократно подчеркивалось, в принципе невозможно проследить за изменением скорости (или импульса) одной молекулы на протяжении большого интервала времени. Нельзя также точно определить скорости всех молекул газа в данный момент времени. Из макроскопических условий, в которых находится газ (определенный объем и температура), не вытекают с необходимостью определенные значения скоростей молекул. Скорость молекулы можно рассматривать как случайную величину, которая в данных макроскопических условиях может принимать различные значения, подобно тому как при бросании игральной кости может выпасть любое число очков от 1 до 6 (число граней кости равно шести). Предсказать, какое число очков выпадет при данном бросании кости, нельзя. Но вероятность того, что выпадет, скажем, пять очков, поддается определению.

Что же такое вероятность наступления случайного события? Пусть произведено очень большое число N испытаний (N - число бросаний кости). При этом в N" случаях имел место благоприятный исход испытаний (т. е. выпадение пятерки). Тогда вероятность данного события равна отношению числа случаев с благоприятным исходом к полному числу испытаний при условии, что это число сколько угодно велико:

Для симметричной кости вероятность любого выбранного числа очков от 1 до 6 равна .

Мы видим, что на фоне множества случайных событий обнаруживается определенная количественная закономерность, появляется число. Это число - вероятность - позволяет вычислять средние значения. Так, если произвести 300 бросаний кости, то среднее число выпаданий пятерки, как это следует из формулы (4.6.1), будет равно 300 = 50, причем совершенно безразлично, бросать 300 раз одну и ту же кость или одновременно 300 одинаковых костей.

Несомненно, что поведение молекул газа в сосуде гораздо сложнее движения брошенной игральной кости. Но и здесь можно надеяться обнаружить определенные количественные закономерности, позволяющие вычислять статистические средние, если только ставить задачу так же, как в теории игр, а не как в классической механике. Нужно отказаться от неразрешимой задачи определения точного значения скорости молекулы в данный момент и попытаться найти вероятность того, что скорость имеет определенное значение.

Распределение молекул по скоростям - распределение Максвелла

Максвелл допустил, что в газах в состоянии теплового равновесия существует некоторое распределение скоростей, не изменяющееся с течением времени, иными словами, число молекул, имеющих скорости в заданном интервале значений, остается постоянным. И Максвелл нашел это распределение.

Но главная заслуга Максвелла состояла не столько в решении этой задачи, сколько в самой постановке новой проблемы. Он ясно осознал, что случайное в данных макроскопических условиях поведение отдельных молекул подчинено определенному вероятностному, или статистическому, закону. Этот статистический закон для распределения молекул газа по скоростям оказался сравнительно простым.

Наглядно распределение молекул по скоростям можно представить следующим образом. Выберем прямоугольную систему отсчета, на осях которой будем откладывать проекции v x , v y , v z скоростей частиц. В результате получится трехмерное «пространство скоростей», каждая точка которого соответствует молекуле со строго заданной скоростью v, равной по модулю длине радиуса-вектора, проведенного из начала системы отсчета в эту точку (рис. 4.7).

Рис. 4.7

Общее представление о распределении молекул по скоростям получится, если скорость каждой из N молекул изобразить точкой в этом пространстве скоростей (рис. 4.8). Точки окажутся расположенными довольно хаотически, но в среднем плотность точек будет убывать по мере удаления от начала отсчета (не все значения скоростей молекул встречаются одинаково часто).

Рис. 4.8

Картина распределения точек, конечно, не является застывшей. С течением времени скорости молекул за счет столкновений меняются и, следовательно, меняется картина распределения точек в пространстве скоростей. Однако ее изменение таково, что средняя плотность точек в любой области пространства скоростей со временем не будет изменяться, она остается одной и той же. Именно это и означает существование определенного статистического закона. Средней плотности соответствует наиболее вероятное распределение скоростей.

Число точек AN в некотором малом объеме Δv x Δv y Δv z пространства скоростей, очевидно, равно этому объему, помноженному на плотность точек внутри него. (Аналогично масса Δm некоторого объема ΔV равна произведению плотности вещества ρ на этот объем: Δm = ρΔV.) Обозначим через Nf(v x , v y , v z) среднюю плотность точек в пространстве скоростей, т. е. число точек, приходящихся на единицу объема пространства скоростей (N - общее число молекул газа). Тогда

Фактически ΔN - это число молекул, проекции скоростей которых лежат в интервалах значений от v x до v x + Δv x , от v y до v y + Δv y и от v z до v z + Δv z (радиусы-векторы скоростей этих молекул оканчиваются внутри объема пространства скоростей Δv = Δv x Δv y Δv z , имеющего форму куба (см. рис. 4.8).

Вероятность того, что проекции скорости молекулы лежат в заданном интервале скоростей, равна отношению числа молекул с данным значением скорости к полному числу молекул:

Функция f(v x , v y , v z) называется функцией распределения молекул по скоростям и представляет собой плотность вероятности, т. е. вероятность, отнесенную к единичному объему пространства скоростей.

Скорости молекул в данный момент времени в принципе могут оказаться любыми. Но вероятность различных распределений скоростей неодинакова. Среди всех возможных мгновенных распределений имеется одно, вероятность которого больше, чем всех других, - наиболее вероятное распределение. Максвелл установил, что функция распределения f(v x , v y , v z), дающая это наивероятнейшее распределение скоростей молекул (распределение Максвелла), определяется отношением кинетической энергии молекулы

к средней энергии ее теплового движения kT (k - постоянная Больцмана). Это распределение имеет вид

Здесь е ≈ 2,718 - основание натуральных логарифмов, а величина А не зависит от скорости.

