С какой скоростью перемещается звук. Скорость звука

Скорость звука - скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах). Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях , а в жидкостях - меньше, чем в твёрдых телах. Также, в газах скорость звука зависит от температуры данного вещества , в монокристаллах - от направления распространения волны. Обычно не зависит от частоты волны и её амплитуды ; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.

Энциклопедичный YouTube

  • 1 / 5

    Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей , Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука . Попытки экспериментального определения скорости звука относятся к первой половине XVII в. Ф.Бэкон в «Новом органоне » указал на возможность определения скорости звука путём сравнения промежутков времени между вспышкой света и звуком выстрела. Применив этот метод, различные исследователи (М.Мерсенн , П.Гассенди , У.Дерхам , группа учёных Парижской академии наук - Д.Кассини , Ж.Пикар , Гюйгенс , Рёмер) определили значение скорости звука (в зависимости от условий экспериментов, 350-390 м/с). Теоретически вопрос о скорости звука впервые рассмотрел И.Ньютон в своих «Началах ». Ньютон фактически предполагал изотермичность распространения звука, поэтому получил заниженную оценку. Правильное теоретическое значение скорости звука было получено Лапласом .

    Расчёт скорости в жидкости и газе

    Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

    c = 1 β ρ {\displaystyle c={\sqrt {\frac {1}{\beta \rho }}}}

    В частных производных:

    c = − v 2 (∂ p ∂ v) s = − v 2 C p C v (∂ p ∂ v) T {\displaystyle c={\sqrt {-v^{2}\left({\frac {\partial p}{\partial v}}\right)_{s}}}={\sqrt {-v^{2}{\frac {C_{p}}{C_{v}}}\left({\frac {\partial p}{\partial v}}\right)_{T}}}}

    где β {\displaystyle \beta } - адиабатическая сжимаемость среды; ρ {\displaystyle \rho } - плотность; C p {\displaystyle C_{p}} - изобарная теплоемкость; C v {\displaystyle C_{v}} - изохорная теплоемкость; p {\displaystyle p} , v {\displaystyle v} , T {\displaystyle T} - давление, удельный объём и температура среды; s {\displaystyle s} - энтропия среды.

    Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.

    Твёрдые тела

    При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объемных волн.

    Сегодня многие новоселы, обустраивая квартиру, вынуждены проводить дополнительные работы, в том числе по звукоизоляции своего жилища, т.к. применяемые стандартные материалы позволяют лишь отчасти скрыть, что творится в собственном доме, и не интересоваться против воли общением соседей.

    На в твердых телах влияет как минимум плотность и упругость вещества, противостоящего волне. Поэтому при оборудовании помещений слой, прилегающий к несущей стене, делают звукоизолирующим с «напусками» сверху и снизу. Он позволяет снизить в децибелах иногда более чем в 10 раз. Затем укладывают базальтовые маты, а сверху - гипсокартонные листы, которые отражают звук вовне от квартиры. Когда звуковая волна «подлетает» к такой конструкции, то она затухает в слоях изолятора, которые являются пористыми и мягкими. Если звук имеет большую силу, то материалы, его поглощающие, могут даже нагреваться.

    Упругие же вещества, такие, как вода, дерево, металлы, хорошо передают поэтому мы слышим прекрасное «пение» музыкальных инструментов. А некоторые народности в прошлом определяли приближение, например, всадников, прикладывая ухо к земле, которая также является достаточно упругой.

    Скорость звука в км зависит от характеристик той среды, в которой он распространяется. В частности, на процесс могут повлиять ее давление, химический состав, температура, упругость, плотность и другие параметры. Например, в стальном листе звуковая волна проходит со скоростью 5100 метров в секунду, в стекле - около 5000 м/с, в дереве и граните - около 4000 м/с. Для перевода скорости в километры в час нужно умножить показатели на 3600 (секунд в часе) и разделить на 1000 (метров в километре).

    Скорость звука в км в водной среде различна для веществ с разной соленостью. Для пресной воды при температуре 10 градусов Цельсия она составляет около 1450 м/с, а при температуре в 20 градусов Цельсия и том же давлении - уже около 1490 м/с.

    Соленая же среда отличается заведомо большей скоростью прохождения звуковых колебаний.

    Распространение звука в воздухе также зависит от температуры. При значении этого параметра, равном 20 звуковые волны проходят со скоростью около 340 м/с, что составляет около 1200 км/час. А при нуле градусов скорость замедляется до 332 м/с. Возвращаясь к нашим изоляторам для квартиры, мы можем узнать, что в таком материале, как пробка, которую часто используют для снижения уровня внешнего шума, скорость звука в км составляет всего 1800 км/ч (500 метров в секунду). Это в десять раз ниже этой характеристики в стальных деталях.

