Реферат: Применение спектрального анализа. Спектральный анализ, его виды и области применения

Спектральный анализ подразделяют на несколько самостоятельных методов. Среди них выделяют: инфракрасную и ультрафиолетовую спектроскопию, атомно-абсорбционный, люминесцентный и флуоресцентный анализ, спектроскопию отражения и комбинационного рассеяния, спектрофотометрию, рентгеновскую спектроскопию, а также ряд других методов.

Абсорбционный спектральный анализ основан на изучении спектров поглощения электромагнитного излучения. Эмиссионный спектральный анализ проводится по спектрам испускания атомов, молекул или ионов, возбужденных различными способами.

Атомно-эмиссионный спектральный анализ

Спектральным анализом часто называют только атомно-эмиссионный спектральный анализ, который основан на исследовании спектров испускания свободных атомов и ионов в газовой фазе. Его проводят в области длин волн 150-800 нм. В источник излучения вводят пробу исследуемого вещества, после чего в нем происходит испарение и диссоциация молекул, а также возбуждение образовавшихся ионов. Они испускают излучение, которое фиксируется регистрирующим устройством спектрального прибора.

Работа со спектрами

Спектры проб сравнивают со спектрами известных элементов, которые можно найти в соответствующих таблицах спектральных линий. Так узнают состав анализируемого вещества. Количественный анализ подразумевает концентрации данного элемента в анализируемого веществе. Ее узнают по величине сигнала, например, по степени почернения или оптической плотности линий на фотопластинке, по интенсивности светового потока на фотоэлектрическом приемнике.

Виды спектров

Непрерывный спектр излучения дают вещества, находящиеся в твердом или жидком состоянии, а также плотные газы. В таком спектре нет разрывов, в нем представлены волны всех длин. Его характер зависит не только от свойств отдельных атомов, но и от их взаимодействия друг с другом.

Линейчатый спектр излучения характерен для веществ в газообразном состоянии, при этом атомы почти не взаимодействуют друг с другом. Дело в том, что изолированные атомы одного химического элемента излучают волны строго определенной длины волны.

При увеличении плотности газа спектральные линии начинают расширяться. Для наблюдения такого спектра используют свечение газового разряда в трубке или паров вещества в пламени. Если пропускать белый свет через неизлучающий газ, на фоне непрерывного спектра источника появятся темные линии спектра поглощения. Газ интенсивнее всего поглощает свет тех длин волн, которые он испускает в нагретом состоянии.

Впервые спектральный анализ попытались сделать Кирхгоф и Бунзен еще в 1859 году. Два создали спектроскоп, похожий на трубу неправильной формы. С одной стороны имелось отверстие (коллиматор), в которое попадали исследуемые лучи света. Внутри трубы располагалась призма, она отклоняла лучи и направляла их в сторону другого отверстия трубы. На выходе физики могли видеть свет, разложенный на спектр.

Ученые решили провести эксперимент. Затемнив комнату и завесив окно плотными шторами, они зажгли свечу возле щели коллиматора, а потом брали кусочки разных веществ и вводили их в пламя свечи, наблюдая, изменится ли спектр. И оказалось, что горячие пары каждого вещества давали различные спектры! Так как призма строго разделяла лучи и не давала им наслаиваться друг на друга, то по получившемуся спектру можно было точно идентифицировать вещество.

В дальнейшем Кирхгоф проанализировал спектр Солнца, обнаружив, что в его хромосфере присутствуют определенные химические элементы. Это дало начало астрофизике.

Особенности спектрального анализа

Для проведения спектрального анализа необходимо совсем малое количество вещества. Этот метод крайне чувствителен и очень быстр, что позволяет не только пользоваться им для самых разных нужд, но и делает его порой просто незаменимым. Точно известно, что каждый таблицы Менделеева излучает особенный спектр, только ему одному, поэтому при правильно проведенном спектральном анализе ошибиться практически невозможно.