Таким образом, по Максвеллу, плотность точек, изображающих молекулы в пространстве скоростей, максимальна вблизи начала отсчета (v = 0) и убывает с ростом v, причем тем быстрее, чем меньше энергия теплового движения kT. На рисунке 4.9 представлена зависимость функции распределения f от проекции v x при условии, что проекции v y и v z любые. Функция распределения имеет характерную колоколообразную форму, которая часто встречается в статистических теориях и называется кривой Гаусса.

Рис. 4.9

Постоянную А находят из условия, что вероятность для скорости молекулы иметь любое значение от нуля до бесконечности должна равняться единице. Это условие называется условием нормировки. (Аналогично вероятность выпадания любого числа очков от 1 до 6 при данном бросании игральной кости равна единице.) Полная вероятность получается сложением вероятностей всех возможных взаимоисключающих реализаций случайного события.

Суммируя вероятности ΔW i всех возможных значений скорости i , получим уравнение

Вычислив с помощью уравнения (4.6.5) нормировочную постоянную А, можно записать выражение для среднего числа частиц со скоростями в заданном интервале в следующей форме:

Скорость любой молекулы в данный момент времени - случайная величина. Поэтому и само распределение молекул по скоростям в данный момент времени случайно. Но среднее распределение, определяемое статистическим законом, реализуется с необходимостью в определенных макроскопических условиях и не меняется со временем. Однако всегда есть отклонения от средних - флуктуации. Эти отклонения с равной вероятностью происходят в ту и в другую сторону. Именно поэтому в среднем имеется определенное распределение молекул по скоростям.

Распределение молекул по скоростям Максвелла оказывается справедливым не только для газов, но и для жидкостей и твердых тел. Лишь в том случае, когда для описания движения частиц нельзя применить классическую механику, распределение Максвелла перестает быть верным.

Распределение модулей скоростей молекул

Найдем среднее число молекул, скорости которых по модулю лежат в интервале от v до v + Δv.

Распределение Максвелла (4.6.4) определяет число молекул, проекции скоростей которых лежат в интервалах значений от v x до v x + Δv x , от v y до v y + Δv y , от v z до v z + Δv z . Векторы этих скоростей оканчиваются внутри объема Δv x Δu y Δv z (см. рис. 4.8). Таким образом задается среднее число молекул, имеющих определенный модуль и определенное направление скоростей, задаваемые положением объема Δv x Δu y Δv z в пространстве скоростей.

Все молекулы, модули скоростей которых лежат в интервале от v до и + Δv, располагаются в пространстве скоростей внутри шарового слоя радиусом v и толщиной Δv (рис. 4.10). Объем шарового слоя равен произведению площади поверхности слоя на его толщину: 4πv 2 Δv.

Рис. 4.10

Число молекул, находящихся внутри этого слоя и, следовательно, обладающих заданными значениями модуля скорости в интервале от v до v + Δv, может быть найдено из формулы (4.6.2), если заменить объем Δv x Δu y Δv z на объем 4πv 2 Δv.

Таким образом, искомое среднее число молекул равно

Так как вероятность определенного значения модуля скорости молекулы равна отношению , то для плотности вероятности получим

График, выражающий зависимость этой функции от скорости, показан на рисунке 4.11. Мы видим, что функция f(v) имеет максимум уже не в нуле, как плотность вероятности f(v x , v y , v z). Причина этого состоит в следующем. Плотность точек, изображающих молекулы в пространстве скоростей, по-прежнему будет наибольшей вблизи v = 0, но за счет роста объемов шаровых слоев с увеличением модулей скоростей (~ v 2) происходит увеличение функции f(v). При этом число точек внутри шарового слоя растет быстрее, чем убывает функция f(v x , v y , v z) вследствие уменьшения плотности точек.

Рис. 4.11

Можно пояснить сказанное наглядным примером. Допустим, обычную мишень с концентрическими кругами обстреливает достаточно меткий стрелок. Попадания пуль концентрируются вокруг центра мишени. Плотность попаданий - число попаданий на единицу площади - будет максимальной вблизи центра мишени. Разделим мишень на отдельные узкие полоски шириной Δx (рис. 4.12, а). Тогда отношение числа попаданий на данную полоску к ее ширине будет максимально вблизи центра мишени.

Рис. 4.12

Зависимость отношения числа попаданий в данную полоску к ее ширине имеет вид, показанный на рисунке 4.12, б. Здесь опять получается гауссова кривая, как и для распределения f(v x) по проекциям скоростей (см. рис. 4.9).

Но совсем другой результат получится, если подсчитывать число попаданий в различные кольца мишени. В этом случае отношение числа попаданий в кольцо радиусом г к его ширине графически будет характеризоваться кривой, изображенной на рисунке 4.12, в. Хотя плотность попаданий по мере удаления от центра мишени убывает, но площади колец растут пропорционально r, что и приводит к смещению максимума кривой от нуля.

Наиболее вероятная скорость молекул

Зная формулу (4.6.8) для плотности вероятности модулей скоростей молекул, можно найти значение скорости, соответствующей максимуму плотности этой вероятности(1). Скорость (ее называют наиболее вероятной) оказывается равной

Большинство молекул имеют скорости, близкие к наиболее вероятной (см. рис. 4.11).

По мере увеличения абсолютной температуры Т наиболее вероятная скорость увеличивается и при этом кривая зависимости До) становится все более сглаженной (рис. 4.13).