    Звуковая волна представляет собой продольное колебание среды, в которой она распространяется. При прохождении, например, мелодии музыкального произведения через какое-то препятствие, уровень его громкости понижается, т.к. изменяется При этом частота остается той же, благодаря чему мы слышим женский голос как женский, а мужской - как мужской. Самым интересным является место, где скорость звука в км близка к нулю. Это - вакуум, в котором волны такого типа почти не распространяются. Чтобы продемонстрировать, как это работает, физики помещают звенящий будильник под колпак, из которого выкачивают воздух. Чем больше разреженность воздуха, тем тише слышен звонок.

    Для распространения звука необходима упругая среда. В вакууме звуковые волны распро­страняться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.

    Известно, что во время грозы мы видим вспышку молнии и лишь через некоторое время слы­шим раскаты грома. Это запаздывание возникает из-за того, что скорость звука в воздухе значи­тельно меньше скорости света, идущего от молнии.

    Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсен-ном. При температуре 20 °С она равна 343 м/с, т. е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из автомата Калашни­кова. Начальная скорость пули 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

    Скорость звука в газах зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением - убывает. При 0 °С скорость звука в воздухе составляет 332 м/с.

    В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре 0 °С скорость звука в водороде составляет 1284 м/с, в гелии - 965 м/с, а в кислороде - 316 м/с.

    Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в во­де впервые была измерена в 1826 г. Ж. Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии. На одной лодке поджигали порох и одновременно ударяли в ко­локол, опущенный в воду. Звук этого колокола, опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По интервалу времени между вспышкой све­тового сигнала и приходом звукового сигнала определили скорость звука в воде. При температуре 8°С она оказалась равной 1440 м/с.

    Скорость звука в твердых телах больше, чем в жидкостях и газах. Если приложить ухо к рель­су, то после удара по другому концу рельса слышно два звука. Один из них достигает уха по рельсу, другой - по воздуху.

    Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепос­тных стенах помещали «слухачей», которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближе­нием вражеской конницы.

    Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз спо­собны танцевать под музыку, которая доходит до слуховых нервов не через воздух и наружное ухо, а через пол и кости.

    Скорость звука можно определить, зная длину волны и частоту (или период) колебаний.

    Для многих даже спустя годы после окончания школы остается неизвестным, какова же на самом деле скорость звука в воздухе. Кто-то невнимательно слушал преподавателя, а кто-то просто не до конца понял излагаемый материал. Что ж, быть может, настало время восполнить этот пробел в знаниях. Сегодня мы не просто укажем «сухие» цифры, а поясним сам механизм, определяющий скорость звука в воздухе.

    Как известно, воздух представляет собой совокупность различных газов. Немногим более 78% приходится на азот, почти 21% занимает кислород, оставшаяся часть представлена углекислым и Следовательно, речь пойдет о скорости распространения звука в газовой среде.

    Сначала давайте определимся, Наверняка многие слышали высказывание «звуковые волны» или «звуковые колебания». Действительно, например, диффузор звуковоспроизводящей колонки колеблется с определенной частотой, которая классифицируется слуховым аппаратом человека как звук. Один из законов физики гласит, что давление в газах и жидкостях распространяется без изменения во всех направлениях. Отсюда следует, что в идеальных условиях скорость звука в газах равномерна. Разумеется, в действительности имеет место ее естественное затухание. Нужно запомнить эту особенность, так как именно она объясняет, почему скорость может изменяться. Но это мы немного отвлеклись от главной темы. Итак, если звук - это колебания, то что именно колеблется?

    Любой газ - это совокупность атомов определенной конфигурации. В отличие от твердых тел, между атомами в них относительно большое расстояние (по сравнению, например, с кристаллической решеткой металлов). Можно привести аналогию с горошинами, распределенными по емкости с желеобразной массой. колебаний сообщает импульс движения ближайшим атомам газа. Они в свою очередь, подобно шарам на бильярдном столе, «ударяют» по соседним, и процесс повторяется. Скорость звука в воздухе как раз и определяет интенсивность импульса-первопричины. Но это лишь одна составляющая. Чем плотнее расположены атомы вещества, тем выше скорость распространения звука в нем. К примеру, скорость звука в воздухе почти в 10 раз меньше, чем в монолитном граните. Это очень легко понять: чтобы атом в газе мог «долететь» до соседнего и передать ему энергию импульса, ему необходимо преодолеть определенное расстояние.

    Следствие: с увеличением температуры скорость распространения волн повышается. Несмотря на собственная скорость атомов выше, они хаотично двигаются и чаще соударяются. Также верно, что сжатый газ проводит звук намного быстрее, но чемпионом все-таки является сжиженное В расчетах скорости звука в газах учитываются начальная плотность, сжимаемость, температура и коэффициент (газовая постоянная). Собственно, все это следует из вышесказанного.

    Все-таки какова скорость звука в воздухе? Многие уже догадались, что невозможно дать однозначный ответ. Приведем лишь некоторые основные данные:

    При нуле на нулевой точке (уровень моря) скорость звука составляет около 331 м/с;

    Снизив температуру до - 20 градусов Цельсия, можно «замедлить» звуковые волны до 319 м/с, так как изначально атомы в пространстве движутся медленнее;

    Повышение же ее до 500 градусов ускоряет распространение звука почти в полтора раза - до 550 м/с.

