Симметрия в пространстве. Понятие правильного многогранника

Элементами симметрии называются вспомогательные геометрические образы (точка, линия, плоскость и их сочетания), с помощью которых мысленно можно совместить в пространстве равные грани кристалла (многогранника). При этом под симметрией кристалла понимается закономерное повторение в пространстве равных его граней, а также вершин и ребер.

Различают три основных элемента симметрии кристаллов – центр симметрии, плоскость симметрии и оси симметрии.

Центром симметрии называется воображаемая точка внутри кристалла, равноудаленная от его элементов ограничения (т. е. противоположных вершин, середин ребер и граней). Центр симметрии является точкой пересечения диагоналей правильной фигуры (куба, параллелепипеда) и обозначается буквой С , а по международной системе Германа-Могена – I.

Центр симметрии в кристалле может быть только один. Однако имеются кристаллы, в которых центр симметрии вообще отсутствует. При решении вопроса о том, имеется ли центр симметрии в Вашем кристалле, необходимо руководствоваться следующим правилом:

«При наличии центра симметрии в кристалле каждой его грани соответствует равная и противоположная ей грань».

На практических занятиях с лабораторными моделями наличие или отсутствие центра симметрии в кристалле устанавливается следующим образом. Кладем кристалл какой-либо его гранью на плоскость стола. Проверяем, присутствует ли сверху равная и параллельная ей грань. Повторяем ту же операцию для каждой грани кристалла. Если каждой грани кристалла отвечает сверху равная и параллельная ей грань, то центр симметрии в кристалле присутствует. Если хотя бы для одной грани кристалла не найдется сверху равной и параллельной ей грани, то центра симметрии в кристалле нет.

Плоскостью симметрии (обозначается буквой Р, по международной символике – m) называется воображаемая плоскость, проходящая через геометрический центр кристалла и разделяющая его на две зеркально равные половины. Кристаллы, имеющие плоскость симметрии, обладают двумя свойствами. Во-первых, две его половины, разделенные плоскостью симметрии, равны по объему; во-вторых, они равны, как отражения в зеркале.

Для проверки зеркального равенства половин кристалла необходимо из каждой его вершины провести воображаемые перпендикуляр к плоскости и продолжить его на то же расстояние от плоскости. Если каждой вершине соответствует с противоположной стороны кристалла зеркально отраженная ей вершина, то плоскость симметрии в кристалле присутствует. При определении плоскостей симметрии на лабораторных моделях кристалл ставится в фиксированное положение и затем мысленно рассекается на равные половины. Проверяется зеркальное равенство полученных половин. Считаем, сколько раз мы можем мысленно рассечь кристалл на две зеркально равные части. Помните, что кристалл при этом должен быть неподвижен!

Число плоскостей симметрии в кристаллах варьирует от 0 до 9. Например, в прямоугольном параллелепипеде находим три плоскости симметрии, т. е. 3Р.

Осью симметрии называется воображаемая линия, проходящая через геометрический центр кристалла, при повороте вокруг которой кристалл несколько раз повторяет свой внешний вид в пространстве, т. е. самосовмещается. Это означает, что после поворота на некоторый угол на место одних граней кристалла становятся другие, равные им грани.

Основной характеристикой оси симметрии является наименьший угол поворота, при котором кристалл первый раз «повторяется» в пространстве. Этот угол называется элементарным углом поворота оси и обозначается α, например:

Элементарный угол поворота любой оси обязательно содержится целое число раз в 360°, т. е. (целое число), где n – порядок оси.

Таким образом, порядком оси называется целое число, показывающее, сколько раз элементарный угол поворота данной оси содержится в 360°. Иначе, порядок оси – это число «повторений» кристалла в пространстве при полном его повороте вокруг данной оси.

Оси симметрии обозначаются буквой L, порядок оси - маленькой цифрой справа внизу, например, L 2 .