Рис. 4.13

Роль быстрых молекул

При любой температуре имеется некоторое количество молекул, скорости которых, а значит, и кинетические энергии, заметно превышают средние.

Известно, что многие химические реакции, например горение обычных видов топлива (дрова, уголь и т. д.), начинаются только при определенной, достаточно высокой температуре. Энергия, необходимая для начала процесса окисления топлива, т. е. горения (ее называют энергией активации), имеет порядок 10 -19 Дж. А при температуре 293 К (комнатная температура) средняя кинетическая энергия теплового движения молекул составляет примерно 5 10 -21 Дж. Поэтому горение не происходит. Однако увеличение температуры всего лишь в 2 раза (до 586 К) вызывает воспламенение. Средняя энергия молекул увеличивается при этом тоже в 2 раза, но число молекул, кинетическая энергия которых превышает 10 -19 Дж, увеличивается в 10 8 раз. Это следует из распределения Максвелла. Поэтому при температуре 293 К вы чувствуете себя, читая книгу, комфортно, а при 586 К книга начинает гореть.

Испарение жидкости также определяется быстрыми молекулами правого «хвоста» максвелловского распределения. Энергия связи молекул воды при комнатной температуре значительно больше кТ. Тем не менее испарение происходит за счет небольшого числа быстрых молекул, у которых кинетическая энергия превышает кТ.

Максвелл открыл новый тип физического закона - статистический - и нашел распределение молекул по скоростям. Он отчетливо понимал значение своего открытия. В докладе Кембриджскому философскому обществу Максвелл сказал: «Я считаю, что наиболее важное значение для развития наших методов мышления молекулярные теории имеют потому, что они заставляют делать различие между двумя методами познания, которые мы можем назвать динамическим и статистическим».

(1) Это делается по правилам нахождения максимума известной функции. Нужно вычислить производную этой функции по скорости и приравнять ее нулю.

Функция плотности распределения

Распределение Ма́ксвелла - распределение вероятности , встречающееся в физике и химии . Оно лежит в основании кинетической теории газов , которая объясняет многие фундаментальные свойства газов, включая давление и диффузию . Распределение Максвелла также применимо для электронных процессов переноса и других явлений. Распределение Максвелла применимо к множеству свойств индивидуальных молекул в газе. О нем обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому континууму энергии.

Распределение Максвелла может быть получено при помощи статистической механики (см. происхождение статсуммы). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого количества невзаимодействующих частиц, в которой квантовые эффекты являются незначительными. Так как взаимодействие между молекулами в газе является обычно весьма небольшим, распределение Максвелла даёт довольно хорошее приближение ситуации, существующей в газе.

Во многих других случаях, однако, даже приблизительно не выполнено условие доминирования упругих соударений над всеми другими процессами. Это верно, например, в физике ионосферы и космической плазмы , где процессы рекомбинации и столкновительного возбуждения (то есть излучательные процессы) имеют большое значение, в особенности для электронов. Предположение о применимости распределения Максвелла дало бы в этом случае не только количественно неверные результаты, но даже предотвратило бы правильное понимание физики процессов на качественном уровне. Также, в том случае где квантовая де Бройлева длина волны частиц газа не является малой по сравнению с расстоянием между частицами, будут наблюдаться отклонения от распределения Максвелла из-за квантовых эффектов.

Распределение энергии Максвелла может быть выражено как дискретное распределение энергии:

,

где является числом молекул имеющих энергию при температуре системы , является общим числом молекул в системе и - постоянная Больцмана . (Отметьте, что иногда вышеупомянутое уравнение записывается с множителем , обозначающим степень вырождения энергетических уровней. В этом случае сумма будет по всем энергиям, а не всем состояниям системы). Поскольку скорость связана с энергией, уравнение (1) может использоваться для получения связи между температурой и скоростями молекул в газе. Знаменатель в уравнении (1) известен как каноническая статистическая сумма .

Распределение Максвелла

Распределение по вектору импульса

Представленное ниже очень сильно отличается от вывода, предложенного Джеймсом Клерком Максвеллом и позже описанного с меньшим количеством предположений Людвигом Больцманом .

В случае идеального газа , состоящего из невзаимодействующих атомов в основном состоянии, вся энергия находится в форме кинетической энергии. Кинетическая энергия соотносится с импульсом частицы следующим образом

,

где - квадрат вектора импульса .

Мы можем поэтому переписать уравнение (1) как:

,

где - статсумма , соответствующая знаменателю в уравнении (1), - молекулярная масса газа, - термодинамическая температура, и - постоянная Больцмана . Это распределение пропорционально функции плотности вероятности нахождения молекулы в состоянии с этими значениями компонентов импульса. Таким образом:

Постоянная нормировки C , определяется из условия, в соответствии с которым вероятность того, что молекулы имеют какой-либо вообще импульс, должна быть равна единице. Поэтому интеграл уравнения (4) по всем значениям и должен быть равен единице. Можно показать, что:

.

Таким образом, чтобы интеграл в уравнении (4) имел значение 1 необходимо, чтобы

.

Подставляя выражение (6) в уравнение (4) и используя тот факт, что , мы получим

.

