Рефракция глаза – механизм и функции. Что такое рефракция

Глаз человека – это в конечном счете прибор для приема и переработки световой информации. Его ближайшим техническим аналогом является телевизионная видеокамера.


Ю. З. Розенблюм, доктор медицинских наук, профессор,
руководитель лаборатории офтальмоэргономики и оптометрии
Московского НИИ глазных болезней имени Гельмгольца.

"Основная цель данной книги - помочь читателю понять, как работают его глаза и как можно эту работу улучшить. Ибо дело врача - показать пациенту все пути, ведущие к его выздоровлению (точнее, реабилитации), а уж окончательный выбор этого пути - дело пациента."

Что такое рефракция?

Глаз человека - это в конечном счете прибор для приема и переработки световой информации. Его ближайшим техническим аналогом является телевизионная видеокамера. Как глаз, так и камера состоят из двух частей: оптической системы, формирующей изображение на какой-то поверхности, и растра - мозаики из светочувствительных элементов, которые превращают световой сигнал в какой-то другой (чаще всего электрический), который можно передать в накопитель информации. В случае глаза таким накопителем является человеческий мозг, в случае видеокамеры - магнитофонная лента. На рисунке 1 схематически показано устройство глаза в сравнении с устройством видеокамеры.

Как и у видеокамеры, у глаза есть объектив. Он состоит из двух линз: первая представлена роговой оболочкой, или роговицей, - прозрачной выпуклой пластинкой, вставленной спереди в плотную оболочку глаза (склеру) наподобие часового стекла. Вторая представлена хрусталиком - чечевицеобразной двояковыпуклой линзой, сильно преломляющей свет. В отличие от видеокамеры и других технических камер, эта линза сделана из эластичного материала, и ее поверхности (особенно передняя) могут менять свою кривизну.

Достигается это следующим образом. Хрусталик в глазу «подвешен» на тонких радиальных нитях, которые охватывают его круговым поясом. Наружные концы этих нитей прикрепляются к специальной круговой мышце, которая называется ресничной. Когда эта мышца расслаблена, то кольцо, образуемое ее телом, имеет большой диаметр, нити, держащие хрусталик, натянуты, и его кривизна, а следовательно и преломляющая сила, минимальна. Когда же ресничная мышца напрягается, ее кольцо сужается, нити расслабляются, и хрусталик становится более выпуклым и, следовательно, более сильно преломляющим. Это свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется аккомодацией. Заметим, что и технические системы обладают этим свойством: это наводка на резкость при изменении расстояния до предмета, только она осуществляется не изменением кривизны линз, а их перемещением вперед или назад по оптической оси.

В отличие от видеокамеры, глаз заполнен не воздухом, а жидкостью: пространство между роговицей и хрусталиком заполнено так называемой камерной влагой, а пространство позади хрусталика - студнеобразной массой (стекловидным телом). Еще один общий элемент у глаза и видеокамеры - диафрагма. В глазу это зрачок - круглое отверстие в радужной оболочке, диск, который находится за роговицей и определяет цвет глаза. Функция этой оболочки - ограничивать поступление света в глаз при очень яркой освещенности. Это достигается сужением зрачка при высокой освещенности и расширением - при низкой. Радужная оболочка переходит в ресничное тело, содержащее уже упомянутую нами ресничную мышцу, а затем в сосудистую оболочку, которая представляет собой густую сеть кровеносных сосудов, выстилающую изнутри склеру и питающую все ткани глаза.

Наконец, важнейшим элементом обеих систем является светочувствительный растр. В камере это сеть крошечных фотоэлементов, перерабатывающих световой сигнал в электрический. В глазу это специальная оболочка - сетчатка. Сетчатка - достаточно сложное устройство, главным в котором является тонкий слой светочувствительных клеток - фоторецепторов. Они бывают двух видов: отвечающие на слабый засвет (так называемые палочки) и отвечающие на сильный засвет (колбочки). Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке кроме самого центра. Благодаря им, обнаруживаются предметы на периферии поля зрения, в том числе при низкой освещенности. Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом «желтом пятне». Фоторецепторы при изменении количества падающего на них света генерируют электрический потенциал, который передается на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных «помех» в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы. В конечном счете вся эта информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва, которые начинаются от ганглиозных клеток и идут в мозг. Зрительный нерв - аналог кабеля, который передает сигнал от фотоэлементов на регистрирующее устройство в видеокамере. Разница только в том, что в сетчатке существует не просто передатчик изображения, но и «компьютер», занимающийся обработкой изображения.

Существует поверье, что новорожденный младенец видит мир перевернутым и только постепенно, сопоставляя видимое с осязаемым, учится видеть все правильно. Это весьма наивное представление. Хотя на сетчатке глаза действительно возникает перевернутое изображение видимой картины, это вовсе не означает, что такое же изображение отпечатывается в мозгу. Надо сказать, что «изображение» (если под ним понимать распределение в пространстве возбужденных и невозбужденных нервных клеток - нейронов) в зрительном центре - а он находится на берегах шпорной борозды затылочной коры мозга - весьма сильно отличается от картинки на сетчатке. В нем гораздо крупнее и детальнее изображен центр картинки, чем ее периферия, выделяются резкие перепады освещенности - контуры предметов, каким-то образом отделяются движущиеся детали от неподвижных. Словом, в зрительной системе происходит не просто передача изображения, как в телефаксе, а одновременно его расшифровка и отбрасывание ненужных или менее нужных деталей. Впрочем, сейчас уже изобрели технические системы по сжатию информации для ее экономной передачи и хранения. Нечто подобное происходит и в человеческом мозге. Но наша тема - не обработка изображения, а его получение. Для того, чтобы оно было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза. Возможны три случая, схематически изображенные на рисунке 2: либо сетчатка находится впереди фокуса, либо в фокусе, либо позади него. Во втором случае изображение предметов, находящихся вдали («в бесконечности»), будет резким, четким, в остальных двух оно будет размытым, нечетким. Но есть разница: в первом случае никакие внешние предметы не видны четко, причем близкие видны еще хуже, чем удаленные, тогда как в третьем случае есть какое-то конечное расстояние от глаза, на котором предметы видны четко.

Относительное положение фокусной точки глаза и сетчатки называется клинической рефракцией, или просто рефракцией, глаза. Случай, когда фокус лежит за сетчаткой, называется дальнозоркостью (гиперметропией), когда на сетчатке - соразмерной рефракцией (эмметропией), когда перед сетчаткой - близорукостью (миопией). Из сказанного должно быть ясно, что близорукость - удачный термин, поскольку такой глаз хорошо видит вблизи, а дальнозоркость - неудачный термин, поскольку такой глаз плохо видит и вдаль, и вблизи.
В случае дальнозоркости или близорукости зрение может быть исправлено с помощью очков. Действие очков основано на свойстве сферических линз собирать или рассеивать лучи. При дальнозоркости в очки должна быть вставлена выпуклая (собирательная) очковая линза (рис. 3), при близорукости - вогнутая (рассеивающая) очковая линза (рис. 4). Выпуклые очковые линзы обозначаются знаком «+», а вогнутые знаком «-».

Степень близорукости и дальнозоркости измеряется преломляющей силой той линзы, которая их исправляет.
Напомним, что преломляющая сила (рефракция) линзы - это величина, обратная ее фокусному расстоянию, выраженному в метрах. Измеряется она в диоптриях. Очковая линза силой в одну диоптрию (обозначается латинской буквой 1 D, по-русски 1 дптр) имеет фокусное расстояние в 1 метр, две диоптрии - в 1/2 метра, десять диоптрий - в 1/10 метра и так далее.

Итак, когда говорят, что у человека близорукость 2 диоптрии, это означает, что фокус его глаза находится перед сетчаткой и что человек четко видит предметы, находящиеся на расстоянии 1/2 метра от глаз, и для того чтобы резко увидеть далекие предметы, ему необходимо поместить перед глазами вогнутые очковые линзы силой -2 D. А дальнозоркость в 5 диоптрий означает, что нужна выпуклая линза +5 D. В реальном пространстве нет такого расстояния, на котором бы дальнозоркий глаз, в отличие от близорукого, хорошо видел.

Впрочем, так ли это на самом деле? Ведь мы до сих пор не принимали в расчет аккомодацию, то есть считали, что рефракция глаза постоянна. Однако это не так. Благодаря ресничной мышце выпуклость поверхностей хрусталика, а следовательно и вся рефракция глаза, может меняться. Схематически процесс аккомодации показан на рисунке 5. Сверху изображен соразмерный глаз при расслабленной ресничной мышце, то есть при покое аккомодации, снизу - при сокращенной ресничной мышце, то есть при напряжении аккомодации. В первом случае глаз сфокусирован на предмет, находящийся в бесконечности, во втором - на предмет, находящийся на конечном расстоянии. Значит, аккомодация может изменять рефракцию глаза - превращать соразмерный глаз в близорукий, а дальнозоркий - в соразмерный.

Может быть, тогда очки вообще не нужны? Нет, аккомодация не всегда может заменить очки. Как мы уже говорили, в спокойном состоянии ресничная мышца расслаблена, значит, рефракция глаза в этом состоянии слабейшая. Здесь нужно сделать одну оговорку: слабая рефракция - это дальнозоркость, хотя она обозначается знаком «+», а сильная - близорукость, хотя она обозначается знаком «-». Итак, глаз в спокойном состоянии аккомодации «максимально дальнозоркий», а в напряженном - «максимально близорукий». Отсюда следует, что напряжение аккомодации может исправлять дальнозоркость и не может исправлять близорукость.

Правда, периодически появляются сообщения об обнаружении отрицательной аккомодации, но никому пока не удалось показать, что она может быть больше 1 диоптрии. Аккомодация, как и рефракция, измеряется в диоптриях. Для соразмерного глаза степень ее напряжения означает расстояние ясного видения: так, при аккомодации в 2 диоптрии глаз видит четко на 1/2 метра, в 3 диоптрии - на 1/3 метра, в 10 диоптрий - на 1/10 метра и так далее.
Для дальнозоркого глаза аккомодация выполняет еще и задачу исправления дальнозоркости при зрении вдаль. Значит, дальнозоркость требует постоянного напряжения аккомодации. При дальнозоркости большой степени такая задача становится для ресничной мышцы непосильной. Но и при умеренной дальнозоркости (и даже при соразмерной рефракции) рано или поздно возникает необходимость в очках. Дело в том, что с 18-20 лет ресничная мышца начинает ослабевать. Точнее, ослабевает способность к аккомодации, хотя до сих пор не ясно, связано это с ослаблением ресничной мышцы или с отвердением хрусталика.

В возрасте старше 35-40 лет даже человеку с соразмерной (эмметропической) рефракцией бывают необходимы очки для работы на близком расстоянии. Если считать рабочим расстоянием 33 сантиметра (нормальное расстояние от глаз до книги), то человеку после 30 лет для замены слабеющей аккомодации бывают необходимы «плюсовые» очки, в среднем, по одной диоптрии на каждые 10 лет, то есть: 40-летнему - 1 диоптрия, 50-летнему - 2 диоптрии, 60-летнему - 3 диоптрии. При дальнозоркости к этим цифрам еще нужно прибавлять ее степень. Людям старше 60 лет силу очковых линз обычно уже не увеличивают, так как «плюсовые» очковые линзы в 3 диоптрии полностью заменяют аккомодацию на 33-сантиметровое расстояние. Только тогда, когда острота зрения слабеет и человеку приходится придвигать книгу еще ближе к глазам, оптическую силу очковых линз увеличивают, однако это уже другое использование очковые линз - не для исправления нарушений рефракции и аккомодации, а для увеличения изображения. Возрастное ослабление аккомодации получило название «пресбиопия».
Итак, каждый глаз обладает рефракцией и определенным объемом аккомодации. Последняя обеспечивает четкое видение на разных расстояниях и до известной степени может компенсировать дальнозоркость. Две крайние точки объема аккомодации называются ближайшей и дальнейшей точками ясного видения. Схематически положение этих точек для дальнозоркого, близорукого и соразмерного глаза показано на рисунке 6. На этом рисунке даны две шкалы расстояний: в диоптриях и в сантиметрах. Понятно, что вторая шкала распространяется только на рефракцию отрицательных значений. Для рефракции положительных значений дальнейшая точка ясного видения лежит не в реальном, а в «отрицательном» пространстве, то есть лежит как бы «за глазом».

Органом, непосредственно реализующим аккомодацию, является хрусталик. Без него аккомодация невозможна. А зрение, оказывается, возможно. И это впервые показал французский хирург Жак Давиэль более двухсот лет тому назад. Он первым провел операцию удаления катаракты. Катаракта - это помутнение хрусталика, одна из самых частых причин слепоты в пожилом возрасте. Глаз без хрусталика видит, но очень нечетко, потому что у человека появляется дальнозоркость приблизительно 10-12 D. Для восстановления зрения такому человеку необходимы очки с сильными «плюсовыми» очковыми линзами.
Сейчас после удаления катаракты внутрь глаза в большинстве случаев вставляют маленькую очковую линзу - искусственный хрусталик из органического стекла. Первым эту операцию стал проводить английский хирург Ридли. Во время Второй мировой войны ему приходилось оперировать раненных в глаза летчиков. Он обратил внимание на то, что глаз почти не реагирует на попавшие внутрь него осколки от лобового стекла, сделанного из плексигласа, в то время как на металлические осколки отвечает бурным воспалением. И тогда Ридли попробовал вставлять вместо хрусталика линзы из плексигласа. За прошедшие десятилетия сами линзы, да и способ имплантации сильно изменились. Теперь такие линзы делают из различных материалов, в том числе силикона, коллагена и даже искусственного алмаза лейкосапфира. Но принцип замены мутного хрусталика внутриглазной линзой остался прежним. Линза избавляет человека от тяжелых и неудобных очков и не имеет их недостатков - сильного увеличения, ограничения поля зрения и призматического действия на периферии.

Остается добавить, что состояние глаза без хрусталика называется афакией (а - отрицание, факос - линза), а с искусственным хрусталиком - артифакией (или псевдофакией). Два вида коррекции афакии (очками и внутриглазной линзой) изображены на рисунке 7.

Рефракция в жизни

До сих пор мы рассматривали теоретический «средний» глаз. Обратимся теперь к реальному человеческому глазу. От чего зависит его рефракция? Очевидно, с одной стороны, от взаимоотношения преломляющей силы «объектива», то есть роговицы и хрусталика, и с другой, от расстояния от вершины роговицы до сетчатки, то есть длины оси самого глаза. Чем больше преломляющая сила и чем длиннее глаз, тем сильнее его рефракция, то есть тем меньше дальнозоркость и больше близорукость.