В кристаллах возможны следующие оси симметрии и соответствующие им элементарные углы поворота.

Таблица 1

Соотношение осей симметрии и элементарных углов поворота

В любом кристалле существует бесконечное количество осей симметрии первого порядка, поэтому на практике они не определяются.

Осей симметрии 5-го и любого порядка выше 6-го в кристаллах вообще не существует. Эта особенность кристаллов формулируется как закон симметрии кристаллов. Закон симметрии кристаллов объясняется специфичностью их внутреннего строения, а именно – наличием пространственной решетки, которая не допускает возможности существования осей 5-го, 7-го, 8-го и так далее порядков.

В кристалле может быть несколько осей одного и того же порядка. Например, в прямоугольном параллелепипеде присутствуют три оси 2-го порядка, т. е. 3L 2.

В кубе - 3 оси 4-го порядка, 4 оси 3-го порядка и 6 осей 2-го порядка. Оси симметрии наивысшего порядка в кристалле называют главными.

Нахождение осей симметрии на моделях во время лабораторных занятий осуществляется в следующем порядке. Кристалл берется кончиками пальцев одной руки за его противоположные точки (вершины, середины ребер или граней). Воображаемая ось ставится перед собой вертикально; запоминается какой-либо характерный внешний вид кристалла. Затем кристалл вращается другой рукой вокруг воображаемой оси до тех пор, пока его первоначальный внешний вид не «повторится» в пространстве. Считаем, сколько раз кристалл «повторяется» в пространстве при полном повороте вокруг данной оси. Это и будет ее порядок. Аналогичным образом проверяются все другие теоретически возможные направления прохождения оси симметрии в кристалле. Данные оси симметрии называются простыми.

Кроме них существуют сложные оси симметрии, называемые зеркально-поворотными и инверсионными. Зеркально-поворотная ось симметрии представляет собой мысленное сочетание простой оси и перпендикулярной ей плоскости симметрии. Зеркально-поворотные оси могут быть тех же порядков, что простые, но на практике используется только ось 4-го порядка, которая обозначается L 4 2 и всегда ровна L 2, но не наоборот.

Инверсионная ось симметрии представляет собой мысленное сочетание простой оси симметрии и центра симметрии. На практике и в теории используются только инверсионные оси 4-го и 6-го порядка. Они обозначаются Li 4 и Li 6 .

Сочетание всех элементов симметрии кристалла, записанное условными обозначениями, называется его формулой симметрии . В формуле симметрии сначала перечисляются оси симметрии, затем плоскости симметрии и последним показывается наличие центра симметрии. Между обозначениями не ставится точек или запятых. Например, формула симметрии прямоугольного параллелепипеда: 3L 3 3PC; куба – 3L 4 4L 3 6L 2 9PC.

Виды симметрии кристаллов

Видами симметрии называются возможные в кристаллах сочетания элементов симметрии. Каждому виду симметрии соответствует определенная формула симметрии.

Всего для кристаллов теоретически доказано наличие 32 видов симметрии. Таким образом, всего существует 32 формулы симметрии кристаллов.

Все виды симметрии объединяются в 7 ступеней симметрии с учетом наличия характерных элементов симметрии.

1. Примитивная – объединяются виды симметрии, представленные только одиночными осями симметрии разного порядка: L 3 , L 4 , L 6 .

2. Центральная – помимо одиночных осей симметрии присутствует центр симметрии; кроме того, наряду с наличием четных осей симметрии появляется еще плоскость симметрии: L 3 С, L 4 PC, L 6 PC.

3. Планальная (план – плоскость, греч.) – присутствуют одиночная ось и плоскости симметрии: L 2 2P, L 4 4P.

4. Аксиальная (аксис – ось, греч.) – присутствуют только оси симметрии: 3L 2 , L 3 3L 2 , L 6 6L 2 .

5. Планаксиальная – присутствуют оси, плоскости и центр симметрии: 3L 2 3PC, L 4 4L 2 5PC.