Распределение по вектору скорости

Учитывая, что плотность распределения по скоростям пропорциональна плотности распределения по импульсам:

и используя мы получим:

,

что является распределением Максвелла по скоростям. Вероятность обнаружения частицы в бесконечно малом элементе около скорости равна

Распределение по абсолютной величине импульса

Интегрируя, мы можем найти распределение по абсолютной величине импульса

Распределение по энергии

Наконец, используя соотношения и , мы получаем распределение по кинетической энергии:

Распределение по проекции скорости

Распределение Максвелла для вектора скорости - является произведением распределений для каждого из трех направлений:

,

где распределение по одному направлению:

Это распределение имеет форму нормального распределения . Как и следует ожидать для покоящегося газа, средняя скорость в любом направлении равна нулю.

Распределение по модулю скоростей

Обычно, более интересно распределение по абсолютному значению, а не по проекциям скоростей молекул. Модуль скорости, v определяется как:

поэтому модуль скорости всегда будет больше или равен нулю. Так как все распределены нормально , то будет иметь хи-квадрат распределение с тремя степенями свободы. Если - функция плотности вероятности для модуля скорости, то:

,

таким образом, функция плотности вероятности для модуля скорости равна

Характерная скорость

Хотя Уравнение (11) дает распределение скоростей, или, другими словами, долю молекул, имеющих специфическую скорость, часто более интересны другие величины, такие как средние скорости частиц. В следующих подразделах мы определим и получим наиболее вероятную скорость , среднюю скорость и среднеквадратичную скорость .

Наиболее вероятная скорость

наиболее вероятная скорость , - вероятность обладания которой любой молекулой системы максимальна, и которая соответствует максимальному значению . Чтобы найти её, необходимо вычислить , приравнять её нулю и решить относительно :

Средняя скорость

Среднеквадратичная скорость

Подставляя и интегрируя, мы получим

Вывод распределения по Максвеллу

Получим теперь формулу распределения так, как это делал сам Джеймс Клерк Максвелл .
Рассмотрим пространство скоростных точек (каждую молекулу представляем как точку в системе координат ) в стационарном состоянии газа. Выберем бесконечно малый элемент объема . Так как газ стационарный, количество скоростных точек в остается неизменным с течением времени. Пространство скоростей изотропно , поэтому функции плотности вероятности для всех направлений одинаковы.

Максвелл предположил, что распределения скоростей по направлениям статистически независимы, то есть компонента скорости молекулы не зависит от и компонент.

- фактически вероятность нахождения скоростной точки в объеме .

Правая часть не зависит от и , значит и левая от и не зависит. Однако и равноправны, следовательно левая часть не зависит также и от . Значит данное выражение может лишь равняться некоторой константе.

Теперь нужно сделать принципиальный шаг - ввести температуру. Кинетическое определение температуры (как меры средней кинетической энергии движения молекул).

Распределение Максвелла

В равновесном состоянии в системе, состоящей из огромного числа частиц, к примеру в некотором объёме газа, при отсутствии внешних воздействий не происходит макроскопических изменений: параметры системы остаются постоянными. Постоянным остается и среднее значение скорости молекул. Ответ на вопрос, сколько молекул, или какая их часть движется с определœенной скоростью в данный момент, был теоретически получен Максвеллом.

Введем понятие пространства скоростей. Для каждой молекулы откладываем компоненты ее скорости по трем взаимно перпендикулярным осям (рис. 1.3.1).

Каждая точка в пространстве скоростей соответствует одной молекуле с определœенной скоростью. Вектор скорости идет от начала координат к рассматриваемой точке.

Рассмотрим, как будут распределœены молекулы, содержащиеся в единичном объёме газа по скоростям.

Эти молекулы будут изображаться совокупностью из n точек. Из-за столкновений молекул какие-то точки будут выходить из элемента объёма, а другие входить в него. При этом среднее число точек в данном элементе объёма сохраняется.

Закон Максвелла описывается некоторой функцией f(v), которая принято называть функция распределœения молекул по скоростям. Функция f(v) определяет относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, ᴛ.ᴇ.

Откуда .

Применяя методы теории вероятностей, Максвелл нашел эту функцию:

Из формулы видно, что конкретный вид функции зависит от рода газа (от массы молекулы m 0) и от параметра состояния (температуры T).

График функции f(v) приведен на рис.1.3.2. Функция f(v) начинается от нуля, достигает максимума при v в и затем асимптотически стремится к нулю. Кривая не симметрична относительно v в.

Распределœение Максвелла - это распределœение по скоростям молекул идеального газа, находящегося в состоянии термодинамического равновесия.

Интегрируя распределœение Максвелла, можно рассчитать средние величины. Средний квадрат скорости (средняя квадратичная скорость)

v в
Скорость, при которой функция распределœения молекул идеального газа по скоростям максимальна, принято называть наиболее вероятной скоростью. Значение наиболее вероятной скорости можно определить, используя условие максимума функции откуда следует, что

Для того, чтобы найти число молекул, обладающих скоростями в интервале от v 1 до v 2 , крайне важно определить площадь под соответствующим участком кривой (рис.1.3.2.)

При увеличении температуры максимум кривой Максвелла смещается в сторону больших скоростей и вид кривой изменяется. Распределœения для двух разных температур приведены на рис.1.3.3. Поскольку площадь, ограниченная кривой, остается неизменной, следовательно, при повышении температуры кривая распределœения молекул по скоростям будет растягиваться и понижаться.

Рис.1.3.3 Т 1 < Т.

Среднее значение абсолютной величины скорости (среднее значение скорости равно нулю, так как отрицательное и положительное значения компонент равноправны) определяется по формуле

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, скорости, характеризующие состояние газа:

1) наиболее вероятная ;

2) средняя скорость ;

3) средняя квадратичная .