Типы спектрального анализа

Спектральный анализ бывает атомный и молекулярный. Посредством атомного анализа можно выявить, соответственно, атомный состав вещества, а посредством молекулярного – молекулярный.

Способов измерить спектр существует два: эмиссионный и абсорбционный. Эмиссионный спектральный анализ проводится посредством изучения того, какой спектр излучают выбранные атомы или молекулы. Для этого им нужно придать энергию, то есть, возбудить их. Абсорбционный анализ, напротив, проводится по спектру поглощения электромагнитного изучения, направленного на объекты.

Посредством спектрального анализа можно измерить множество различных характеристик веществ, частиц или даже больших физических тел (например, космических объектов). Именно поэтому спектральный анализ дополнительно делится на различные методы. Чтобы получить требуемый для конкретной задачи результат, нужно правильно выбрать оборудование, длину волн для исследования спектра, а также саму область спектра.

Химический состав вещества – важнейшая характеристика используемых человечеством материалов. Без его точного знания невозможно со сколько-нибудь удовлетворительной точностью спланировать технологические процессы в промышленном производстве. В последнее время требования к определению химического состава вещества еще более ужесточились: многие сферы производственной и научной деятельности требуют материалы определенной «чистоты» - это требования точного, фиксированного состава, а также жесткого ограничения на наличие примесей инородных веществ. Всвязи с этими тенденциями разрабатываются все боле прогрессивные методики определения химического состава веществ. К ним относится и метод спектрального анализа, обеспечивающий точное и быстрое изучение химии материалов.

Фантастика света

Природа спектрального анализа

(спектроскопия ) изучает химический состав веществ на основе их способностей по испусканию и поглощению света. Известно, что каждый химический элемент испускает и поглощает характерный только для него световой спектр, при условии, что его можно привести к газообразному состоянию.

В соответствии с этим, возможно определение наличия этих веществ в том или ином материале по присущему только им спектру. Современные методы спектрального анализа позволяют установить наличие вещества массой до миллиардных долей грамма в пробе – за это ответственен показатель интенсивности излучения. Уникальность испускаемого спектра атомом характеризует его глубокую взаимосвязь с физической структурой.

Видимый свет представляет собой излучение с от 3,8 *10 -7 до 7,6*10 -7 м, ответственной за различные цвета. Вещества могут излучать свет только лишь в возбужденном состоянии (это состояние характеризуется повышенным уровнем внутренней ) при наличии постоянного источника энергии.

Получая избыточную энергию, атомы вещества излучают ее в виде света и возвращаются в свое обычное энергетическое состояние. Именно этот испускаемый атомами свет и используется для спектрального анализа. К самым распространенным видам излучения относят: тепловое излучение, электролюминесценция, катодолюминесценция, хемилюминесценция.

Спектральный анализ. Окрашивание пламени ионами металлов

Виды спектрального анализа

Различают эмиссионную и абсорбционную спектроскопию. Метод эмиссионной спектроскопии основан на свойствах элементов к излучению света. Для возбуждения атомов вещества используются высокотемпературный нагрев, равный нескольким сотням или даже тысячам градусов, – для этого пробу вещества помещают в пламя или в поле действия мощных электрических разрядов. Под воздействием высочайшей температуры молекулы вещества разделяются на атомы.

Атомы, получая избыточную энергию, излучают ее в виде квантов света различной длины волны, которые регистрируются спектральными аппаратами – приборами, визуально изображающими получившийся световой спектр. Спектральные аппараты служат также и разделительным элементом системы спектроскопии, потому как световой поток суммируется от всех присутствующих в пробе веществ, и в его задачи входит разделение общего массива света на спектры отдельных элементов и определение их интенсивности, которая позволит в будущем сделать выводы о величине присутствующего элемента в общей массе веществ.