6. Инверсионно-примитивная – наличие единственной инверсионной оси симметрии: L i 4 , L i 6 .

7. Инверсионно-планальная – наличие, помимо инверсионной оси, простых осей и плоскостей симметрии: L i 4 4L 2 2P, L i 6 3L 2 3P.

В каждую ступень симметрии объединяется разное количество видов симметрии: от 2 до 7.

Сингонии

Сингонией называется группа видов симметрии, обладающих одноименной главной осью симметрии и одинаковым общим уровнем симметрии (син – сходный, гониа – угол, дословно: сингония – сходноугольность, греч.). Переход от одной сингонии к другой сопровождается повышением степени симметрии кристаллов.

Всего выделяют 7 сингоний. В порядке последовательного повышения степени симметрии кристаллов они располагаются следующим образом.

1. Триклинная сингония (клин – угол, наклон, греч.) получила название с учетом той особенности кристаллов, что между всеми гранями углы всегда косые. Кроме С других элементов симметрии нет.

2. Моноклинная (монос – один, греч.) – в одном направлении между гранями кристаллов угол всегда косой. В кристаллах могут присутствовать L 2 , P и С. Ни один из элементов симметрии не повторяется хотя бы дважды.

3. Ромбическая – получила название по характерному поперечному сечению кристаллов (вспомните углы ромбические 1-го рода).

4. Тригональная – названа по характерному поперечному сечению (треугольник) и многогранным углам (тригональный, дитригональный). Обязательно присутствует одна L 3 .

5. Тетрагональная – характерны поперечное сечение в форме квадрата и многогранные углы – тетрагональный и дитетрагональный. Обязательно присутствует L 4 или L i4 .

6. Гексагональная – сечение в форме правильного шестиугольника, многогранные углы – гексагональный и дигексагональный. обязательно присутствие одной L 6 или L i 6 .

7. Кубическая – типична кубическая форма кристаллов. Характерно сочетание элементов симметрии 4L 3 .

Сингонии объединяются в 3 категории : низшую, среднюю и высшую.


Похожая информация.


Радиусы, площади и объёмы

С каждым правильным многогранником связаны три концентрические сферы:
Описанная сфера, проходящая через вершины многогранника;
Срединная сфера, касающаяся каждого его ребра в середине;
Вписанная сфера, касающаяся каждой его грани в её центре.

Радиусы описанной () и вписанной () сфер задаются формулами:

где θ - двугранный угол между смежными гранями многогранника. Радиус срединной сферы задаётся формулой:

где h - величина описанная выше, при определении двугранных углов (h = 4, 6, 6, 10 или 10). Отношения описанных радиусов к вписанным радиусам симметрично относительно p и q:

Лощадь поверхности S правильного многогранника {p, q} вычисляется, как площадь правильного p-угольника, умноженная на число граней Г:

Объем правильного многогранника вычисляется, как умноженный на число граней объём правильной пирамиды, основанием которой служит правильный p-угольник, а высотой - радиус вписанной сферы r:



История.

Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников. В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона. В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.
Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». Платон писал о них в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставлялась кубу, воздух - октаэдру, вода - икосаэдру, а огонь - тетраэдру. Для возникновения данных ассоциаций были следующие причины: жар огня ощущается чётко и остро (как маленькие тетраэдры); воздух состоит из октаэдров: его мельчайшие компоненты настолько гладкие, что их с трудом можно почувствовать; вода выливается, если её взять в руку, как будто она сделана из множества маленьких шариков (к которым ближе всего икосаэдры); в противоположность воде, совершенно непохожие на шар кубики составляют землю, что служит причиной тому, что земля рассыпается в руках, в противоположность плавному току воды. По поводу пятого элемента, додекаэдра, Платон сделал смутное замечание: «…его бог определил для Вселенной и прибегнул к нему в качестве образца». Аристотель добавил пятый элемент - эфир и постулировал, что небеса сделаны из этого элемента, но он не сопоставлял его платоновскому пятому элементу. Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал. Предложения 13-17 этой книги описывают структуру тетраэдра, октаэдра, куба, икосаэдра и додекаэдра в данном порядке. Для каждого многогранника Евклид нашёл отношение диаметра описанной сферы к длине ребра. В 18-м предложении утверждается, что не существует других правильных многогранников. Андреас Шпейзер отстаивал точку зрения, что построение пяти правильных многогранников является главной целью дедуктивной системы геометрии в том виде, как та была создана греками и канонизирована в «Началах» Евклида. Большое количество информации XIII книги «Начал», возможно, взято из трудов Теэтета. В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы (исключая Землю) и правильными многогранниками. В «Тайне мира», опубликованной в 1596 году, Кеплер изложил свою модель Солнечной системы. В ней пять правильных многогранников помещались один в другой и разделялись серией вписанных и описанных сфер. Каждая из шести сфер соответствовала одной из планет (Меркурию, Венере, Земле, Марсу, Юпитеру и Сатурну). Многогранники были расположены в следующем порядке (от внутреннего к внешнему): октаэдр, за ним икосаэдр, додекаэдр, тетраэдр и, наконец, куб. Таким образом, структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками. Позже от оригинальной идеи Кеплера пришлось отказаться, но результатом его поисков стало открытие двух законов орбитальной динамики - законов Кеплера, - изменивших курс физики и астрономии, а также правильных звёздчатых многогранников (тел Кеплера-Пуансо).

Геометрия прекрасна тем, что, в отличие от алгебры, где не всегда понятно, что и зачем считаешь, дает наглядность объекта. Этот удивительный мир различных тел украшают собой правильные многогранники.

Общие сведения о правильных многогранниках

По мнению многих, правильные многогранники, или как их еще называют Платоновы тела, обладают неповторимыми свойствами. С этими объектами связано несколько научных гипотез. Когда начинаешь изучать данные геометрические тела, понимаешь, что практически ничего не знаешь о таком понятии, как правильные многогранники. Презентация этих объектов в школе не всегда проходит интересно, поэтому многие даже и не помнят, как они называются. В памяти большинства людей остается только куб. Ни одни тела в геометрии не обладают таким совершенством, как правильные многогранники. Все названия этих геометрических тел произошли из Древней Греции. Они означают количество граней: тетраэдр - четырехгранный, гексаэдр - шестигранный, октаэдр - восьмигранный, додекаэдр - двенадцатигранный, икосаэдр - двадцатигранный. Все эти геометрические тела занимали важнейшее место в концепции Платона о мироздании. Четыре из них олицетворяли стихии или сущности: тетраэдр - огонь, икосаэдр - воду, куб - землю, октаэдр - воздух. Додекаэдр воплощал все сущее. Он считался главным, поскольку был символом мироздания.

Обобщение понятия многогранника

Многогранником является совокупность конечного числа многоугольников такая, что:

  • каждая из сторон любого из многоугольников является одновременно и стороной только одного другого многоугольника по той же стороне;
  • от каждого из многоугольников можно дойти до других переходя по смежным с ним многоугольникам.

Многоугольники, составляющие многогранник, представляют собой его грани, а их стороны - ребра. Вершинами многогранников являются вершины многоугольников. Если под понятием многоугольник понимают плоские замкнутые ломаные, то приходят к одному определению многогранника. В том случае, когда под этим понятием подразумевают часть плоскости, что ограничена ломаными линиями, то следует понимать поверхность, состоящую из многоугольных кусочков. называют тело, лежащее по одну сторону плоскости, прилегающей к его грани.

Другое определение многогранника и его элементов

Многогранником называют поверхность, состоящую из многоугольников, которая ограничивает геометрическое тело. Они бывают:

  • невыпуклыми;
  • выпуклыми (правильные и неправильные).