Эти скорости связаны соотношением

v В: ávñ: áv кв ñ @1:1,13:1,22,

то есть средняя квадратичная скорость имеет наибольшую величину.

Исходя их распределœения молекул по скоростям, перейдя к новой переменной Е=m 0 v 2 /2, можно получить функцию распределœения молекул по энергиям

Тогда средняя кинœетическая энергия молекулы идеального газа равна

Для того, чтобы рассчитать количество молекул DN, скорости которых находятся в промежутке от v до v+Dv, удобно ввести относительную скорость u=v/v В, где v В - наиболее вероятная скорость. Тогда DN - число молекул, относительные скорости которых находятся в интервале u, u+Du, ᴛ.ᴇ. v/v в, v+Dv/v В, где должно быть Dv†v. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, имеем

где N - полное число молекул газа, DN/N - относительное число (доля) молекул, имеющих скорости в интервале u, u+Du. График этой зависимости соответствует рис.1.3.2, в случае если по оси абсцисс отложить u, а по оси ординат величину DN/(NDu) - функцию распределœения.

Пример7. Определить среднеквадратичную скорость молекул азота при температуре 27°С. Как зависит средне квадратичная скорость от молекулярной массы и температуры?

Т=300°К, m=28 кг/кмоль, k=1,38×10 -23 Дж/град.

Решение. где ;

Таким образом

Средняя квадратичная скорость прямо пропорциональна корню квадратному из температуры и обратно пропорциональна корню квадратному из молекулярной массы.

Распределение Максвелла - понятие и виды. Классификация и особенности категории "Распределение Максвелла" 2017, 2018.

  • - Распределение Максвелла

    В равновесном состоянии в системе, состоящей из огромного числа частиц, например в некотором объеме газа, при отсутствии внешних воздействий не происходит макроскопических изменений: параметры системы остаются постоянными. Постоянным остается и среднее значение... .


  • - Распределение Максвелла

    Молекулы газа вследствие теплового движения испытывают многочисленные соударения друг с другом. При каждом соударении скорости молекул изменяются как по величине, так и по направлению. В результате в сосуде, содержащем большое число молекул, устанавливается некоторое... .


  • - Распределение Максвелла по направлениям скоростей

    Теперь, когда мы определились, какую же величину будем искать, давайте воспользуемся довольно часто используемым в физике приёмом. Мы попытаемся “угадать” искомое распределение. А проверку того, что мы угадали правильно, мы получим, сравнивая результаты нашей... .


  • -

    В состоянии теплового равновесия частицы идеального газа имеют различные скорости, которые меняются и результате столкновений. На вопрос какова вероятность того, что частица обладает определенной скоростью, отвечает распределение Максвелла. Оно является частным... .


  • - Семинары 5, 6. Распределение Максвелла

    О т в е т ы 4.1. а) 4 % б) 4.2. 1.4× 4.3. а) . б) г) 4.4. а) б) г) В состоянии теплового равновесия частицы идеального газа имеют различные скорости, которые меняются и результате столкновений. На вопрос какова вероятность того, что частица обладает определенной...

    Распределение Максвелла может быть получено при помощи статистической механики (см. происхождение статсуммы). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого... .


  • - Распределение Максвелла (для модуля скорости)

    Обычно, более интересно распределение по абсолютному значению, а не по проекциям скоростей молекул. Модуль скорости, v определяется как: поэтому модуль скорости всегда будет больше или равен нулю. Так как все распределены нормально, то будет иметь хи-квадрат... .


  • - Распределение молекул по скоростям (распределение Максвелла)

    Предположим, что нам удалось измерить скорости всех молекул газа в некоторый момент времени, т.е. получить v1, v2, ... ,vN. Нанесем их на ось скоростей в виде точек. Как видно из рис. 8.3, распределение точек на оси не будет равномерным – в области больших и малых скоростей они... .


  • Молекулы любого газа находятся в вечном хаотическом движении. Скорости молекул могут принимать самые различные значения. Молекулы сталкиваются, в результате столкновений происходит изменение скоростей молекул. В каждый данный момент времени скорость каждой отдельной молекулы является случайной и по величине и по направлению.

    Но, если газ предоставить самому себе, то различные скорости теплового движения распределяются между молекулами данной массы газа при данной температуре по вполне определённому закону, т.е. существует распределение молекул по скоростям.

    Закон распределения молекул по скоростям был теоретически выведен Максвеллом. Закон Максвелла выражается следующей формулой:

    где – число молекул, скорости которых лежат в интервале ; – общее число молекул данной массы газа; – основание натурального логарифма; – заданное значение скорости из интервала ; – наиболее вероятная скорость молекул газа при данной температуре.

    Наиболее вероятной скоростью называется скорость, близкой к которой обладает наибольшее число молекул данной массы газа. Значение зависит от температуры газа.

    Формула (10.6) даёт число молекул, скорости которых лежат в данном интервале скоростей независимо от направления скоростей.

    Если поставить более частный вопрос, а именно чему равно число молекул в газе, составляющие скоростей которых лежат в интервале между и , и , и , то

    или , (10.8)

    где – кинетическая энергия молекулы газа; – масса молекулы; – постоянная Больцмана; – абсолютная температура газа. Формулы (10.7) и (10.8) – тоже формулы распределения Максвелла . Кривая распределения молекул по скоростям, соответствующая закону распределения (10.6), изображена на рис. 10.1. По оси абсцисс откладываются значения скорости, которые может принимать отдельная молекула газа.

    Максимум кривой соответствует наиболее вероятной скорости . Кривая асимметрична относительно , т.к. в газе имеется сравнительно небольшое число молекул с очень большими скоростями.