  • В зависимости от методов наблюдения и регистрации спектров различают спектральные приборы: спектрографы и спектроскопы. Первые регистрируют спектр на фотопленке, а вторые делают доступным просмотр спектра для прямого наблюдения человеком через специальные зрительные трубы. Для определения размеров используются специализированные микроскопы, позволяющие с высокой точностью определить длину волны.
  • После регистрации светового спектра он подвергается тщательному анализу. Выявляются волны определенной длины и их положение в спектре. Далее выполняется соотношение их положения с принадлежностью к искомым веществам. Делается это с помощью сравнения данных положения волн с информацией, расположенной в методических таблицах, указывающих на типичные длины волн и спектры химических элементов.
  • Абсорбционная спектроскопия проводится подобно эмиссионной. В этом случае вещество помещают между источником света и спектральным аппаратом. Проходя через анализируемый материал, испущенный свет достигает спектрального аппарата с «провалами» (линии поглощения) по некоторым длинам волн – они и составляют поглощенный спектр исследуемого материала. Дальнейшая последовательность исследования аналогична для приведенного выше процесса эмиссионной спектроскопии.

Открытие спектрального анализа

Значение спектроскопии для науки

Спектральный анализ позволил человечеству открыть несколько элементов, которые невозможно было определить традиционными методами регистрации химических веществ. Это такие элементы, как рубидий, цезий, гелий (он был открыт с помощью спектроскопииСолнца – задолго до его обнаружения на Земле), индий, галлий и другие. Линии этих элементов были обнаружены в спектрах излучения газов, и на момент их исследования были неидентифицируемы.

Стало понятно, что это и есть новые, доселе неизвестные элементы. Серьезное влияние спектроскопия оказала на становление нынешнего вида металлургической и машиностроительной промышленности, атомной индустрии, сельское хозяйство, где стала одним из главных инструментов систематического анализа.

Огромное значение спектроскопия приобрела в астрофизике

Спровоцировав колоссальный скачок в понимании структуры Вселенной и утверждении того факта, что все сущее состоит из одних и тех же элементов, которыми, в том числе, изобилует и Земля. Сегодня метод спектрального анализа позволяет ученым определять химический состав находящихся за миллиарды километров от Земли звезд, туманностей, планет и галактик – эти объекты, естественно, не доступны методикам прямого анализа ввиду своего большого удаления.

С помощью метода абсорбционной спектроскопии возможно изучение далеких космических объектов, не обладающих собственным излучением. Это знание позволяет устанавливать важнейшие характеристики космических объектов: давление, температуру, особенности структуры строения и многое другое.

Спектральный анализ

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральные анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения.

Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта.

История

Тёмные линии на спектральных полосках были замечены давно, но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г. Кирхгоф и Р. Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а в 1861 году - рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг), необходимого для анализа на большое число элементов.

Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000-10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Применение

В последнее время, наибольшее распространение получили эмиссионные и масс-спектрометрические методы спектрального анализа, основанные на возбуждении атомов и их ионизации в аргоновой плазме индукционных разрядов, а также в лазерной искре.

Спектральный анализ - чувствительный метод и широко применяется в аналитической химии, астрофизике, металлургии, машиностроении, геологической разведке и других отраслях науки.

В теории обработки сигналов, спектральный анализ также означает анализ распределения энергии сигнала (например, звукового) по частотам, волновым числам и т. п.

См. также


Wikimedia Foundation . 2010 .

  • Балты
  • Северная Хань

Смотреть что такое "Спектральный анализ" в других словарях:

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - физич. методы качеств. .и количеств. определения состава в ва, основанные на получении и исследовании его спектров. Основа С. а. спектроскопия атомов и молекул, его классифицируют по целям анализа и типам спектров. Атомный С. а. (АСА) определяет… … Физическая энциклопедия

    Спектральный анализ - Измерение состава вещества, основанное на исследовании его спектров Источник … Словарь-справочник терминов нормативно-технической документации

    Спектральный анализ - см. Спектроскопия. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978. Спектральный анализ … Геологическая энциклопедия

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - Введенное Бунзеном и Кирхгофом в 1860 году химическое исследование вещества посредством свойственных этому последнему цветных линий, которые замечаются, если смотреть на него (во время улетучивания) через призму. Объяснение 25000 иностранных слов … Словарь иностранных слов русского языка