Правильный многогранник - это выпуклый многогранник с максимальной симметрией. Элементы правильных многогранников:

  • тетраэдр: 6 ребер, 4 грани, 5 вершин;
  • гексаэдр (куб): 12, 6, 8;
  • додекаэдр: 30, 12, 20;
  • октаэдр: 12, 8, 6;
  • икосаэдр: 30, 20, 12.

Теорема Эйлера

Она устанавливает связь между числом ребер, вершин и граней, топологически эквивалентных сфере. Складывая количество вершин и граней (В + Г) у различных правильных многогранников и сравнивая их с количеством ребер, можно установить одну закономерность: сумма количества граней и вершин равняется числу ребер (Р), увеличенному на 2. Можно вывести простую формулу:

  • В + Г = Р + 2.

Эта формула верна для всех выпуклых многогранников.

Основные определения

Понятие правильного многогранника невозможно описать одним предложением. Оно более многозначное и объемное. Чтобы тело было признано таковым, необходимо, чтобы оно отвечало ряду определений. Так, геометрическое тело будет являться правильным многогранником при выполнении таких условий:

  • оно выпуклое;
  • одинаковое количество ребер сходится в каждой из его вершин;
  • все грани его - правильные многоугольники, равные друг другу;
  • все его равны.

Свойства правильных многогранников

Существует 5 разных типов правильных многогранников:

  1. Куб (гексаэдр) - у него плоский угол при вершине составляет 90°. Он имеет 3-гранный угол. Сумма плоских углов у вершины составляет 270°.
  2. Тетраэдр - плоский угол при вершине - 60°. Он имеет 3-гранный угол. Сумма плоских углов у вершины - 180°.
  3. Октаэдр - плоский угол при вершине - 60°. Он имеет 4-гранный угол. Сумма плоских углов у вершины - 240°.
  4. Додекаэдр - плоский угол при вершине 108°. Он имеет 3-гранный угол. Сумма плоских углов у вершины - 324°.
  5. Икосаэдр - у него плоский угол при вершине - 60°. Он имеет 5-гранный угол. Сумма плоских углов у вершины составляет 300°.

Площадь поверхности этих геометрических тел (S) вычисляется, как площадь правильного многоугольника, умноженная на количество его граней (G):

  • S = (a: 2) х 2G ctg π/p.

Объем правильного многогранника

Эта величина вычисляется путем умножения объема правильной пирамиды, в основании которой находится правильный многоугольник, на число граней, а высота ее является радиусом вписанной сферы (r):

  • V = 1: 3rS.

Объемы правильных многогранников

Как и любое другое геометрическое тело, правильные многогранники имеют различные объемы. Ниже представлены формулы, по которым можно их вычислить:

  • тетраэдр: α х 3√2: 12;
  • октаэдр: α х 3√2: 3;
  • икосаэдр; α х 3;
  • гексаэдр (куб): 5 х α х 3 х (3 + √5) : 12;
  • додекаэдр: α х 3 (15 + 7√5) : 4.

Гексаэдр и октаэдр являются дуальными геометрическими телами. Иными словами, они могут получиться друг из друга в том случае, если центр тяжести грани одного принимается за вершину другого, и наоборот. Также дуальными являются икосаэдр и додекаэдр. Сам себе дуален только тетраэдр. По способу Евклида можно получить додекаэдр из гексаэдра с помощью построения «крыш» на гранях куба. Вершинами тетраэдра будут любые 4 вершины куба, не смежные попарно по ребру. Из гексаэдра (куба) можно получить и другие правильные многогранники. Несмотря на то что есть бесчисленное множество, правильных многогранников существует всего 5.

Радиусы правильных многоугольников

С каждым из этих геометрических тел связаны 3 концентрические сферы:

  • описанная, проходящая через его вершины;
  • вписанная, касающаяся каждой его грани в центре ее;
  • срединная, касающаяся всех ребер в середине.