    Рассмотрим какой-нибудь интервал , (рис. 10.1). Если мало, то площадь заштрихованной полоски близка к площади прямоугольника:

    т.е. площадь заштрихованной полоски представляет собою число молекул, скорости которых лежат в интервале , . А площадь под всей кривой пропорциональна общему числу молекул данной массы газа.

    Найдём, при каком значении кривая будет иметь максимум. Максимум находим по обычным правилам математики, приравнивая к нулю первую производную по :

    Так как , то .

    Взяв производную, получим, что , т.е. максимум кривой соответствует наиболее вероятной скорости .

    Максвеллом были теоретически найдены формулы, по которым можно насчитывать и среднюю арифметическую скорость . Перечислим скорости, которыми можно характеризовать тепловое движение молекул газа.

    1. Наиболее вероятная скорость . (10.9)

    2. Средняя квадратичная скорость :

    3. Средняя арифметическая скорость . (10.11)

    Все скорости прямо пропорциональны и обратно пропорциональны , где – масса моля газа.

    На рис. 10.1 график I построен для температуры , а график II – для температуры . Видно, что с повышением температуры максимум кривой сдвигается вправо, т.к. с повышением температуры возрастают скорости молекул. Быстрых молекул стало больше, правая ветвь кривой приподнимается, медленных молекул стало меньше, левая ветвь идёт круче. А вся кривая понижается, т.к. площадь под кривой должна оставаться той же самой, потому что общее число молекул газа осталось тем же самым и, конечно, не могло измениться при нагревании газа.

    Закон Максвелла является статистическим законом , т.е. законом, справедливым для очень большого числа молекул.

    Кроме того, закон Максвелла не учитывает внешнее воздействие на газ, т.е. нет никаких силовых полей, действующих на газ.

    10.4. Идеальный газ во внешнем поле.
    Барометроическая формула. Распределение Больцмана

    Рассмотрим вертикальный столб воздуха у поверхности Земли (рис. 10.2). Если высота столба сравнительно невелика (не превышает нескольких сотен метров), плотность газа и количество молекул в единице объема (концентрация) будут приблизительно одинаковыми. Однако, если высота столба порядка километра и более, равномерность распределения молекул по высоте нарушаетсядействием силы тяжести , которая стремится сконцентрировать молекулы у поверхности Земли. Вследствие этого плотность воздуха и атмосферное давление будут убывать по мере удаления от поверхности Земли.

    Определим закон изменения давления с высотой (найдем барометрическую формулу).

    Барометрическая формула показывает, как зависит атмосферное давление P от высоты h над поверхностью Земли. Пусть около поверхности Земли на высоте давление . Давление известно. Требуется найти изменение давления с высотой .

    При выводе предполагаем, что температура газа остаётся постоянной. Выделим над поверхностью Земли цилиндрический столб газа (воздуха) с сечением . Рассмотрим слой газа бесконечно малой толщины , находящийся на высоте от основания столба.

    Разность сил , действующих на верхнее и нижнее основание слоя, равна весу газа, заключённого в данном слое, т.е.

    Бесконечно малая масса газа в слое вычисляется по формуле

    где – объём слоя газа.

    Тогда , где – плотность газа; – ускорение силы тяжести.

    Разность давлений на оба основания слоя:

    И ещё надо поставить знак «минус»

    потому что знак «минус» имеет физический смысл. Он показывает, что давление газа убывает с высотой. Если подняться на высоту , то давление газа уменьшится на величину .

    Плотность газа находим из уравнения Менделеева – Клапейрона.

    Подставим выражение в (10.12), имеем

    Это дифференциальное уравнение с разделяющимися переменными:

    Интегрируем:

    Получим барометрическую формулу

    На рис. 10.3 показаны графики зависимости давления с высотой для двух значений температуры T 1 и T 2 (T 2 > T 1). С изменением температуры газа давление P 0 у поверхности Земли остается неизменным, т.к. оно равно весу расположенного над земной поверхностью вертикального столба газа единичной площади основания и неограниченного по высоте. Вес газа от температуры не зависит.

    Из барометрической формулы очень легко получить распределение Больцмана для случая, когда внешним воздействием на газ является сила земного тяготения.

    Давление газа на высоте прямо пропорционально числу молекул в единице объёма на этой высоте, , – концентрация молекул на высоте , а , – концентрация молекул газа на высоте .

    То или . (10.14)

    Формула (10.14) называется распределением Больцмана для молекул в поле силы тяжести.

    На рис. 10.4 показаны графики зависимости концентраций молекул с высотой для двух значений температуры T 1 и T 2 (T 2 >T 1) в поле силы тяжести. Концентрация молекул n 0 у поверхности Земли с увеличением температуры уменьшается (n 0 (T 2) < n 0 (T 1)) за счет перераспределения молекул внутри столба газа. Молекулы, обладающие большей кинетической энергией, поднимаются выше.

    Если , – потенциальная энергия молекулы на высоте , то

    Формула (10.15) справедлива не только для случая, когда молекулы движутся в поле силы тяжести. Эта формула, выражающая распределение Больцмана справедлива для любого силового поля с потенциальной функцией :

    Опыт Перрена (1870–1942 гг.).
    Определение числа Авогадро

    Французский физик Перрен воспользовался распределением Больцмана для экспериментального определения числа Авогадро.