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - СПЕКТРАЛЬНЫЙ АНАЛИЗ, один из методов анализа, в к ром используются спектры (см. Спектроскопия, спектроскоп), даваемые тем» или иными телами при их накаливании! или при пропускании через растворы лучей, дающих сплошной спектр. Для… … Большая медицинская энциклопедия

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим. Различают атомный и молекулярный спектральный анализ, эмиссионный (по спектрам испускания) и абсорбционный (по спектрам… … Большой Энциклопедический словарь

    Спектральный анализ - математико статистический метод анализа временных рядов, при котором ряд рассматривется как сложная совокупность, смесь гармонических колебаний, накладываемых друг на друга. При этом основное внимание уделяется частоте… … Экономико-математический словарь

    СПЕКТРАЛЬНЫЙ АНАЛИЗ - физ. методы качественного и количественного определения хим. состава любых веществ на основе получения и исследования их оптического спектра. В зависимости от характера используемых спектров различают следующие их виды: испускания (эмиссионный С … Большая политехническая энциклопедия

    Спектральный анализ - I Спектральный анализ физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров. Физическая основа С. а. Спектроскопия атомов и молекул, его… … Большая советская энциклопедия

    Спектральный анализ - Содержание статьи. I. Свечение тел. Спектр лучеиспускания. Солнечный спектр. Фраунгоферовы линии. Призматический и дифракционный спектры. Цветорассеяние призмы и решетки. II. Спектроскопы. Коленчатый и прямой спектроскоп à vision directe.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Спектральный анализ был открыт в 1859 году Бунзеном и Кирхгофом, профессорами химии и физики одного из старейших и престижных учебных заведений Германии - Гейдельбергского университета имени Рупрехта и Карла. Открытие оптического метода исследования химического состава тел и их физического состояния содействовало выявлению новых химических элементов (индия, цезия, рубидия, гелия, таллия и галлия), возникновению астрофизики и стало своеобразным прорывом в различных направлениях научно-технического прогресса.

Прорыв в области науки и техники

Спектральный анализ значительно расширил области научного исследования, что позволило достигнуть более точных определений качества частиц и атомов, понять их взаимные соотношения и установить, чем обусловлено, что тела излучают световую энергию. Все это стало прорывом в области науки и техники, поскольку их дальнейшее развитие немыслимо без четкого знания химического состава веществ, являющихся объектами деятельности человека. Сегодня уже недостаточно ограничиться лишь определением примесей, к методам анализа веществ предъявляются новые требования. Так, при производстве полимерных материалов очень важна сверхвысокая чистота концентрации примесей в исходных мономерах, поскольку качество готовых полимеров нередко зависит именно от нее.

Возможности нового оптического метода

Повышенные требования предъявляются и к разработке методов, обеспечивающих точность и высокую скорость анализа. Химические методы анализа не всегда достаточны в этих целях, рядом ценных характеристик обладают физико-химические и физические способы определения химического состава. Среди них ведущее место занимает спектральный анализ, являющийся совокупностью методов количественного и качественного определения состава рассматриваемого объекта, основанную на исследовании спектров взаимодействия материи и излучения. Соответственно, сюда включаются также спектры акустических волн, электромагнитного излучения, распределения по энергиям и массам элементарных частиц. Благодаря спектральному анализу появилась возможность точно установить химический состав и температуру вещества, наличие магнитного поля и его напряженность, скорость движения и другие параметры. В основе метода заложено изучение строения света, излучаемого или поглощаемого анализируемым веществом. При запуске определенного пучка света на боковую грань трехгранной призмы составляющие белый свет лучи при преломлении создают на экране спектр, своеобразную радужную полоску, в которой все цвета всегда расположены в определенном неизменном порядке. Распространение света происходит в виде электромагнитных волн, определенная длина каждой из них соответствует одному из цветов радужной полосы. Определение химического состава материи по спектру очень схоже с методом нахождения преступника по отпечаткам пальцев. Линейчатым спектрам, как и узорам на пальцах, свойственна неповторимая индивидуальность. Благодаря этому и определяется химический состав. Спектральный анализ дает возможность обнаружить определенный компонент в составе сложного вещества, масса которого не выше 10-10. Это достаточно чувствительный метод. Для изучения спектров используются спектроскопы и спектрографы. В первых спектр рассматривают, а с помощью спектрографов его фотографируют. Полученный снимок называют спектрограммой.

Виды спектрального анализа

Выбор способа спектрального анализа во многом зависит от цели анализа и типов спектров. Так, для определения молекулярного и элементарного состава вещества применяются атомный и молекулярный анализы. В случае определения состава по спектрам испускания и поглощения используются эмиссионный и абсорбционный методы. При изучении изотопного состава объекта применим масс-спектрометрический анализ, осуществляемый по спектрам масс молекулярных или атомарных ионов.

Преимущества метода

Спектральный анализ определяет элементарный и молекулярный состав вещества, дает возможность провести качественное открытие отдельных элементов исследуемой пробы, а также получить количественное определение их концентраций. Близкие по химическим свойствам вещества очень трудно поддаются анализу химическими методами, но зато без проблем определяются спектрально. Это, например, смеси редкоземельных элементов или инертных газов. В настоящее время спектры всех атомов определены, и составлены их таблицы.

Области применения спектрального анализа

Лучше всего разработаны методики атомного спектрального анализа. Их используют для оценки самых разнообразных объектов в геологии, астрофизике, черной и цветной металлургии, химии, биологии, машиностроении и других отраслях науки и промышленности. В последнее время возрастает объем практического применения и молекулярного спектрального анализа. Его методы используются в химической, химико-фармацевтической и нефтеперерабатывающей промышленности для исследования органических веществ, реже и для неорганических соединений.

в научной среде позволило создать астрофизику. А в дальнейшем уже в новой отрасли удалось установить химический состав газовых облаков, звезд, Солнца, что совершенно невозможно было сделать с помощью других методов анализа. Данный способ также позволил найти по спектрам и многие другие физические характеристики этих объектов (давление, температуру, скорость движения, магнитную индукцию). Нашел применение спектральный анализ и в области криминалистики, с его помощью исследуются улики, найденные на месте преступления, определяется орудие убийства, раскрываются некоторые частности совершенного преступления.

Прогрессивные лабораторные методы диагностики

Широкое применение получил спектральный анализв медицине. Его используют для определения инородных веществ в организме человека, диагностирования, в том числе и онкологических заболеваний на ранней стадии их развития. Наличие или отсутствие многих заболеваний можно определить по лабораторному анализу крови. Чаще это болезни органов ЖКТ, мочеполовой сферы. Количество заболеваний, которые определяет спектральный анализ крови, постепенно увеличивается. Этот метод дает самую высокую точность при выявлении биохимических изменений в крови в случае сбоя в работе какого-либо органа человека. В ходе исследования специальными приборами регистрируются инфракрасные спектры поглощения, возникающие в результате колебательного движения молекул, сыворотки крови, и определяются любые отклонения ее молекулярного состава. Спектральным анализом проверяют также минеральный состав тела. Материалом для исследования в данном случае служат волосы. Любой дисбаланс, дефицит или избыток минералов часто связан с целым рядом заболеваний, таких как болезни крови, кожи, сердечно-сосудистой, пищеварительной системы, аллергия, нарушения развития и роста детей, снижение иммунитета, утомляемость и слабость. Подобные виды анализов считаются новейшими прогрессивными лабораторными методами диагностики.

Уникальность метода

Спектральный анализ на сегодняшний день нашел применение практически во всех наиболее существенных сферах человеческой деятельности: в промышленности, в медицине, в криминалистике и других отраслях. Он является важнейшим аспектом развития научного прогресса, а также уровня и качества жизни человека.