Радиус сферы описанной рассчитывается по такой формуле:

  • R = a: 2 х tg π/g х tg θ: 2.

Радиус сферы вписанной вычисляется по формуле:

  • R = a: 2 х ctg π/p х tg θ: 2,

где θ - двухгранный угол, который находится между смежными гранями.

Радиус сферы срединной можно вычислить по следующей формуле:

  • ρ = a cos π/p: 2 sin π/h,

где h величина = 4,6 ,6,10 или 10. Отношение описанных и вписанных радиусов симметрично относительно p и q. Оно рассчитывается по формуле:

  • R/r = tg π/p х tg π/q.

Симметрия многогранников

Симметрия правильных многогранников вызывает основной интерес к этим геометрическим телам. Под ней понимают такое движение тела в пространстве, которое оставляет одно и то же количество вершин, граней и ребер. Другими словами, под действием преобразования симметрии ребро, вершина, грань или сохраняет свое первоначальное положение, или перемещается в исходное положение другого ребра, другой вершины или грани.

Элементы симметрии правильных многогранников свойственны всем видам таких геометрических тел. Здесь речь ведется о тождественном преобразовании, которое оставляет любую из точек в исходном положении. Так, при повороте многоугольной призмы можно получить несколько симметрий. Любая из них может быть представлена как произведение отражений. Симметрию, которая является произведением четного количества отражений, называют прямой. Если же она является произведением нечетного количества отражений, то ее называют обратной. Таким образом, все повороты вокруг прямой представляют собой прямую симметрию. Любое отражение многогранника - это обратная симметрия.

Чтобы лучше разобраться в элементах симметрии правильных многогранников, можно взять пример тетраэдра. Любая прямая, которая будет проходить через одну из вершин и центр этой геометрической фигуры, будет проходить и через центр грани, противоположной ей. Каждый из поворотов на 120 и 240° вокруг прямой принадлежит к множественному числу симметрий тетраэдра. Поскольку у него по 4 вершины и грани, то получается всего восемь прямых симметрий. Любая из прямых, проходящих через середину ребра и центр этого тела, проходит через середину его противоположного ребра. Любой поворот на 180°, называемый полуоборотом, вокруг прямой является симметрией. Поскольку у тетраэдра есть три пары ребер, то получится еще три прямые симметрии. Исходя из вышеизложенного, можно сделать вывод, что общее число прямых симметрий, и в том числе тождественное преобразование, будет доходить до двенадцати. Других прямых симметрий у тетраэдра не существует, но при этом у него есть 12 обратных симметрий. Следовательно, тетраэдр характеризуется всего 24 симметриями. Для наглядности можно построить модель правильного тетраэдра из картона и убедиться, что это геометрическое тело действительно имеет всего 24 симметрии.

Додекаэдр и икосаэдр - наиболее близкие к сфере тела. Икосаэдр обладает наибольшим числом граней, наибольшим и плотнее всего может прижаться к вписанной сфере. Додекаэдр обладает наименьшим угловым дефектом, наибольшим телесным углом при вершине. Он может максимально заполнить свою описанную сферу.

Развертки многогранников

Правильные которых мы все склеивали в детстве, имеют много понятий. Если есть совокупность многоугольников, каждая сторона которых отождествлена с только одной стороной многогранника, то отождествление сторон должно соответствовать двум условиям:

  • от каждого многоугольника можно перейти по многоугольникам, имеющим отождествленную сторону;
  • отождествляемые стороны должны иметь одинаковую длину.

Именно совокупность многоугольников, которые удовлетворяют эти условия, и называется разверткой многогранника. Каждое из этих тел имеет их несколько. Так, например, у куба их насчитывается 11 штук.