    Однако приведенные данные ориентировочны, так как кроме температуры на способность газов проводить звук влияет также давление, конфигурация пространства (помещение с предметами или открытая площадь), собственная подвижность и т.д.

    В настоящее время свойство атмосферы проводить звук активно исследуется. К примеру, один из проектов позволяет посредством регистрации отраженного (эха) определять температуру слоев воздуха.

    СКОРОСТЬ ЗВУКА - скорость распространения в среде упругой волны. Определяется упругостью и плотностью среды. Для , бегущей без изменения формы со скоростью с в направлении оси х , звуковое давление р можно представить в виде р = р(х - - ct) , где t - время. Для плоской гармония, волны в среде без дисперсии и С. з. выражается через частоту w и k ф-лой с = w/k. Со скоростью с распространяется фаза гармонич. волны, поэтому с наз. также фазовой С. з. В средах, в к-рых форма произвольной волны меняется при распространении, гармонич. волны тем не менее сохраняют свою форму, но фазовая скорость оказывается различной для разных частот, т. е. имеет место дисперсия звука .В этих случаях пользуются также понятием групповой скорости . При больших амплитудах появляются нелинейные эффекты (см. Нелинейная акустика ),приводящие к изменению любых волн, в т. ч. и гармонических: скорость распространения каждой точки профиля волны зависит от величины давления в этой точке, возрастая с ростом давления, что и приводит к искажению формы волны.

    Скорость звука в газах и жидкостях . В газах и жидкостях звук распространяется в виде объёмных волн сжатия - разряжения. Если процесс распространения происходит адиабатически (что, как правило, и имеет место), т. е. изменение темп-ры в звуковой волне не успевает выравниваться и за 1 / 2 , периода тепло из нагретых (сжатых) участков не успевает перейти к холодным (разреженным), то С. з. равна , где Р - давление в веществе, - его плотность, а индекс s показывает, что производная берётся при постоянной энтропии. Эта С. з. наз. адиабатической. Выражение для С. з. может быть записано также в одной из следующих форм:

    где К ад - адиабатич. модуль всестороннего сжатия вещества, - адиабатич. сжимаемость, - изотермич. сжимаемость, = - отношение теплоёмкостей при постоянных давлении и объёме.

    В ограниченных твёрдых телах кроме продольных и поперечных волн имеются и др. типы волн. Так, вдоль свободной поверхности твёрдого тела или вдоль границы его с др. средой распространяются поверхностные акустические волны , скорость к-рых меньше скорости объёмных волн, характерных для данного материала. Для пластин, стержней и др. твёрдых акустич. волноводов характерны нормальные волны ,скорость к-рых определяется не только свойствами вещества, но и геометрией тела. Так, напр., С. з. для продольной волны в стержне с ст, поперечные размеры к-рого много меньше длины волны звука, отличается от С. з. в неограниченной среде с l (табл. 3):

    Методы измерения С.з. можно подразделить на резонансные, интерферометрические, импульсные и оптические (см. Дифракция света на ультразвуке ).Наиб. точности измерения достигают с помощью импульсно-фазовых методов. Оптич. методы дают возможность измерять С. з. на гиперзвуковых частотах (вплоть до 10 11 -10 12 Гц). Точность абс. измерений С. з. на лучшей аппаратуре ок. 10 -3 % , тогда как точность относит. измерений порядка 10 -5 % (напр., при изучении зависимости с от темп-ры или магн. поля пли от концентрации примесей или дефектов).

    Измерения С. з. используются для определения мн. свойств вещества, таких, как величина отношения теплоёмкостей для газов, сжимаемости газов и жидкостей, модулей упругости твёрдых тел, дебаевской темп-ры и др. (см. Молекулярная акустика) . Определение малых изменений С. з. является чувствит. методом фиксирования примесей в газах и жидкостях. В твёрдых телах измерение С. з. и её зависимости от разл. факторов (темп-ры, магн. поля и др.) позволяет исследовать строение вещества: зонную структуру полупроводников, строение поверхности Ферми в металлах и пр.

    Лит.: Ландау Л. Д., Л и ф ш и ц Е. М., Теория упругости, 4 изд., М., 1987; их же, Гидродинамика, 4 изд., М., 1988; Бергман Л., и его применение в науке и технике, пер. с нем., 2 изд., М., 1957; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Таблицы для расчета скорости звука в морской воде, Л., 1965; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966, гл. 4; т. 4, ч. Б, М., 1970, гл. 7; Колесников А. Е., Ультразвуковые измерения, 2 изд., М., 1982; Т р у э л л Р., Э л ь б а у м Ч., Ч и к Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972; Акустические кристаллы, под ред. М. П. Шаскольской, М., 1982; Красильни ков В. А., Крылов В. В., Введение в физическую акустику, М., 1984. А. Л. Полякова .