Если все эти величины - роговица, хрусталик и ось - распределяются более или менее случайно вокруг какого-то среднего для каждой из них значения, то и рефракция должна распределяться так же. Встречаемость разных видов рефракции должна подчинятся так называемой гауссовой кривой с тупой вершиной и симметричными пологими плечами. При этом соразмерная рефракция (эмметропия) должна быть достаточно редким явлением.

Первым, кто изучил статистику кривизны роговицы, был немецкий ученый Штейгер. Он получил действительно равномерное распределение кривизны (и, следовательно, преломляющей силы) роговой оболочки среди взрослого населения (рис. 8).

Позднее, когда с помощью оптических приборов научились измерять преломляющую силу хрусталика, а с помощью ультразвука - длину оси глаза, оказалось, что эти параметры подчиняются гауссовскому распределению. Казалось бы, и распределение глаз по рефракции должно подчиняться этому же закону. Но первые же статистические исследования рефракции в разных популяциях взрослых людей выявили совсем иную картину. Кривая распределения рефракции («рефракционная кривая») имеет очень острую вершину в области слабой (около 1 D) дальнозоркости и несимметричные скаты - более крутой в сторону значений положительных значений (дальнозоркость) и более пологий в сторону отрицательных значений (близорукость). Эта кривая, заимствованная из работы Бетша, показана жирной линией на рисунке 9. Но на этом рисунке есть и вторая, пунктирная, линия, показывающая гауссовское распределение с максимумом в области около +3 D.

Что это за кривая? Это распределение рефракции у новорожденных детей, которое получили французский офтальмолог Вибо и российский офтальмолог И.Г. Титов.

Значит, когда человек рождается, его рефракция определяется случайным сочетанием преломляющей силы хрусталика и роговицы и длины оси глаза, а за время жизни происходит какой-то процесс, заставляющий сформировать в большинстве глаз слабую дальнозоркость, близкую к эмметропии. Немецкий врач Штрауб в 1909 году назвал этот процесс «эмметропизацией», а четверть века спустя ленинградский профессор Е.Ж. Трон нашел его материальный субстрат - отрицательную корреляцию длины оси глаза с его преломляющей силой. При этом оказалось, что рефракцию определяет почти исключительно длина оси глаз, тогда как распределение преломляющей силы роговицы и хрусталика остается таким же случайным, как и при рождении. Большие глаза близорукие, маленькие - дальнозоркие. С возникновением ультразвуковой техники появилась возможность легко измерять длину оси глаза. Было подтверждено, что все отклонения (или, как их называют, аномалии) рефракции обусловлены или недостаточным (дальнозоркость) или избыточным (близорукость) ростом глазного яблока, причем каждый миллиметр длины оси означает примерно 3 диоптрии рефракции.
Когда и как осуществляется процесс эмметропизации? Ответ на первый вопрос дали статистические исследования рефракции у детей разных возрастов. Такие исследования проводились как в больших группах детей разных возрастов («поперечный срез»), так и в небольших группах одних и тех же детей, прослеженных на протяжении нескольких лет («продольный срез»). В Англии эту работу провел А. Сорсби, в России Э.С. Аветисов и Л.П. Козорез. Результаты этих работ были сходными: широкое распределение значения рефракции с максимумом в области дальнозоркости (2-3 D) сменялось узким распределением с максимумом в области дальнозоркости (0,5-1,0 D) в основном в течение первого года жизни ребенка. Схематически это показано на рисунке 10, где жирной чертой обозначено среднее значение рефракции, а заштрихованная зона показывает дисперсию рефракции по среднему квадратичному отклонению.

Процесс эмметропизации продолжается до 6-7 лет, но значительно менее интенсивно. В основном, при этом происходит согласованный рост всех частей глаза, который поддерживает состояние, близкое к эмметропии. Но как тогда у людей возникает дальнозоркость и близорукость?

Происхождение этих двух видов аномалий рефракции различно. Дальнозоркость остается у тех детей, у которых при рождении глаза были слишком маленькими, а также у тех, у кого механизм эмметропизации по какой-то причине нарушился и глаза перестали расти. Отсюда следует, что дальнозоркость - врожденное состояние. Она не может возникать в течение жизни и практически не может расти. Если взрослый человек обнаруживает, что у него вдруг появилась дальнозоркость, это значит, что она у него была всегда, но до поры до времени он ее компенсировал постоянным напряжением аккомодации.

Иначе обстоит дело с близорукостью. Она тоже может быть врожденной, но это бывает редко. Врожденная близорукость обычно сочетается с другими аномалиями развития глаза или организма. Чаще, чем при других условиях, встречается врожденная близорукость у недоношенных детей. Но и она составляет ничтожный процент от всей близорукости, имеющейся среди населения, от той массы «очкастых», которых я подсчитывал в метро (поскольку их абсолютное большинство составляют именно близорукие).

Когда же возникает эта приобретенная близорукость? Раньше мы говорили, что в основном на втором десятке лет жизни, сейчас, увы, близорукость начала появляться у детей примерно 7-15-летнего возраста. Мы уже говорили, что близорукость всегда связана с избыточным ростом глаз. В основе лежит растяжение плотной оболочки глазного яблока (склеры) в переднезаднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Отсюда следует важный вывод: возникнув, близорукость не может уменьшаться, и тем более, исчезать. Она может только увеличиваться, или, как говорят офтальмологи, прогрессировать. Каковы причины избыточного роста глаза? Прежде всего, наследственное предрасположение. Давно замечено, что у близоруких родителей значительно чаще, чем среди всего населения в среднем, рождаются близорукие дети. Попытки выделить «ген близорукости» ни к чему не привели. На формирование рефракции оказывают влияние множество генов. И не только гены, но и внешние условия развития человека.

Среди этих условий особое место занимает зрительная работа на близком расстоянии. Чем раньше она начинается, чем ближе предмет работы (чаще всего книга) к глазам, чем больше часов в день она занимает, тем больше вероятность, что человек приобретет близорукость, и тем больше она будет прогрессировать. Американский исследователь Янг сажал обезьян-макак под непрозрачный колпак с расстоянием от глаз до стенки в 35 сантиметров. Через 6-8 недель у всех обезьян развивалась близорукость около 0,75 D. Может быть, в таких условиях у всех подопытных людей тоже появилась бы близорукость? Однако в реальной жизни она все-таки развивается даже не у всех прилежных школьников.
Профессор Э.С. Аветисов из Московского института глазных болезней имени Гельмгольца в 1965 году предположил, что все дело в аккомодации. И действительно, когда у большинства случайно отобранных групп школьников стали замерять способность к аккомодации, а затем проверяли их рефракцию на протяжении 2-3 лет, оказалось, что у детей с ослабленной аккомодацией близорукость развивается в 5 раз чаще, чем у детей с нормальной аккомодацией. Значит, в этих случаях вступает в силу какой-то таинственный «регулятор», который приспосабливает глаз к работе на близком расстоянии, но не путем усиления преломления хрусталика (на которое глазу не хватает силы), а путем удлинения оси глаза. А это, увы, необратимо, и такой глаз уже не может видеть четко вдаль. Сам «регулятор» пока не найден, но поиски в этом направлении ведутся. Правда, речь идет о том, что на процесс формирования рефракции влияет не аккомодация, а само зрение.

Знаменитый нейрофизиолог Торстен Визел, получивший Нобелевскую премию за исследования механизмов переработки зрительной информации в мозге, разработал методику депривации: животному сразу после рождения закрывали один или оба глаза (например сшивали веки), а затем исследовали, какие структуры в мозге подверглись атрофии, усыханию. В 1972 году Равиола, ученик Визела, обнаружил у обезьян при таком сшивании одного из век, что, помимо снижения зрения, на «депривированном» глазу у них развивается близорукость. Настоящая «осевая» близорукость за счет удлинения глаза! Опыт был многократно повторен, правда, результаты при этом не у всех животных получились одинаковыми. У кроликов, например, наблюдалась иная закономерность: рефракция на депривированном глазу существенно отличалась от рефракции парного глаза, но с равной частотой возникала либо дальнозоркость, либо близорукость. Как ни странно, животными, наиболее постоянно отвечавшими на депривацию развитием близорукости, оказались обыкновенные домашние куры. Энтузиаст-биолог Уоллмен организовал в Нью-Йорке целую лабораторию по изучению депривационной близорукости у цыплят. Оказалось, что она развивается не только при закрытии доступа света в глаз, но и при уничтожении четкости изображения, например при установке перед глазом матового стекла (у человека известен аналог такого опыта: развитие односторонней близорукости на глазу с врожденным помутнением роговицы). Кроме того, выяснилось, что депривационная близорукость развивается, даже если предварительно был перерезан зрительный нерв и, соответственно, зрительный сигнал в мозг не поступал. Отсюда Уоллмен с сотрудниками сделали вывод, что механизм управления ростом глаза находится в сетчатке. Остается только найти этот механизм, то есть химические вещества, которые стимулируют либо тормозят рост оболочек глаза.
Трудно пока сказать, насколько результаты этих исследований применимы к человеку. Во всяком случае, вряд ли их можно перенести на типичную приобретенную детскую близорукость, которую часто называют «школьной».

Но вернемся к нашей возрастной динамике рефракции и продолжим ее дальше (рис. 11). Благодаря развитию школьной близорукости среднее значение рефракции продолжает увеличиваться и у детей старше 6 лет. Эта близорукость, как уже говорилось, появляется в основном в возрасте 7-15 лет и первые четыре года, как правило, прогрессирует. Такие данные были получены профессором О.Г. Левченко из Ташкента. В большинстве случаев (85-90 процентов) степень близорукости не достигает 6 D. Однако в оставшихся 10-15 процентах случаев прогрессирование продолжается. Глаз продолжает расти и сильнее вытягиваться в переднезаднем направлении. Это может привести к тяжелым осложнениям - кровоизлияниям, дегенерации сетчатки или ее отслойке и полной потере зрения. Недаром высокая осложненная близорукость занимает одно из ведущих мест среди причин инвалидности по зрению.

В этой стадии прогрессирования близорукости ведущим механизмом является уже не слабая аккомодация (поскольку при близорукости выше 3 D аккомодация вообще практически не используется). Главную роль в прогрессировании близорукости, как показали исследования Э.С. Аветисова с сотрудниками (Н.Ф. Савицкая, Е.П. Тарутта, Е.Н. Иомдина, М.И. Винецкая), играет ослабление склеры и ее растяжение под влиянием внутриглазного давления. Основу склеры, ее остов, составляет специальный белок - коллаген, образующий плотные и длинные волокна. В близоруком глазу сеть этих волокон разрежена, сами волокна истончены и гораздо легче растягиваются и разрываются, чем волокна в нормально видящем глазу. Постоянное давление жидкости внутри глаза (равное примерно 20 миллиметрам ртутного столба) растягивает волокна коллагена и вместе с ними склеру, причем волокна устроены так, что они легче растягиваются в переднезаднем направлении. Происходит то, о чем мы писали выше: глаз вместо шаровидной формы приобретает форму эллипсоида, его переднезадняя ось растет, соответственно сетчатка отодвигается от фокусной точки, и близорукость прогрессирует. До какого-то момента внутренние оболочки глаза - сосудистая и сетчатка - растягиваются вместе со склерой. Однако они менее устойчивы к растяжению. Кровеносные сосуды, составляющие основную массу сосудистой оболочки, могут разрываться, приводя к внутриглазным кровоизлияниям. Еще хуже обстоит дело с сетчаткой. При растяжении в ней образуются разрывы - дырки. Через них под сетчатку может подтечь внутриглазная жидкость, ведя к одному из самых грозных осложнений близорукости - отслойке сетчатке. Если не сделать операцию, то отслойка сетчатки, как правило, приводит к слепоте. Но и без отслойки растяжение сетчатки может привести к ее перерождению - дистрофии. Особенно уязвима центральная часть сетчатки - желтое пятно (макула), гибель которого вызывает потерю центрального зрения.

К счастью, эти осложнения встречаются достаточно редко и, как правило, только при близорукости высокой степени. Но помнить о них и врач, и пациент должны всегда.

Именно из-за опасности осложнений людям с высокой близорукостью (выше 8 D) не рекомендуются занятия, связанные с подъемом тяжестей и резким сотрясением тела. Им противопоказаны силовые и бойцовские виды спорта, не рекомендуется тяжелый физический труд.
Высокая осложненная близорукость - достаточно специфическое состояние. Некоторые офтальмологи предлагают считать ее самостоятельным заболеванием («миопическая болезнь», «патологическая миопия»). Однако начинается она обычно так же, как и обычная «школьная» близорукость, и очень непросто уловить момент, когда она переходит в болезнь.

Ну, а что происходит в течение жизни с остальными, «нормальными», видами рефракции? На графике рисунка 12 мы видим, что с 18 до 30-40 лет рефракция меняется незначительно. Остается довольно узкая полоса распределения, то есть сохраняется тенденция к эмметропизации. Начиная примерно с четвертого десятилетия жизни разброс рефракций увеличивается, а «средняя» рефракция начинает уходить в сторону дальнозоркости. За счет чего происходит эта «антиэмметропизация». За счет продолжения умеренного прогрессирования близорукости и ее позднего начала у лиц, занимающихся зрительно-напряженным трудом, а также за счет дальнозоркости у тех людей, которые раньше компенсировали ее напряжением аккомодации и относили себя к эмметропам, то есть к лицам с соразмерной рефракцией. Зрение таких людей раньше было нормальным, а теперь становится пониженным.

Особенно большой разброс рефракций наступает у людей старше 60 лет, когда может вновь появляться или снова расти как близорукость, так и дальнозоркость. Это связано главным образом с изменением преломления в хрусталике, объясняющимся старением белка, из которого он образован.

С возрастом, как мы видели, связано и изменение аккомодации. Удобнее всего это можно проследить на аналогичном графике (рис. 13). Но здесь мы уже не станем отображать разброс, а только укажем среднее значение всех характерных точек.

При рождении аккомодация почти не развита, то есть ближайшая точка ясного видения совпадает с дальнейшей. Казалось бы, ресничная мышца должна находиться в состоянии покоя, и при исследовании рефракции в обычном состоянии у большинства младенцев должна быть обнаружена умеренная дальнозоркость. Оказалось, это не так. В 1969 году Л.П. Хухрина в Институте имени Гельмгольца и Е.М. Ковалевский с М.Р. Гусевой во Втором Московском мединституте почти в одно и то же время обнаружили, что у новорожденных детей ресничная мышца находится в состоянии спазма. При обычном исследовании рефракции с помощью глазного зеркала у подавляющего большинства детей была обнаружена близорукость. И только когда им закапывали в глаза атропин (вещество, парализующее ресничную мышцу), выявлялась истинная рефракция - в большинстве случаев, как уже говорилось, дальнозоркость. Довольно быстро, в течение первого года жизни, этот спазм проходит. Однако не всегда и не у всех. Склонность к постоянному напряжению ресничной мышцы остается у многих детей дошкольного и школьного возраста. Вот почему при исследовании рефракции и подборе очков детям приходится закапывать в глаза атропин или подобные ему вещества. Атропин парализует аккомодацию на одну-две недели. Для школьников это слишком долгий срок, поскольку они не могут в это время читать и писать. Поэтому сейчас стараются использовать более мягкие лекарства - гоматропин, скополамин, или зарубежного производства - цикложил, мидриажил, тропикамид, которые парализуют ресничную мышцу на 1-2 дня.

Итак, аккомодация у детей еще не развита, часто подвергается перенапряжению, спазму. Ее объем невелик, именно поэтому так опасна в этом возрасте чрезмерная зрительн

Глаз человека представляет собой сложно устроенную природную линзу. К этой линзе применимы все характеристики, которые определяют свойства иных оптических систем.

Одной из таких характеристик является рефракция, от которой зависит острота зрения и отчетливость получаемого в глазах изображения.

Другими словами, рефракция – это процесс преломления лучей света, что выражается этимологией слова (refractio – «преломление» с латыни).

Под преломлением подразумеваются способ и степень изменения направления лучей, проходящих через оптическую систему.

Знакомство

Единая система глаза состоит из четырех подсистем: две стороны хрусталика и две стороны роговицы. Каждая из них имеет свою рефракцию, в своей совокупности они формируют общий уровень преломления органа зрения.

Также рефракция зависит от длины оси глаза, эта характеристика определяет, будут ли сходиться лучи на сетчатке при данной силе преломления, или же осевое расстояние слишком велико или мало для этого.

В медицинской практике используются два подхода к измерению рефракции: физический и клинический. Первый метод оценивает систему из роговицы и хрусталика саму по себе, вне ее связи с прочими биологическими подсистемами глаза.

Здесь характеристики глаз оцениваются по аналогии со всеми прочими видами физических линз без учета специфики человеческого зрения. Измеряется физическая рефракция в диоптриях.

Диоптрия – это единица измерения оптической силы линзы. Данная величина обратна фокусному расстоянию линзы (F) – расстоянию, на котором преломляемые ей лучи сходятся в одной точке.

Это значит, что при фокусном расстоянии в один метр сила рефракции будет равна одной диоптрии, а фокусному расстоянию 0,1 метров (10 см) соответствует сила рефракции 10 дптр (1/0,1).

Средняя степень рефракции здорового человеческого глаза составляет 60 дптр (F=17 мм).

Но одной лишь этой характеристики недостаточно для полноценной диагностики остроты зрения. При оптимальной силе преломления глазной линзы человек все равно может не видеть четкого изображения. Это связано с тем, что здесь большую роль играет строение глаза.

Если оно неправильное, то лучи света не будут попадать на сетчатку даже при нормальном фокусном расстоянии. Из-за этого в офтальмологии используется комплексный параметр – клиническая (статистическая) рефракция, она выражает взаимосвязь физической рефракции с длиной оси глаза и с расположением сетчатки.

Виды

Эмметропическая

Эмметропической рефракцией называется такое преломление лучей, при котором длина оси глаза и фокусное расстояние равны, следовательно, световые лучи сходятся в точности на сетчатке, и в мозг поступает информация о четком изображении.

Точка ясного зрения (расстояние, с которого лучи могут фокусироваться на сетчатке) здесь устремлена в бесконечность, то есть человек может легко видеть далеко расположенные предметы, возможность получения изображения ограничивается лишь их размером.

Эмметропия считается неотъемлемой характеристикой здорового глаза, измерение остроты зрения по таблице Ситцева при такой рефракции даст результат 1.0.

Легко дается эмметропному глазу и рассмотрение близлежащих объектов с помощью усиления рефракции хрусталика аккомодацией , но в пожилом возрасте наблюдается ухудшение близкого зрения из-за ослабления ресничных мышц и утери хрусталиком эластичности.

Аметропическая

Противоположностью эмметропии является аметропия. Это общее наименование для всех отклонений от нормы статистической рефракции. Аметропия подразделяется на

Такие отклонения могут вызываться неправильной формой глазного яблока, нарушением физической рефракции или обеими причинами сразу.

Аметропию измеряют в диоптриях, но здесь этой величиной выражается не физическое преломление самого глаза, а степень рефракции внешней линзы, необходимая для приведения остроты зрения в нормальное состояние.

Если преломление света глазом излишнее, то необходима ослабляющая, рассеивающая линза, уменьшающая общее количество диоптрий в оптической системе, в этом случае степень аметропии выражается отрицательным числом диоптрий. При недостаточном преломлении необходима усиливающая линза, следовательно, число диоптрий будет положительным.

Миопия

Миопия или близорукость – это нарушение рефракции, при котором точка ясного зрения находится на близком расстоянии и становится все ближе по мере прогрессирования патологии.

Человек без очков может видеть только близлежащие предметы, а рассмотрение более далеких объектов возможно только при очень сильном напряжении аккомодации, на поздних стадиях бесполезно и оно.

Самая распространенная причина – эта нарушение формы глаза, удлинение его центральной оси, из-за чего фокус световых лучей не доходит до сетчатки.

Для корректировки миопии нужны рассеивающие линзы, поэтому степень близорукости выражается отрицательным числом диоптрий. У заболевания выделяются три стадии: слабая (до -3 дптр), средняя (от -3 до -6 дптр), тяжелая (-6 дптр и более)

Гиперметропия

При гиперметропии (дальнозоркости) рефракция глаза слишком слаба, лучи преломляются так, что их фокусировка происходит только за сетчаткой. Это может вызываться слишком малой длиной оси глаза, недостаточной кривизной хрусталика, а также слабостью мышц аккомодации.

Последняя причина чаще всего вызывает старческую дальнозоркость и не имеет прямого отношения к рефракции, так как в этом случае преломляющая сила глаза в спокойном состоянии не нарушена.

Вопреки своему названию, дальнозоркость не предполагает дальнего расположения точки ясного взгляда, более того, она вообще является мнимой, то есть отсутствует.

Большая простота рассмотрения дальних объектов при гиперметропии связана не с оптимальным преломлением исходящих от них лучей, а с относительной простотой их аккомодации по сравнению с аккомодацией световых лучей от близлежащих объектов.

Так как при гиперметропии необходимы усиливающие линзы, тяжесть нарушения выражается в положительных значениях диоптрий. Стадии заболевания: ранняя (до +3 дптр), средняя (от +3 до +8 дптр), тяжелая (более +8 дптр).

Астигматизм

Астигматизм характеризуется разными показателями рефракции на меридианах глаза, то есть отличающейся степенью преломления в каждой из частей органа зрения. Возможны разные комбинации: близорукость на одних меридианах и эмметропия на других, разные стадии близорукости или дальнозоркости на каждой меридиане и так далее.

Проявления всех форм астигматизма характерны – четкость зрения нарушается при рассмотрении объектов любого удаления. Степень патологии определяется разностью в диоптриях максимальной и минимальной рефракции на меридианах.

Диагностика

Для диагностики рефракционных способностей важно минимизировать аккомодацию, которая может скрывать нарушения преломления на ранних стадиях. Особенно это актуально при диагностике дальнозоркости.

Самым надежным способом выключения аккомодации является циклоплегия, заключающаяся в закапывании в глаза растворов атропина или скополамина и в последующей проверке остроты зрения с помощью стандартных таблиц.

Если человек не может самостоятельно рассмотреть изображение, ему дают различные линзы до тех пор, пока не будет найдена линза, обеспечивающая ясную картину. По степени рефракции этой линзы определяется статистическая рефракция глаза.

Иногда (например, для проверки на пресбиопию) возникает необходимость провести диагностику рефракции с учетом аккомодации, такая рефракция будет называться динамической.

Субъективные методы имеют один недостаток: возможность четкого рассмотрения изображения зависит не только от рефракции, но и от ряда других факторов. Таблицы Ситцева многими людьми запомнены наизусть в силу частоты проверок по ним, и даже при плохом зрении они с легкостью назовут нижний ряд букв, так как мозг достроит их очертания из памяти.

Объективные методы минимизируют субъективный фактор и анализируют рефракцию глаз исходя лишь из их внутреннего строения. Высокой эффективностью среди подобных методов обладает измерение преломления света органами зрения с помощью рефрактометра. Это устройство посылает в глаз безопасные инфракрасные сигналы и определяет их преломление в оптической среде.

Более простым объективным методом является скиаскопия, при ней офтальмолог направляет в глаз световые лучи с помощью зеркал и отслеживает отбрасывание ими тени. По этой тени и делается вывод о статистической рефракции.

Самые точные и дорогостоящие процедуры представлены ультразвуковым обследованием и кератопографией, с помощью этих методов можно подробно обследовать рефракцию на каждом из меридианов, в точности определить длину глазной оси и обследовать поверхность сетчатки.

Лечение и профилактика

Самым базовым и необходимым из методов лечения является подбор корректирующих внешних линз.

Это необходимо во всех случаях, кроме кратковременного снижения остроты вследствие перенапряжения, здесь достаточно общепрофилактических мероприятий.

В зависимости от эстетических предпочтений можно выбрать очки или контактные линзы.

Более радикальные методы лечения представлены лазерной коррекцией. Более всего хирургическому исправлению подвержена миопия, но ранние стадии дальнозоркости и астигматизма тоже можно вылечить такой коррекцией.

Медикаментозное лечение эффективно в качестве поддерживающей терапии при применении хирургических методов.

Профилактика нарушений остроты зрения заключается в правильном обустройстве рабочего места, в обеспечении оптимального освещения, в соблюдении режима дня и работы и предотвращении переутомления. Большую пользу несет регулярная гимнастика для глаз, которая расслабляет их и придает им тонус. Важно обеспечивать организм всеми необходимыми витаминами и минералами.

Во многом на здоровье глаз сказывается их постоянное перенапряжение. Этого можно избежать, выполняя гимнастику и специальные упражнения:

Итоги

Рефракция – это преломление лучей оптической системой. Для оценки оптической системы человеческого глаза используются физический и клинический подходы к измерению рефракции. Физический подход измеряет силу преломления глаза без учета ее отношения к внутреннему устройству органа.

Клинический подход дополняет физический и оценивает соотношение силы преломления с длиной оси глаза и структурой сетчатки. Сила преломления света измеряется в диоптриях. У рефракции есть три вида: эмметропия, миопия и гиперметропия. Также выделяется астигматизм, характеризующийся разной степенью рефракции в каждой из частей глаза.

Видео

Представляем вашему вниманию следующее видео:

Врач-офтальмолог первой категории.

Проводит диагностику и лечение астигматизма, близорукости, дальнозоркости, конъюнктивита (вирусный, бактериальный, аллергический), косоглазия, ячменя. Занимается проверкой зрения, а также подбором очков и контактных линз. На портале подробно расписывает инструкции по применению на глазные препараты.


Глаз человека представляет собой сложно устроенную природную линзу. К этой линзе применимы все характеристики, которые определяют свойства иных оптических систем.

Одной из таких характеристик является рефракция, от которой зависит острота зрения и отчетливость получаемого в глазах изображения.

Другими словами, рефракция – это процесс преломления лучей света, что выражается этимологией слова (refractio – «преломление» с латыни).

Под преломлением подразумеваются способ и степень изменения направления лучей, проходящих через оптическую систему.

Знакомство

Единая система глаза состоит из четырех подсистем: две стороны хрусталика и две стороны роговицы. Каждая из них имеет свою рефракцию, в своей совокупности они формируют общий уровень преломления органа зрения.

Также рефракция зависит от длины оси глаза, эта характеристика определяет, будут ли сходиться лучи на сетчатке при данной силе преломления, или же осевое расстояние слишком велико или мало для этого.

В медицинской практике используются два подхода к измерению рефракции: физический и клинический. Первый метод оценивает систему из роговицы и хрусталика саму по себе, вне ее связи с прочими биологическими подсистемами глаза.

Здесь характеристики глаз оцениваются по аналогии со всеми прочими видами физических линз без учета специфики человеческого зрения. Измеряется физическая рефракция в диоптриях.

Диоптрия – это единица измерения оптической силы линзы. Данная величина обратна фокусному расстоянию линзы (F) – расстоянию, на котором преломляемые ей лучи сходятся в одной точке.

Это значит, что при фокусном расстоянии в один метр сила рефракции будет равна одной диоптрии, а фокусному расстоянию 0,1 метров (10 см) соответствует сила рефракции 10 дптр (1/0,1).

Средняя степень рефракции здорового человеческого глаза составляет 60 дптр (F=17 мм).

Но одной лишь этой характеристики недостаточно для полноценной диагностики остроты зрения. При оптимальной силе преломления глазной линзы человек все равно может не видеть четкого изображения. Это связано с тем, что здесь большую роль играет строение глаза.

Если оно неправильное, то лучи света не будут попадать на сетчатку даже при нормальном фокусном расстоянии. Из-за этого в офтальмологии используется комплексный параметр – клиническая (статистическая) рефракция, она выражает взаимосвязь физической рефракции с длиной оси глаза и с расположением сетчатки.

Виды

Эмметропическая

Эмметропической рефракцией называется такое преломление лучей, при котором длина оси глаза и фокусное расстояние равны, следовательно, световые лучи сходятся в точности на сетчатке, и в мозг поступает информация о четком изображении.

Точка ясного зрения (расстояние, с которого лучи могут фокусироваться на сетчатке) здесь устремлена в бесконечность, то есть человек может легко видеть далеко расположенные предметы, возможность получения изображения ограничивается лишь их размером.

Эмметропия считается неотъемлемой характеристикой здорового глаза, измерение остроты зрения по таблице Ситцева при такой рефракции даст результат 1.0.

Легко дается эмметропному глазу и рассмотрение близлежащих объектов с помощью усиления рефракции хрусталика аккомодацией , но в пожилом возрасте наблюдается ухудшение близкого зрения из-за ослабления ресничных мышц и утери хрусталиком эластичности.

Аметропическая

Противоположностью эмметропии является аметропия. Это общее наименование для всех отклонений от нормы статистической рефракции. Аметропия подразделяется на

Такие отклонения могут вызываться неправильной формой глазного яблока, нарушением физической рефракции или обеими причинами сразу.

Аметропию измеряют в диоптриях, но здесь этой величиной выражается не физическое преломление самого глаза, а степень рефракции внешней линзы, необходимая для приведения остроты зрения в нормальное состояние.

Если преломление света глазом излишнее, то необходима ослабляющая, рассеивающая линза, уменьшающая общее количество диоптрий в оптической системе, в этом случае степень аметропии выражается отрицательным числом диоптрий. При недостаточном преломлении необходима усиливающая линза, следовательно, число диоптрий будет положительным.

Миопия

Миопия или близорукость – это нарушение рефракции, при котором точка ясного зрения находится на близком расстоянии и становится все ближе по мере прогрессирования патологии.

Человек без очков может видеть только близлежащие предметы, а рассмотрение более далеких объектов возможно только при очень сильном напряжении аккомодации, на поздних стадиях бесполезно и оно.

Самая распространенная причина – эта нарушение формы глаза, удлинение его центральной оси, из-за чего фокус световых лучей не доходит до сетчатки.

Для корректировки миопии нужны рассеивающие линзы, поэтому степень близорукости выражается отрицательным числом диоптрий. У заболевания выделяются три стадии: слабая (до -3 дптр), средняя (от -3 до -6 дптр), тяжелая (-6 дптр и более)

Гиперметропия

При гиперметропии (дальнозоркости) рефракция глаза слишком слаба, лучи преломляются так, что их фокусировка происходит только за сетчаткой. Это может вызываться слишком малой длиной оси глаза, недостаточной кривизной хрусталика, а также слабостью мышц аккомодации.

Последняя причина чаще всего вызывает старческую дальнозоркость и не имеет прямого отношения к рефракции, так как в этом случае преломляющая сила глаза в спокойном состоянии не нарушена.

Вопреки своему названию, дальнозоркость не предполагает дальнего расположения точки ясного взгляда, более того, она вообще является мнимой, то есть отсутствует.

Большая простота рассмотрения дальних объектов при гиперметропии связана не с оптимальным преломлением исходящих от них лучей, а с относительной простотой их аккомодации по сравнению с аккомодацией световых лучей от близлежащих объектов.

Так как при гиперметропии необходимы усиливающие линзы, тяжесть нарушения выражается в положительных значениях диоптрий. Стадии заболевания: ранняя (до +3 дптр), средняя (от +3 до +8 дптр), тяжелая (более +8 дптр).

Астигматизм

Астигматизм характеризуется разными показателями рефракции на меридианах глаза, то есть отличающейся степенью преломления в каждой из частей органа зрения. Возможны разные комбинации: близорукость на одних меридианах и эмметропия на других, разные стадии близорукости или дальнозоркости на каждой меридиане и так далее.

Проявления всех форм астигматизма характерны – четкость зрения нарушается при рассмотрении объектов любого удаления. Степень патологии определяется разностью в диоптриях максимальной и минимальной рефракции на меридианах.

Диагностика

Для диагностики рефракционных способностей важно минимизировать аккомодацию, которая может скрывать нарушения преломления на ранних стадиях. Особенно это актуально при диагностике дальнозоркости.

Самым надежным способом выключения аккомодации является циклоплегия, заключающаяся в закапывании в глаза растворов атропина или скополамина и в последующей проверке остроты зрения с помощью стандартных таблиц.

Если человек не может самостоятельно рассмотреть изображение, ему дают различные линзы до тех пор, пока не будет найдена линза, обеспечивающая ясную картину. По степени рефракции этой линзы определяется статистическая рефракция глаза.

Иногда (например, для проверки на пресбиопию) возникает необходимость провести диагностику рефракции с учетом аккомодации, такая рефракция будет называться динамической.

Субъективные методы имеют один недостаток: возможность четкого рассмотрения изображения зависит не только от рефракции, но и от ряда других факторов. Таблицы Ситцева многими людьми запомнены наизусть в силу частоты проверок по ним, и даже при плохом зрении они с легкостью назовут нижний ряд букв, так как мозг достроит их очертания из памяти.

Объективные методы минимизируют субъективный фактор и анализируют рефракцию глаз исходя лишь из их внутреннего строения. Высокой эффективностью среди подобных методов обладает измерение преломления света органами зрения с помощью рефрактометра. Это устройство посылает в глаз безопасные инфракрасные сигналы и определяет их преломление в оптической среде.

Более простым объективным методом является скиаскопия, при ней офтальмолог направляет в глаз световые лучи с помощью зеркал и отслеживает отбрасывание ими тени. По этой тени и делается вывод о статистической рефракции.

Самые точные и дорогостоящие процедуры представлены ультразвуковым обследованием и кератопографией, с помощью этих методов можно подробно обследовать рефракцию на каждом из меридианов, в точности определить длину глазной оси и обследовать поверхность сетчатки.

Лечение и профилактика

Самым базовым и необходимым из методов лечения является подбор корректирующих внешних линз.

Это необходимо во всех случаях, кроме кратковременного снижения остроты вследствие перенапряжения, здесь достаточно общепрофилактических мероприятий.

В зависимости от эстетических предпочтений можно выбрать очки или контактные линзы.

Более радикальные методы лечения представлены лазерной коррекцией. Более всего хирургическому исправлению подвержена миопия, но ранние стадии дальнозоркости и астигматизма тоже можно вылечить такой коррекцией.

Медикаментозное лечение эффективно в качестве поддерживающей терапии при применении хирургических методов.

Профилактика нарушений остроты зрения заключается в правильном обустройстве рабочего места, в обеспечении оптимального освещения, в соблюдении режима дня и работы и предотвращении переутомления. Большую пользу несет регулярная гимнастика для глаз, которая расслабляет их и придает им тонус. Важно обеспечивать организм всеми необходимыми витаминами и минералами.

Во многом на здоровье глаз сказывается их постоянное перенапряжение. Этого можно избежать, выполняя гимнастику и специальные упражнения:

Итоги

Рефракция – это преломление лучей оптической системой. Для оценки оптической системы человеческого глаза используются физический и клинический подходы к измерению рефракции. Физический подход измеряет силу преломления глаза без учета ее отношения к внутреннему устройству органа.

Клинический подход дополняет физический и оценивает соотношение силы преломления с длиной оси глаза и структурой сетчатки. Сила преломления света измеряется в диоптриях. У рефракции есть три вида: эмметропия, миопия и гиперметропия. Также выделяется астигматизм, характеризующийся разной степенью рефракции в каждой из частей глаза.

Видео

Представляем вашему вниманию следующее видео:

Врач-офтальмолог первой категории.

Проводит диагностику и лечение астигматизма, близорукости, дальнозоркости, конъюнктивита (вирусный, бактериальный, аллергический), косоглазия, ячменя. Занимается проверкой зрения, а также подбором очков и контактных линз. На портале подробно расписывает инструкции по применению на глазные препараты.


Гиперметропия и миопия в офтальмологии объединяются под общим термином «аметропия», что обозначает аномалии рефракции глаза. Реже у людей выявляется анизометропия – такое состояние, при котором рефракции у правого и левого глаза различны. К аметропии относится и астигматизм – состояние, характеризующееся разной силой преломления оптических сред, там, где проходят взаимно перпендикулярные оси.

Исследования позволили установить, что клиническая рефракция глаза зависит от его размеров и оптических свойств преломляющих сред, изменяющихся по мере взросления организма.

Длина переднезадней оси у только что родившегося ребенка достигает всего 16 мм, поэтому для новорожденных норма – дальнозоркая рефракция, составляющая примерно 4,0 D. По мере взросления организма степень гиперметропии постепенно уменьшается и происходит сдвиг рефракции к эмметропии.

Методики измерения рефракции в офтальмологии

В офтальмологии активно используется рефрактометрия. Этот метод объективно определяет рефракции глаза при помощи глазных рефрактометров – специальных приборов. Рефрактометрия основывается на исследовании отражающейся от дна глаза блестящей марки. Рефрактометрия – это метод, при помощи которого выявляются все аметропии, в том числе астигматизм глаза.

Существует также субъективный метод анализа оптической системы глаза, который определяет рефракцию (в данном случае остроту зрения) при помощи линз. При подборе линз острота зрения улучшается, и это указывает на такие виды рефракции.

  • Эмметропия – данному состоянию глаза соответствует острота зрения в 1,0 или чуть больше. При такой рефракции фокус совпадает с сетчаткой.
  • Гиперметропия устанавливается с использованием плюсовой линзы. Проводя такой анализ остроты зрения, можно при помощи линзы скорректировать рефракцию и задний фокус станет совпадать с сетчаткой. Это приведет к эмметропии.
  • Миопия как диагноз устанавливается, если зрение улучшается после приставления к поверхности глаз минусовой линзы.

Аметропия подразделяется на несколько степеней:

  • слабая (рефракция доходит до 3,0 D);
  • средняя (рефракция от 3,25 и до 6,0 D);
  • высокая (от 6,0 D).

Чтобы установить степень аметропии, необходимо постепенно увеличивать силу выбранных сферических линз. Анализ проводят вплоть до достижения самой высокой остроты зрения в обоих глазах. Степень и вид астигматизма определяется при помощи специальных цилиндрических стекол. В одном из этих стекол один из взаимно перпендикулярных меридианов является оптически недеятельным.

Рефрактометрия, проводимая при помощи линз, может оказаться неточной, так как в определении рефракции при таком методе участвовала и аккомодация глаза. Поэтому рефрактометрия при помощи субъективного способа считается ориентировочной и достоверна в большинстве случаев только после сорокалетия.

Точно рефракцию стараются определить с помощью скиаскопии. При этом методе врач должен находиться от пациента примерно на расстоянии в 1 метр. Освещения зрачка скиаскопом – плоским или вогнутым зеркалом помогает выявить аметропию. Это достигается путем перемещения скиаскопа в горизонтальном и вертикальном направлении. Расшифровка проведенного анализа осуществляется следующим способом.

  • Если проводить скиаскопию плоским зеркалом, то зрачок будет двигаться так же, то есть в ту сторону, что и само зеркало при гиперметропии, эмметропии и миопии менее 1,0 диоптрии. Если есть миопия более 1,0 диоптрии, то зрачок будет передвигаться в противоположную сторону.
  • При использовании вогнутого скиаскопа движение зрачков будет в обратном направлении. Отсутствие тени означает, что у пациента миопия 1,0 D.

Такими методами офтальмологи устанавливают вид рефракции. Чтобы установить степень рефракции, используют способ нейтрализации тени. Добиться этого состояния можно при помощи скиаскопической линейки. Также применяется рефрактометрия, выключение аккомодации. Вид рефракции можно установить путем закапывания циклоплегических средств в конъюнктивальный мешок (атропина, скополамина, гоматропина, мидриацила).

После определения рефракции на фоне паралича аккомодации объективными методами вновь применяют оптические линзы. Субъективная рефрактометрия проводится с помощью линз, которые соответствуют степени и виду установленной аметропии. В дальнейшем очковая коррекция зрения возможна только после полного прекращения действия циклоплегических препаратов.

По пути к луч света проходит четыре преломляющие поверхности: заднюю и переднюю поверхности роговицы, а также заднюю и переднюю поверхности хрусталика. Преломляющая сила, которой обладает оптическая система глаза, в среднем составляет 59,92 диоптрии. Для рефракции глаза важна длина оси глаза, то есть расстояние от роговицы глаза до желтого пятна (в среднем 25,3 миллиметра). Таким образом, на рефракцию глаз влияют и преломляющая сила, и длина оси, которые характеризуют оптическую установку глаза и положение основного по отношению к .

Виды рефракции

Рефракция глаза бывает трех видов: (нормальная рефракция глаза), . В глазу с эмметропией параллельные лучи, исходящие от предметов, расположенных вдали, пересекаются в фокусе сетчатки. Такой глаз способен отчетливо видеть окружающие предметы. Чтобы получить четкое изображение вблизи, глаз усиливает собственную преломляющую силу, увеличивая кривизну хрусталика ().

Нарушения (аномалии) рефракции

Слабой преломляющей способностью обладает дальнозоркий глаз, так как лучи света, исходящие от далеких объектов, пересекаются за сетчаткой. Для получения изображения дальнозоркий глаз увеличивает преломляющую силу даже в случае рассматривания предметов, расположенных в отдалении.

Сильную преломляющую способность имеет близорукий глаз, так как лучи, идущие от объектов, расположенных вдали, пересекаются перед сетчаткой.

Чем выше степень дальнозоркости либо близорукости, тем хуже зрение, так как в этих случаях фокус располагается не на сетчатке, а «за» либо «перед» ней. Дальнозоркость и близорукость бывает трех степеней: слабая (не более трех диоптрий), средняя (4-6 диоптрий), высокая (свыше 6 диоптрий). Встречаются близорукие глаза, имеющие 25-30 диоптрий и даже более.

Определение рефракции глаза

Чтобы определить степень близорукости и дальнозоркости используют единицу измерения, которую используют для обозначения силы преломления оптических стекол. Данная единица преломления называется «Диоптрия», а процедура - " " (подробнее об этом читайте в соответсвующем разделе). В диоптриях вычисляют преломляющую силу выпуклых, вогнутых, рассеивающих и собирающих лучи света линз. Оптические стекла могут улучшить зрение при дальнозоркости и близорукости.

Рефракцию глаза пациента тоже определяют при помощи оптических стекол либо более точных приборов (рефрактомеров). Иногда в одном глазу сочетаются различные рефракции либо разные степени одной рефракции. К примеру, глаз по вертикали может обладать дальнозоркой рефракцией, а по горизонтали близорукой. Зависит это от приобретенной или врожденной различающейся кривизны роговицы в двух разных меридианах. Зрение при этом значительно снижено. Описанный оптический дефект глаза носит название , что с латыни переводится, как «отсутствие фокусной точки».

В обоих глазах рефракция тоже не всегда бывает одинаковой. Например, может быть установлена дальнозоркость одного глаза и близорукость другого. Это состояние называется анизометропия. Это заболевание, как и дальнозоркость с близорукостью можно корректировать при помощи очков с оптическими стеклами, либо оперативного вмешательства.

Нормальное зрение обоих глаз называется бинокулярным (стереоскопическим), обеспечивающим четкое восприятие окружающих предметов, а также правильное определение их местонахождения в пространстве.