В п. 12.1 мы определили правильный многогранник как многогранник, у которого равны друг другу все элементы одного вида: грани, ребра и т.д. Но правильные многогранники можно определить как самые симметричные изо всех многогранников. Это означает следующее. Если мы возьмем на правильном многограннике некоторую вершину А, подходящее к ней ребро а и грань а, подходящую к этому ребру, и еще любой такой же набор то существует такое самосовмещение многогранника,

которое вершину А переводит в вершину А, ребро а - в ребро а, грань а - в грань а.

Докажем это. Так как любые две грани правильного многогранника равны, то существует движение, которое одну из них переведет в другую. Поскольку все двугранные углы этого многогранника равны, то в результате совмещения граней весь многогранник самосовместится или перейдет в многогранник, симметричный исходному относительно плоскости второй грани. Во втором случае симметрия относительно плоскости этой грани завершит процесс самосовмещения правильного многогранника.

Верно и обратное: многогранники, обладающие этим свойством, будут правильными, так как у них окажутся равны все ребра, все плоские углы и все двугранные углы.

Рассмотрим теперь элементы симметрии правильных многогранников.

Начнем с элементов симметрии куба.

1. Центр симметрии - центр куба.

2. Плоскости симметрии (рис. 12.17): 1) три плоскости симметрии, перпендикулярные ребрам в их серединах; 2) шесть плоскостей симметрии, проходящих через противоположные ребра.

3. Оси симметрии: 1) три оси симметрии 4-го порядка, проходящие через центры противоположных граней (рис. 12.18а); 2) шесть осей поворотной симметрии 2-го порядка, проходящие через середины противоположных ребер (рис. 12.186); 4) четыре диагонали куба являются осями зеркального поворота шестого порядка, самосовмещающего куб (рис. 12.18в).

Это самый интересный и не сразу видный элемент симметрии куба. Сечение куба плоскостью, проходящей через его центр перпендикулярно диагонали, представляет правильный шестиугольник; при повороте куба вокруг диагонали на угол 60° шестиугольник отображается на себя, а куб в целом еще нужно отразить в плоскости шестиугольника.

Октаэдр двойственен кубу, и потому у него те же элементы симметрии с той разницей, что плоскости симметрии и оси, проходящие у куба через вершины и центры граней, у октаэдра проходят наоборот: через центры граней и вершины (рис. 12.19). Так, зеркальная ось 6-го

порядка проходит у октаэдра через центры противоположных граней.

Обратимся к элементам симметрии правильного тетраэдра.

1. Шесть плоскостей симметрии, каждая из которых проходит через ребро и середину противоположного ребра (рис. 12.20а).

2. Четыре оси 3-го порядка, проходящие через вершины и центры противоположных им граней, т.е. через высоты тетраэдра (рис. 12.20б).

3. Три оси зеркального поворота 4-го порядка, проходящие через середины противоположных ребер (рис. 12.20в).

Центра симметрии у тетраэдра нет.

В куб можно вписать два правильных тетраэдра (рис. 12.16). При самосовмещениях куба эти тетраэдры либо самосовмещаются, либо отображаются друг на друга. Выясните, при каких самосовмещениях куба происходит самосовмещение тетраэдров, а при каких они отображаются друг на друга.

Убедитесь, что в первом случае получатся все самосовмещения тетраэдра, так что группа симметрии куба включает в себя группу симметрии куба как подгруппу. (См. п. 28.4).

Группы симметрии у додекаэдра и икосаэдра одинаковы, поскольку эти правильные многогранники двойственны

друг другу. У них есть центр симметрии, плоскости симметрии, оси поворотной симметрии и оси зеркальной поворотной симметрии. Труднее всего найти последние из этих элементов симметрии. Укажем, как их построить.

Оси зеркальной поворотной симметрии в икосаэдре (так же, как и в кубе) соединяют противоположные вершины этого многогранника (рис. 12.21), а в додекаэдре (как и в октаэдре) эти оси идут через центры их параллельных граней (рис. 12.22). Плоскости, проходящие через центры симметрии правильных многогранников и перпендикулярные указанным осям, пересекают правильные многогранники по правильным многоугольникам (рис. 12.23).

В частности, додекаэдр и икосаэдр они пересекают по правильным десятиугольникам (рис. 12.23 г,д). Из сказанного следует, что икосаэдр и додекаэдр самосовмещаются зеркальными поворотами относительно осей шестого и десятого порядков.

Найдите самостоятельно более простые элементы симметрии икосаэдра и додекаэдра - плоскости симметрии и оси поворотной симметрии.

1 Минерало́гия -наукаоминералах- природныххимических соединениях.

Минералогия изучает состав, свойства, структуры и условия образования минералов

Минералы- кристаллические элементы или химические соединения,возникающие в ходе геологических процессов.

2 Минеральный вид - это совокупность минералов данного химического состава с данной кристаллической структурой.

К 1-му мин.виду относятся все минеральные индивиды,характеризующиеся:

Одинаковой структурной группой

Химическим составом,непрерывно изменяющимся в определенных пределах

Равновесным существованием в определенных термодинамических условиях земной коры

3 Симметрические преобразование и элементы симметрии кристаллических многогранников.

Симметрия– правильная повторяемость элементов ограничения кристаллов при

выполнении симметрических операций.

Элементами ограничения кристаллов считаются их грани, ребра и вершины.

Симметрические операции– это повороты и отражения кристалла

относительно элементов симметрии.

Элементы симметрии 1 рода.

Ось симметрии Ln - это воображаемая прямая линия, проходящая при вращении кристалла вокруг которой через один и тот же угол наблюдается повторения элементов ограничения. L6-L4L3L2

Элементы симметрии 2 рода:

-плоскость симметрии(Р)- такая плоскость,которая делит фигуры на две равные части,каждая из которой является зеркальным отображением другой

-центр симметрии(инверсии)(С)- представляет собой точку внутри кристалла от которой по обе стороны на равных расстояниях нах-ся тождественные точкиграней и вершин.центр инверсии бывает только один либо его нет.

Инверсионная ось симметрии Ln– это воображаемая линия, при повороте вокруг которой на угол, задаваемый порядком оси, с последующимотражением в точке, лежащей на этой оси, как в центре инверсии, кристаллсовмещается сам с собой.

Таким образом, действие инверсионной оси вклю-чает в себя два момента: во-первых, поворот на угол, задаваемый порядком

оси, во-вторых, отражение в точке, как в центре инверсии.

4. Полярные и неполярные оси симметрии

а) полярные –на концах оси разные эл-ты фигуры;

б)неполярные(биполярные)на концах оси одинаковые эл-ты фигуры.

5.Единичные направления в криталлах.

Единственное, не повторяющееся в кристалле направление называет-ся единичным.

В кубе нет единичных направлений, здесь для любогонаправления можно найти симметрично-равное.

По симметрии и по числу единичных направлений кристаллы делятся на три категории: низшую, среднюю, высшую.

6В учебной символике символике Браве - оси симметрии обозначаются как Ln

Где подстрочный цифровой индекс п указывает на порядок

оси1 Графически оси симметрии обозначаются многоугольниками:

    в плоскости –

    плоскость симметрии Р

    Отражение в точке (инверсия) –

    центр симметрии, инверсии С

    Поворот с отражением в точке - инверсионная ось L n i - с черточкой наверху. Порядок оси - 1, 2, 3, 4, 6.

Инверсионные оси Зеркальные оси

L 6 = L 3 + перп.P. Л 6 = L 3

L 4 Л 3 = L 6

L 3 = L 3 + C. Л 4 = L 4

L 2 = P. Л 2

L 1 = C .


Формула симметрии состоит из записанных элементов симметрии данного кристалла в определенной последовательности: оси высшего порядка®осиL2 ®плоскости симметрии®центр симметрии. В кубической сингонии на втором месте всегда стоит4L3 . Если какой-либо элемент отсутствует, он опускается.