    Микроскоп наводился на верхний слой эмульсии (рис. 10.5), делали через микроскоп мгновенную фотографию, подсчитывали число броуновских частиц на фотографии. Далее тубус микроскопа опускали на 0,01 мм, снова фотографировали и подсчитывали число броуновских частиц на фотографии. Оказалось, что на дне сосуда броуновских частиц больше, на поверхности эмульсии меньше, а в целом распределение броуновских частиц по высоте соответствует распределению Больцмана. Так как шарики гуммигута находятся в жидкости (эмульсии), то потенциальная энергия их с учетом выталкивающей силы Архимеда можно записать , где m 0 – масса шарика, m ж – масса объёма жидкости, вытесненной шариком. Тогда распределение Больцмана можно записать .

    Если n 1 и n 2 – измеренные концентрации частиц на высотах h 1 и h 2 , то ; , а .

    Тогда можно определить и .

    Величину

    где и – плотности материала шариков и эмульсии.

    Определив экспериментально постоянную Больцмана k Перрен получил из зависимости значение числа Авогадро . Точное значение:

    Тема 11
    РАБОТА, ВНУТРЕННЯЯ ЭНЕРГИЯ И ТЕПЛОТА.
    ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

    Термодинамика – это наука, изучающая условия превращения различных видов энергии в тепловую и обратно, а также количественные соотношения, наблюдаемые при этом. Термодинамика охватывает большой круг явлений, наблюдаемых в природе и технике. Особое значение она имеет для теплотехники, т.к. даёт основу для разработки тепловых и холодильных машин. В термодинамике часто пользуются словом тело . В термодинамике телом можно назвать воздух, воду, ртуть, любой газ, т.е. любое вещество, занимающее определённый объём.

    Термодинамическая система может включать в себя несколько тел, но может состоять из одного тела, очень часто этим телом является идеальный газ.

    Термодинамической системой называется любая совокупность рассматриваемых тел, которые могут обмениваться энергией между собой и с другими телами. Например, термодинамической системой может быть идеальный газ.

    Состояние термодинамической системы характеризуется термодинамическими параметрами. Термодинамические параметры – это величины характеризующие состояние системы. К термодинамическим параметрам относятся такие величины, как давление, объём, температура, плотность вещества и т.д. Параметрами состояния идеального газа, например, являются давление P , объём V , температура T . Уравнение, связывающее между собой параметры состояния термодинамической системы, называется уравнением состояния. Например, уравнение Менделеева – Клапейрона: .

    Состояние термодинамической системы называется равновесным , если все его параметры имеют определенное значение и не изменяются со временем при неизменных внешних условиях.

    Если термодинамическая система выведена из состояния равновесия и предоставлена сама себе, то она возвращается в исходное состояние. Этот процесс называется релаксацией .

    В термодинамике изучают закономерности всевозможных переходов системы из одного состояния в другое. Переход системы из одного состояния в другое , который сопровождается изменением хотя бы одного параметра состояния , называется процессом. Уравнение, определяющее изменение параметров системы при переходе из одного состояния в другое, называется уравнением процесса.

    Термодинамика изучает только термодинамически равновесные состояния тел и медленные процессы, которые рассматриваются как равновесные состояния, непрерывно следующие друг за другом. Она изучает общие закономерности перехода систем в состояния термодинамического равновесия.

    Равновесные процессы – процессы, при которых скорость изменения термодинамических параметров бесконечно мала, т.е. изменение термодинамических параметров происходит за бесконечно большие времена. Это модель , т.к. все реальные процессы – неравновесные.

    Равновесный процесс – процесс, который проходит через последовательность равновесных состояний.

    Неравновесный процесс – процесс, при котором изменение термодинамических параметров на конечную величину происходит за конечное время.

    Неравновесный процесс графически изобразить нельзя.

    В термодинамике используется особый метод изучения явлений – термодинамический метод. Термодинамика рассматривает, как протекает процесс.

    В основу термодинамики положено два основных закона, являющиеся обобщением громадного фактического материала. Эти законы дали начало всей науке термодинамике и поэтому получили название начал.

    11.1. Внутренняя энергия идеального газа.
    Число степеней свободы

    Числом степеней свободы называется наименьшее число независимых координат, которое необходимо ввести, чтобы определить положение тела в пространстве. – число степеней свободы.

    Рассмотрим одноатомный газ . Молекулу такого газа можно считать материальной точкой, положение материальной точки (рис. 11.1) в пространстве определяется тремя координатами.

    Молекула может двигаться в трех направлениях (рис. 11.2).

    Следовательно, обладает тремя поступательными степенями свободы.

    Молекула – материальная точка.

    Энергии вращательного движения , т.к. момент инерции материальной точки относительно оси, проходящей через точку равен нулю

    Для молекулы одноатомного газа число степеней свободы .

    Рассмотрим двухатомный газ . В двухатомной молекуле каждый атом принимается за материальную точку и считается, что атомы жёстко связаны между собой, это гантельная модель двухатомной молекулы. Двухатомная жестко связанная молекула (совокупность двух материальных точек, связанных недеформируемой связью), рис. 11.3.

    Положение центра масс молекулы задаётся тремя координатами, (рис. 11.4) это три степени свободы, они определяют поступательное движение молекулы. Но молекула может совершать и вращательные движения вокруг осей и , это ещё две степени свободы, определяющие вращение молекулы . Вращение молекулы вокруг оси невозможно, т.к. материальные точки не могут вращаться вокруг оси, проходящей через эти точки.

    Для молекулы двухатомного газа число степеней свободы .

    Рассмотрим трёхатомный газ. Модель молекулы – три атома (материальные точки), жёстко связанные между собой (рис. 11.5).

    Трёхатомная молекула – жестко связанная молекула.

    Для молекулы трёхатомного газа число степеней свободы .

    Для многоатомной молекулы число степеней свободы .

    Для реальных молекул, не обладающих жёсткими связями между атомами, необходимо учитывать также степени свободы колебательного движения, тогда число степеней свободы реальной молекулы равно

    i = i поступат + i вращат. + i колеб. (11.1)

    Закон равномерного распределения энергии
    по степеням свободы (закон Больцмана)

    Закон о равнораспределении энергии по степеням свободы утверждает, если система частиц находится в состоянии термодинамического равновесия, то средняя кинетическая энергия хаотического движения молекул, приходящаяся на 1 степень свободы поступательного и вращательного движения, равна

    Следовательно, молекула, имеющая степеней свободы, обладает энергией

    – число молей, где – масса моля, и внутренняя энергия газа выражается формулой

    Внутренняя энергия идеального газа зависит только от температуры газа. Изменение внутренней энергии идеального газа определяется изменением температуры и не зависит от процесса, при котором это изменение произошло.

    Изменение внутренней энергии идеального газа

    где – изменение температуры.

    Закон равномерного распределения энергии распространяется на колебательное движение атомов в молекуле. На колебательную степень свободы приходится не только кинетическая энергия, но и потенциальная, причём среднее значение кинетической энергии, приходящейся на одну степень равно среднему значению потенциальной энергии, приходящемуся на одну степень свободы и равно

    Следовательно, если молекула имеет число степеней свободы
    i = i поступат + i вращат + i колеб, то средняя суммарная энергия молекулы: , а внутренняя энергия газа массы :

    11.2. Элементарная работа. Работа идеального газа
    при изопроцессах

    Если внешние силы совершают работу над системой, то работа отрицательная.

    Рассмотрим идеальный газ, находящийся под поршнем в цилиндре (рис. 11.6). Газ расширяется, и поршень поднимается на бесконечно малую высоту . Силу , действующую со стороны газа на поршень, находим по формуле

    V P (V ) и проходящими через концы отрезка параллельными оси ординат прямыми.

    Так как в состоянии равновесия давление во всех частях системы одинаково, то естественно допустить, что в газе отсутствуют какие-либо направленные движения молекул, то есть движения молекул предельно неупорядочены.

    В отношении скоростей молекулы это означает:

    Скорость молекул и ее проекции являются непрерывными величинами, так как ни одно значение скорости не имеет преимущества перед другими значениями;

    При тепловом равновесии в газе все направления скоростей молекул равновероятны. В противном случае это привело бы к образованию направленных макроскопических потоков молекул и возникновению перепадов давления.

    Так как скорость и ее проекции являются непрерывными величинами, вводится понятие функции плотности распределения f(v x), f(v y), f(v z) по компонентам скоростей молекул (v x , v y , v z) и по модулю скорости f(v)

    Выражения для функций плотности вероятности по компонентам скоростей v x , v y , v z имеют вид

    График функции f(v x)изображен на рис. 1.

    Функция имеет максимум при v x = 0, симметрична относительно его и экспоненциально стремится к нулю при v x ® ± ¥. Отложим по оси абсцисс элементарные скоростные интервалы dv x около значений v x , равных 0; ± v x ¢; ± v x ¢¢. Произведение f(v x) dv x равно доле молекул, компонента скорости v x которых лежит в интервале около указанных значений. С другой стороны, произведение f(v x) dv x на графике равно заштрихованным площадкам около выбранных скоростей.

    Из сопоставления размеров заштрихованных площадей следует:

    Относительное большинство молекул имеет проекцию скорости вдоль оси v x , близкую к нулю;

    Доли молекул, имеющих одинаковые значения v x , но летящие в противоположных направлениях (разные знаки +v x и -v x), одинаковы;

    Число молекул, имеющих большие значения компонент скоростей, мало (мала площадь около ± v x ¢¢).

    Аналогичный анализ можно провести и для f(v y), f(v z).

    График функции f(v) изображен на рис. 2.

    Функция равна 0 при v = 0; стремится к нулю при v ® ¥, при v = v b имеет максимум. Значение скорости v b , при которой функция плотности распределения достигает максимума, называется наиболее вероятной скоростью. Ее значение находится из условия экстремума.

    Произведение f(v) dv дает долю молекул, скорости которых лежат в выбранном интервале dv. На графике это произведение равно заштрихованным площадкам. Как видно из графика, максимальная площадка соответствует скорости v b . С увеличением скорости доля молекул, обладающих большими скоростями, уменьшается (малая площадь при v 3). Зная аналитический вид f(v), можно найти

    Распределение молекул по скоростям зависит от температуры.

    Закон Максвелла распределения молекул газа по скоростям описывает поведение очень большого числа частиц, то есть является статистическим законом. Распределение молекул по скоростям устанавливается посредством их столкновений. При столкновениях изменяются скорости отдельных молекул, но закон распределения по скоростям не изменяется.

    Характерными параметрами распределения Максвелла являются наиболее вероятная скорость υ в, соответствующая максимуму кривой распределения, и среднеквадратичная скорость где – среднее значение квадрата скорости.

    Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

    Еще по теме Распределение Максвелла по скоростям. Наиболее вероятная среднеквадратичная скорость движения молекулы.:

    1. 57. Молекулярно-кинетический смысл температуры. Энергия и скорость теплового движения молекул.
    2. Механическое движение Относительность движения, Система отсчета, Материальная точка, Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение