Стандарт связи lte что. Технология связи LTE — что это такое? Технология LTE против WiMAX

Здравствуйте, уважаемые читатели блога сайт. Эволюция сотовой связи протекала быстро. Ее можно поделить на несколько, всем известных поколений: 1G, 2G, 3G.

Но настоящий скачок в мобильной связи произошел только после появления нового стандарта – LTE, который поддерживает передачу данных до 1Gбит/сек.

Так как многие пользователи до сих пор путаются в новых стандартах, давайте разберемся, в чем суть технологии LTE: что это, чем отличается от 4G, и что нужно, чтобы в вашем телефоне заработал скоростной интернет.

Что такое LTE

Расшифровывается как Long-Term Evolution, что в переводе означает «долгосрочная эволюция». Сути явления это нам не раскрывает, но она кроется в чисто технических понятиях (изменилась схема и способы передачи сигнала между телефонами и сотами).

Если обойтись без сложных, никому не нужных терминов, то LTE — это беспроводной выход в интернет, который обеспечивает нереально высокую скорость передачи данных. Максимальную за всю историю существования мобильных телефонов.

Как удалось добиться таких впечатляющих результатов?

До создания LTE сотовая связь могла работать только на какой-то определенной частоте. Это создавало некоторые ограничения и в целом тормозило работу мобильной связи. К примеру, в сетях 2G используются только несколько диапазонов (850 МГц, 900 МГц, 1800 МГц, 1900 МГц). Та же ситуация и в 3G, но с добавлением еще двух диапазонов – 1900 и 2200 МГц.

В отличие от предыдущих стандартов, технология LTE может работать на любых частотах . Как на самых низких, так и на высоких (от 450 МГц до 5 ГГц).

Но главная особенность этой технологии – способность объединять несколько диапазонов в один канал .

Такая возможность появилась после создания версии LTE Advanced. Именно эта версия и положила начало новой эпохи — 4G.

VoLTE - разговоры поверх LTE

Наверняка многие из вас заметили в своем смартфоне функцию VoLTE — что это, и для чего она создана. Многие ее недооценивают, но совершенно напрасно. Эта, уже не новая технология, позволяет передавать по 4G не только трафик, но и голос.

Попросту говоря, если у вас безлимитный интернет, то с VoLTE вы можете разговаривать по телефону сколько угодно и совершенно бесплатно .

Еще одна польза этой функции – экономия заряда. По причине того, что голосовые вызовы пока осуществляются исключительно через 2G или 3G, во время телефонного звонка устройство автоматически переходит из сети 4G в сеть 3G, что отражается на объеме заряда.

И дополнительный бонус – во время разговора вы одновременно можете пользоваться интернетом.

В чем разница между 4G и LTE

Сегодня термин LTE и 4G используют совместно. На самом деле это немного разные понятия. Технология LTE существует уже давно и включает 19 версий. Самые первые из них были далеки от теперешних стандартов.

И только десятая версия LTE Advanced (и все последующие) относятся к стандарту радиосвязи четвертого поколения (4G).

Версии, созданные ранее — это скорее промежуточный вариант между 3G и 4G.

В ноябре 2010 года Международный союз электросвязи официально признал LTE-Advanced стандартом беспроводного сетевого соединения 4-го поколения (4G).

Какие преимущества дает нам LTE:

  1. Формально скорость загрузки достигает 326,4 Мбит/с, скорость отдачи до 172,8 Мбит/с. По факту эти цифры могут меняться в зависимости от качества сигнала, загруженности сети, ограничения тарифного плана. Но даже этого хватит для того, чтобы обеспечить потоковую передачу без задержек.Это значит, что в зоне покрытия вы сможете смотреть потоковое видео, участвовать в онлайн-конференциях и в целом не ограничивать себя, используя интернет.
  2. С технической стороны стандарт LTE использует уже имеющуюся инфраструктуру 3G. Это делает переход абонентов от 3G к 4G более плавным. Если по каким-то причинам вы выйдете из зоны покрытия LTE, ваше устройство автоматически переключится в 3G режим без потери связи.
  3. Радиус покрытия LTE составляет от 3.2 до 19.7 км. Но, как и в случае с 3G, уровень сигнала будет зависеть от мощности базовой станции.

От чего зависит скорость LTE

Большинство крупных операторов в РФ могут функционировать в определенных диапазонах: 2600 МГц, 1800 МГц и 800 МГц. Практически все базовые станции сотовой связи, работающие в диапазоне 800 МГц, способны обеспечить максимальную скорость на расстоянии до 13 км. Соответственно, в зоне уверенного покрытия LTE качество сигнала будет на порядок лучше.

Кроме того, у каждого отдельного оператора ширина полосы и территория покрытия отличаются. То есть в разных точках одной и той же сети и в различных сетях скорости будут различными. Поэтому если хотите знать, на какую скорость можно рассчитывать, проверьте карту зоны покрытия LTE у своего оператора.

Помните, что на конечную скорость влияют другие факторы: погодные условия, число пользователей - чем их больше, тем средние скорости меньше.

Как правильно выбрать смартфон с LTE

Для того чтобы ваш телефон работал в сети LTE, у него должен быть встроенный модуль. Все современные девайсы, как правило, уже давно поддерживают эту технологию. Но если у вас есть сомнения, это легко проверить в настройках смартфона.

Также нужно проверить, подходит ли ваша SIM-карта для сети 4G . Если на ней нет надписи «4G LTE» (обычно это симки, выпущенные до 2013 года), замените её бесплатно на USIM-карту в любом салоне мобильной связи.

О чем еще нужно помнить — сети четвёртого поколения строятся в самых разных частотных диапазонах. Поэтому при выборе смартфона, ориентируетесь в первую очередь на то, какие частоты LTE поддерживает оператор в вашем месте проживания.

В России для сетей 4-го поколения используются всего несколько частотных диапазонов : 1800 МГц 2600 МГц 800 МГц 2600 МГц. В международной классификации они называются band «бэнд».

Для наилучшей работы в сетях 4G/LTE ваш телефон должен поддерживать как минимум частоты: 1800 и 2600 МГц (диапазоны b3 и b7 ).

Посмотреть эту информацию можно в технических характеристиках устройства:

Почему так важно проверять эту информацию?

В разных странах используются разные комбинации частот. Если вы купили смартфон за границей или, например, на Aliexpress, то из-за несовместимости приобретённого устройства с нашей сетью рискуете остаться без 4G .

Для достижения максимальной скорости смартфона также важна такая характеристика, как категория LTE-A (LTE-Advanced). Всего их существует 16: LTE cat 1, LTE cat 2, LTE cat 3 и т.д. Чем выше версия, тем лучше. Но для нормальной работы в сети 4G выбирайте смартфон категории не меньше Cat.6.

Подытожив все сказанное, вы должны понимать, что LTE в телефоне – это уже привычная функция. Большинство гаджетов продаются с ее поддержкой, но излишняя внимательность в этом вопросе не помешает.

Стандарт LTE-Advanced (LTE-A) — основа хорошего мобильного интернета. В отличие от других стандартов мобильной связи, он может работать в самых различных диапазонах, и не привязан к какому-то конкретному диапазону частот.

Это уникальное свойство объясняет его растущую популярность. Постепенно поддержка этого режима охватывает всё большие территории. А это значит, что нам пора привыкать к тому, что наша жизнь станет еще более насыщенной благодаря мегаскоростному интернету.

Что будет дальше

Сегодня технологии не стоят на месте. На смену четвертому поколению уже подготовлен новый стандарт — 5G (LTE-U) , который, как обещают разработчики, позволит разогнаться до 10 Гбит/с.

Для обычного пользователя это просто фантастическая скорость, которая, по сути, не будет использована в полной мере. Основное применение 5G найдет в промышленных сферах: транспорт и энергетика, медицина.

Удачи вам! До скорых встреч на страницах блога сайт

Вам может быть интересно

Как пишется слово В СВЯЗИ - слитно или раздельно Как положить деньги на телефон с баланса другого телефона Host - что такое хост и чем он отличается от Hosts и хостинга Чему равна скорость в 1 Мах - сколько это километров в секунду (час), что такое число Маха и возможна ли скорость в 27 Махов СОЭ выше нормы - что это значит у мужчин, женщин и детей (таблицы значений по возрасту и возможные проблемы) Хеш - что это такое и как хэш-функция помогает решать вопросы безопасности в интернете Что такое провайдер Модем - это посредник между провайдером и компьютером Как перевести деньги другому абоненту в Теле2 или попросить, чтобы он вам перекинул немного денег Как проверить и отключить платные подписки на Мегафоне Как удалить свою страницу на Одноклассниках

LTE (Long Term Evolution или долгосрочная эволюция) по определению консорциума 3GPP - это новейший стандарт для беспроводной мобильной связи 4-го поколения (4G). А направлен он, прежде всего, на дальнейшее улучшение и развитие сетей 3G (UMTS и EDVO).

На сетевом уровне LTE работает полностью на базе IP технологий, а на физическом уровне (в радиоканале) применяется ортогональное частотное уплотнение, и, в результате, мы получаем высокую пропускную способность, маленькие задержки и фантастическую спектральную эффективность.

LTE - это не просто Upgrade 3G !

Это совершенно иной подход, а физика его такова:

  • переход от кодового разделения каналов (CDMA) к частотному (OFDMA и SC-FDMA)
  • переход от коммутации каналов на технологии IP - коммутацию пакетов

По прогнозам экспертов, уже к 2020 году более 5 млрд. человек станут членами мирового сообщества, называемого “мобильный мир”. При этом половина всего населения планеты будет иметь постоянный доступ к услугам LTE сетей.

Дальнейший прогресс развития будет связан с технологией LTE Advanced , и мы заглянем за рубеж 2020 года!

Характеристики сетей LTE

Производительность и пропускная способность — одно из требований LTE заключается в обеспечении пиковой пропускной способности обратного канала не менее 100 Мбит/с.

Технология предусматривает поддержку скорости обмена данными более 300 Мбит/с, однако шведы уже продемонстрировали нам следующий этап развития LTE — с теоретически возможной пиковой пропускной способностью до 1,2 Гбит/с.

Простота — поддерживаются гибкие варианты полосы пропускания с несущей частотой от 1,4 МГц до 20 МГц и дуплексная передача с разделением по частоте (FDD *) и по времени (TDD *).

Задержка передачи данных в LTE меньше, чем в существующих технологиях 3G. Это преимущество является очень важным для обслуживания интерактивных сред с эффектом присутствия (например, многопользовательских игр) и обмена большими объемами медиаконтента.

Разнообразие устройств — кроме мобильных телефонов и периферийных устройств, встроенными LTE-модулями планируется оснащать многие компьютерные и бытовые электронные устройства. Это ноутбуки, планшеты, игровые приставки и set-top box-ы, видеокамеры и другие портативные устройства.

* При использовании TDD (Time Division Duplex) вся полоса попеременно отдается на загрузку или выгрузку данных. При использовании FDD (Frequency Division Duplex) входящий и исходящий трафик разделены частотно, загрузка данных идет на одной частоте, а выгрузка на другой.

Основные рабочие характеристики

Параметр Значение
Спектр полос 1.4, 3, 5, 10, 15 и 20 МГц
Пиковые скорости
  • Downlink (2-х канальный MIMO): 100 Мбит/c;
  • Uplink (Одноканальный Tx): 50 Мбит/c (канал 20 МГц);
Конфигурация антенн
  • Downlink: 4x2, 2x2, 1x2, 1x1;
  • Uplink: 1x2, 1x1;
Задержка
  • Управляющий (сигнальный) уровень (логика работы сетевого устройства - куда и как слать сетевой трафик): меньше 100 мс для перехода на уровень пользователя;
  • Пользовательский уровень (передача полезного трафика) : меньше 10 мс от клиента к серверу;
Размер соты
  • Полная функциональность: до 5 км;
  • Незначительные ухудшения: 5 км – 30 км;
Мобильность
  • Опитимизировано для низкой скорости (0-15 км/ч);
  • Высокая производительность на скорости до 120 км/ч;
  • Поддерживает работоспособность при передвижении на скорости до 350 км/ч;
Выигрыш в спектральной эффективности
  • Downlink: в 3 - 4 раза HSDPA Rel.5;
  • Uplink: в 2 - 3 раза HSUPA Rel. 6;

Основы мультиплексирования и использование MIMO в LTE

В LTE используются системы MIMO для повышения надежности и для увеличения скорости передачи данных. Как правило, система MIMO состоит из m передающих антенн и n приемных антенн.


Проще говоря, приемник принимает сигнал Tx, который получается, когда вектор Rx входного сигнала умножается на матрицу Q передачи. Tx = Q * Rx. Матрица передачи Q содержит импульсные характеристики канала, которые ссылаются на канал между передающей антенной m и приемной антенной n. Многие алгоритмы MIMO основаны на анализе характеристик матрицы передачи Q. Ранг (матрицы канала) определяет количество линейно независимых строк или столбцов. Он указывает, сколько независимых потоков данных (уровней) может быть передано одновременно.

Повышение надежности передачи данных - разнесение передачи

Когда одни и те же данные передаются избыточно по более чем одной передающей антенне, это называется разнесением передачи. Это увеличивает отношение сигнал / шум. Пространственно-временные коды используются для генерации избыточного сигнала. Аламути разработал первые коды для двух антенн. Сегодня разные коды доступны для более чем двух антенн.

Увеличение скорости передачи данных - пространственное мультиплексирование

Пространственное мультиплексирование увеличивает скорость передачи данных. Данные делятся на отдельные потоки, которые затем передаются одновременно по одним и тем же ресурсам радиоинтерфейса. Передача включает в себя специальные секции (также называемые пилот-сигналами или опорными сигналами), которые также известны приемнику. Приемник может выполнить оценку канала для сигнала каждой передающей антенны.

В методе с обратной связью приемник сообщает о состоянии канала передатчику через специальный канал обратной связи. Это позволяет быстро реагировать на изменение условий в канале, например, адаптация количества мультиплексированных потоков. Когда скорость передачи данных должна быть увеличена для однопользовательского оборудования (UE), это называется однопользовательским MIMO (SU-MIMO). Когда отдельные потоки назначаются различным пользователям, это называется многопользовательским MIMO (MU-MIMO).

Что такое MIMO и MU-MIMO , как работает эта технология и что это дает конечному пользователю?

Beamfoming - основы формирования луча в LTE

При формировании луча используются несколько антенн для управления направлением фронта волны путем соответствующего взвешивания величины и фазы сигналов отдельных антенн (формирование луча передачи). Это позволяет лучше охватить конкретные области по краям сот. Поскольку каждая отдельная антенна в массиве вносит вклад в управляемый сигнал, достигается усиление сигнала (также называемое конструктивным формирования луча).

Формирование приемных лучей позволяет определить направление, куда будет приходить волновой фронт. Также имеется возможность подавить выбранные мешающие сигналы, применяя нулевую диаграмму направленности в направлении мешающего сигнала. Адаптивное формирование луча относится к технике постоянного применения формирования луча к движущемуся приемнику. Это требует быстрой обработки сигналов и мощных алгоритмов.

Формирование луча стало возможным благодаря изменению величины и / или фазы сигнала на отдельных антеннах. Сигналы обрабатываются таким образом, чтобы их можно было конструктивно (эффект усиления за счет сложения волн) добавлять в направлении предполагаемого передатчика / приемника и деструктивно (ослабление волн) в направлении источников помех.


Что такое Beamforming , история развития, и для чего нужно формирование диаграммы направленности луча.

Вдумайтесь в эти цифры:

  • Более 100 лет ушло на создание 1 млрд. стационарных телефонных линий...
  • ... и всего за 20 лет абонентами мобильной связи стали 5 млрд. человек, глобализация связи поистине грандиозна!
  • К началу 2010 года объем мирового трафика мобильных данных превысил объем голосового трафика.
  • Первое мобильное приложение было выпущено в начале 2008 года. А уже в 2011 году абоненты произвели 17 млрд. загрузок, что на 112.5 % больше, чем в 2010 году, когда этот показатель составлял около 8 млрд. загрузок.
  • Прирост числа пользователей широкополосных сетей на 10 % увеличивает годовой ВВП на 1 %. В денежном эквиваленте это около 800 млрд. долларов и способствует появлению миллионов рабочих мест по всему миру.

Что будет с 3G сетями?

Еще совсем недавно мировое сообщество делало ставку на развитие сетей третьего поколения и возможности, которые дали нам эти технологии, казались чем-то из области научной фантастики. Процесс перехода на LTE растянется еще на несколько лет, а да этого времени 3G сети будут так же эффективно решать задачи по передаче широкополосных данных миллиардам мобильных пользователей.

Однако рано или поздно мы полностью перейдем на сети четвертого поколения, и тогда в полной мере можно будет говорить об удовлетворении потребности клиентов в быстродействии и высокой пропускной способности мобильной сети - того, что так необходимо для развития новых приложений.

Видеоблоги и интерактивное телевидение, системы удаленного видеонаблюдения через интернет в режиме реального времени , 3D игры нового поколения и другие профессиональные сервисы предъявляют высокие требования к скорости передачи данных, отсутствию задержек и минимальному джиттеру в работе телекоммуникационной сети, и LTE это главная движущая сила инновационного развития.

Сравнительная таблица сетей GPRS, 3G, 4G

Стандарт сети Технология Модуляция Скорость передачи данных (макс.) к абоненту/от абонента Полоса сигнала, МГц
GSM GPRS GMSK 20/20 Kбит/с 0,2
EDGE 8PSK 59,2/59,2 Kбит/с 0,2
UMTS R99 WCDMA QPSK 384/384 Kбит/с 5
HSDPA 16QAM/QPSK 14,4/5,76 Мбит/с 5
HSPA+ 64QAM/16QAM 21/11,5 Мбит/с 5
DC HSPA+ 64QAM/16QAM 42/23 Мбит/с 10
LTE Release 8 MIMO 2\2 64QAM 150/75 Мбит/с 20
LTE-Advanced Rel. 10 Downlink 8x8 MIMO / Uplink 4x4 MIMO 64QAM 3/1.5 Гбит/с 100
LTE-Advanced Pro Rel. 13 (4.5G) 8x8 MIMO 256QAM 25/12.5 Гбит/с 640

В России для оборудования мобильных 4G сетей выделены стандартные диапазоны частот, так называемые бэнды (BAND):

  • 3 - в диапазоне 1800 МГц FDD;
  • 7 - в диапазоне 2600 МГц FDD;
  • 8 - в диапазоне 900 МГц FDD;
  • 20 - в диапазоне 800 МГц FDD;
  • 31 - в диапазоне 450 МГц FDD;
  • 38 - в диапазоне 2600 МГц TDD.

Полосы частот и ширина каналов, используемые сотовыми операторами в России в 2019

Оператор Частотный диапазон (UL/DL), МГц Ширина канала, МГц Тип дуплекса Номер в 3GPP
1 Мегафон 847-854.5 / 806-813.5 7.5 FDD Band 20
2 Мегафон 1835-1855 / 1730-1750 20 FDD Band 3 3 Yota (Мегафон) 2500-2530 / 2620-2650 30 FDD Band 7
4 Мегафон 2530-2540 / 2650-2660 10 FDD Band 7
5 Мегафон 2575-2595 20 TDD Band 38
6 МТС 839.5-847 / 798.5-806 7.5 FDD Band 20
7 МТС 1855-1875 / 1750-1775 20 FDD Band 3
8 МТС 2540-2550 / 2660-2670 10 FDD Band 7
9 МТС 2595-2615 20 TDD Band 38
10 МТС 2595-2620 25 TDD Band 38
11 Билайн 854.5-862 / 813.5-821 7.5 FDD Band 20
12 Билайн 1805-1825 / 1710-1730 20 FDD Band 3
13 Билайн 2550-2560 / 2670-2680 10 FDD Band 7
14 Теле2 453-457.4 / 463-467.4 4.4 FDD Band 31
15 Ростелеком/Теле2 2560-2570 / 2680-2690 10 FDD Band 7
16 Ростелеком/Теле2 832-839.5 / 791-798.5 7.5 FDD Band 20

Частотное распределение каналов сотовой связи в России на 2019 год

Что даст LTE конечному пользователю?

Увеличение пропускной способности и минимальные задержки, большая устойчивость канала связи, уменьшение стоимости трафика - все вместе это открывает новые возможности для пользователей, сервисы становятся более качественными и менее дорогими.

Какая выгода от LTE для операторов?

Перспективные сетевые технологии с точки зрения мощности, пропускной способности и взаимодействия с пользователем. Это новые коммерческие возможности и источники дохода, как для старых операторов, так и для новых.

Так как новые сети можно использовать для технологий связи любого поколения - 2G, 3G и 4G это позволит снизить капитальные и эксплуатационные затраты операторов.

Что такое LTE-Advanced

Первый набор спецификаций LTE был завершен в марте 2009 года. Первая коммерческая сеть LTE была открыта в декабре 2009 года. По данным Ovum WCISК к концу 2019 года количество подключеней к LTE сетям будет насчитывать 5 млрд. Первые смартфоны с поддержкой LTE были представлены в 2011 году. Базовые технологические возможности развиваются дальше, что ведет к еще более высоким скоростям передачи данных и более высокой плотности размещения базовых станций, и следующий шаг в эволюции развития называется LTE-Advanced. Направлен он на получение скоростей свыше 1 Гбит/с. Развитие LTE-A начинается с 10 релиза, котрый был завершен в июне 2011 года.

6 основных особенностей LTE-Advanced

  • Агрегация несущих в нисходящем канале для увеличения скорости передачи данных до 300 Мбит/с при спектре 20+20 МГц и 2х2 MIMO, а затем даже до 3 Гбит/с при использовании полосы пропускания 100 МГц и 8x8 MIMO. Для увеличения скорости передачи данных нужна большая пропускная способность.
  • Эволюция MIMO до 8x8 в сторону абонента и 4x4 в сторону базовой станции, что дает преимущества для исполльзования технологии формирования луча, увеличение пропускной способности сети при агрегации несущих. Мультиантенны увеличивают скорость передачи данных и пропускную способность сети.
  • Гетерогенная сеть (HetNet) для совместного размещения макро-, микро- и пикостанций. Функции HetNet обеспечивают координацию помех между сетевыми уровнями и увеличивают пропускную способность сети и локальное покрытие с высокой плотностью пикосот, одновременно разделяя частоту с микро и макросотами.
  • Узлы ретрансляции (Relay nodes) для транзитной передачи данных базовых станций через радиоинтерфейс. Линия передачи может использовать внутриполосную или внеполосную передачу. Узлы ретрансляции используются для увеличения покрытия сети, когда магистральные наземные соединения недоступны.
  • Скоординированная многоточечная передача и прием (CoMP) позволяет использовать несколько сектров разных БС для передачи данных к одному терминалу. Координированная многоточечная связь используется для улучшения скорости передачи данных на границе соты, которые ограничены межсотовыми помехами. Передача в сторону абонента может осуществляться с нескольких секторов в один и тот же момент времени, и обратно, прием данных от абонента идет несколькими секторами.
  • Самоорганизующиеся сетевые функции (SON) ускоряют и упрощают развертывание сети и повышают производительность конечного пользователя, обеспечивая правильную и оптимизированную настройку параметров сети.

Агрегация частот на смартфоне - что это такое и как увеличить скорость?

Агрегация несущих частот смартфонов Huawei, Samsung, Iphone и других брендов - это механизм объединения частотных диапазонов в единую полосу с целью увеличения пропускной способности интернет-канала. При этом используется технология MIMO и поддержка промежуточных ретрансляторов (Relay Nodes). Проще говоря, это способ ускорения передачи данных в 4G сетях. Он активно применяется в стандарте LTE-Advanced (LTE A), мобильные операторы так и именуют данную технологию 4G+.

Принцип работы агрегации частот

На 2019 г 4G в России работает в 6-ти частотных диапазонах.

Каждый из них использует не одну конкретную частоту, а некий отрезок шириной: 1.4, 3, 5, 10, 15, 20 МГц. Сделано это для того, чтобы каждому оператору в каждом диапазоне досталось по частотному отрезку. Агрегация частот объединяет несколько таких отрезков в единый «коридор». Например, делает из 2-х или 3-х отрезков по 10 МГц один, многополосный, шириной 20 или 30 МГц. Используя данную технологию, смартфоны могут передавать/получать данные сразу по двум каналам, что значительно увеличивает скорость передачи данных. Таким образом, преодолевается ограничение по количеству подключенных абонентов и увеличивается полоса пропускания канала.

Принцип агрегации 3-х частотных каналов в LTE-Advanced

В Москве оператор Мегафон имеет 40 МГц непрерывного спектра в 7-м банде (диапазоне 2600 МГц), а МТС, Теле2 и Билайн всего по 10 МГц. Таким образом, у Мегафона значительное преимущество в емкости и скорости сети. В свою очередь, абонентам МТС важно проверить, поддерживает ли их телефон работу 38 банда (2600 TDD), потому что у данного оператора широкое покрытие в Москве – 20 МГц. Отстающими для столицы являются Билайн и Теле2.

Для агрегации доступны не только подсети разных бандов, но и разных стандартов разделения. То есть, одновременно можно подключиться к FDD-подсети (частотное разделение каналов), и к TDD-подсети Band 38, где для приема–передачи сигналов используется временное разделение каналов (в отличие от 🤖 Андроида, 🍏 «Яблоки» пока не умеют совмещать FDD и TDD - делайте выводы 😂).

На 2019 год в РФ операторы поддерживают следующие комбинации агрегации несущих:

У МегаФон в Москве и Санкт-Петербурге в максимальной конфигурации агрегация трех полос - 20 МГц из 3-го диапазона и 20+20 МГц из 7-го диапазона.

Три сценария объединения несущих (ОН)

Агрегация несущих в одном диапазоне: эта форма ОН использует один диапазон. Возможны два варианта:

Смежная. Это самая простая форма реализации агрегации несущих LTE. При этом несущие находятся на соседних каналах рядом друг с другом. В этом случае нужен только один приемопередатчик, так как сигнал рассматривается как один расширенный.

Несмежная: немного сложней в выполнении, несущие используют одну и ту же рабочую полосу, но не соседствуют друг с другом. Здесь уже нужны два приемопередатчика, потому что сигнал не может рассматриваться как один сигнал, что увеличивает сложность и стоимость решения.

Несмежная в разных диапазонах: эта форма агрегации несущих использует разные полосы. Это более сложная задача, так как несущие из разных рабочих диапазонов. Таким образом, нужно несколько приемопередатчиков для передачи / приема сигналов. Этот тип ОН самый затратный и сложный в реализации.


Эта технология может применяться к вариантам LTE с FDD или TDD с максимум пятью компонентными несущими, каждая с шириной полосы до 20 МГц, в результате чего общая ширина полосы передачи достигает до 100 МГц.

Какие смартфоны поддерживают LTE A

Эта функция на 2019 г поддерживается следующими смартфонами:
  • Huawei Honor P8, 9, 10, 20, 30, Nova;
  • Samsung Galaxy S8, 9, 10;
  • Iphone 6S,7, 8, X, XR.

Все мобильные операторы сейчас активно внедряют данную технологию на своих каналах. Телефоны и любые другие мобильные гаджеты делятся на категории, самой распространенной из которых является четвертая (CAT 4). Если в технических характеристиках устройства вы видите такую маркировку, то это означает, что в идеальных условиях максимальная скорость интернета на прием может достигать 150 Мбит/с, а на передачу - 50 Мбит/с.

Какие скорости у LTE и LTE-A?

Скорость передачи данных до 100 Мбит в секунду. С поправкой на то, что этот показатель может меняться в зависимости от текущей сетевой нагрузки и местонахождения пользователя. В рамках технологии предусмотрены скорости более 300 Мбит/с. Дальнейшая эволюция развития (LTE Advanced) предусматривает пропускную способность до 3 Гбит/с к абоненту и до 1.5 Гбит/с от абонента.

И, примечательно то, что для перехода с LTE на LTE Advanced потребуется простое обновление программного обеспечения и дальнейшая перенастройка базовых станций оператора. Для внедрения функциональности MIMO 8x8 необходимо будет заменить радио-модули.

Категории мобильных устройств

Эта характеристика очень важна для модемов LTE, от нее зависит возможность объединения каналов шириной до 20 МГц. Модем шестой категории одновременно использует 2 канала, при этом скорость достигает 300 Мбит/с.Модемы категории 9 объединяет уже 3 несущих полосы, при этом «разгоняясь» до 450 Мбит/с. А устройства 12 категории, на тех же трех полосах, достигают максимума в 600 Мбит/с. 16 категория способна использовать 4 канала в режиме MIMO, выдавая до 1 Гбит/с. Самые современные модели категории 20 объединяют до 7 каналов сразу, достигая фантастических скоростей, до 2 Гбит/с.

Плюсы и минусы агрегации частот

Основным преимуществом технологии для оператора это повышение пропускной способности канала и увеличение одновременного обслуживания абонентов с одной базовой станции. Например, флагман Самсунга Galaxy S10, что соответствует пятому поколению связи (5G).

Недостатком технологии является повышенный расход энергии, ввиду того, что сотовому устройству приходится поддерживать связь сразу с несколькими базовыми станциями.

Также операторы экономно используют частотный ресурс, редко устанавливая на одной вышке приемопередатчики для разных подсетей, что мешает мобильным устройствам достигать максимальной для категории скорости.

Как правило, в городах используется Band 7 (2600 МГц), а в малонаселенной местности - низкочастотный Band 20 (800 МГц), и рядом друг с другом это оборудование почти не встречается, лишая тем самым, смартфоны способности объединить эти каналы.

VoLTE - поддержка голосовых вызовов по LTE

Сети LTE полностью основаны на IP-протоколе и поэтому в основной форме поддерживают только передачу данных. Существуют разработки, позволяющие операторам предложить своим абонентам решения для передачи голоса.

Это IP-решения, которые обеспечат такую же функциональную совместимость, гибкость и бесперебойную работу, какую предлагают современные беспроводные технологии 2G и 3G.

Такими возможностями обладают IMS - мультимедийные подсистемы, использующие протокол IP. IMS дает возможность операторам оказывать голосовые услуги в сетях LTE. При этом обеспечивается непрерывность сервиса при переходе абонента из одной сети в другую.

События будут развиваться по следующему сценарию - ведущие операторы сначала реализуют услуги передачи данных в сети LTE, продолжая использовать сети 2G и 3G для передачи голоса, а затем со временем перейдут к передаче голоса поверх LTE - VoLTE (Voice-over-LTE) на базе IMS.

VoLTE как раз и является спецификацией передачи голосового трафика от систем канальной коммутации и SMS к системам пакетной коммутации, т.е. непосредственно через сети LTE с использованием IMS.

Voice over LTE, или VoLTE, аналогичен VoIP (Voice over Internet Protocol) - например Skype, который использует Интернет для поддержки голосовых вызовов по широкополосному соединению. Проще говоря, VoLTE позволяет голосовой связи стать еще одним приложением, которое работает в сети передачи данных. Этот протокол может обеспечить более быстрые и качественные голосовые вызовы и даже видеочат, привязанный к услуге и номеру вашего мобильного телефона. Бонус для потребителей: голосовые минуты не оплачиваются.

Предыдущие сотовые сети, такие как 2G и 3G, были предназначены главным образом для передачи голосовых вызовов. Позже в эти сервисы добавили поддержку передачи сотовых данных с помощью их «туннелирования» внутри голосовых соединений. LTE - это сетевая технология, разработанная для передачи данных, использует пакеты интернет-протокола (IP) для всех коммуникаций. Поэтому он не поддерживает традиционную технологию голосовых вызовов, а значить необходимы новый протокол и приложения для передачи голоса поверх LTE.

Большим преимуществом VoLTE является то, что качество вызовов превосходит соединения 2G и 3G, так как через 4G может передаваться в три раза больше данных, чем в 3G, и в шесть раз больше, чем в 2G. По сути, это голосовой вызов в формате HD. Он намного более насыщенный, используется речевой кодек HD-Voice. Но работает VoLTE только в том случае, если оба устройства, принимающее и выполняющее вызов, его поддерживают.

VoLTE также требует, чтобы оба участника разговора имели покрытие 4G. Это означает, что звонки VoLTE не всегда будут доступны, и если кто-то выходит из зоны покрытия 4G во время разговора, есть вероятность, что звонок будет сброшен.

Сотовые сети стандарта GSM по своей структуре изначально не были предназначены для мобильного интернета. Соответственно, в наши дни операторы сотовой связи вынуждены с целью удовлетворения потребностей населения вкладывать огромные деньги в модернизацию своих сетей до 3G (UMTS), а теперь уже и до 4G (LTE). Само собой, данные капиталовложения сотовые компании щедро заимствуют из наших с вами карманов, однако их работа тоже при этом весьма не легка.

Сейчас, когда внедрение сетей третьего поколения еще до конца в России не закончено, операторы уже приступили к работе над сетями следующего поколения - 4G или LTE.

На фото первая базовая станция LTE от Yota в Сочи:

Сам термин LTE расшифровывается как Long Term Evolution и в переводе на русский означает «долгосрочная эволюция». Длительное время на роль связи 4G претендовал стандарт WiMAX, однако впоследствии был отодвинут на задний план как менее востребованный вариант быстрого беспроводного интернета.

LTE является следующим после 3G поколением мобильной связи и работает на базе IP-технологий. Основное отличие LTE от предшественников - высокая скорость передачи данных. Теоретически она составляет до 326,4 Мбит/с на прием (download) и 172,8 Мбит/с на передачу (upload) информации. При этом в международном стандарте указаны цифры в 173 и 58 Мбит/с, соответственно. Данный стандарт связи четвертого поколения разработало и утвердило Международное партнерское объединение 3GPP.

Система кодирования последнего поколения - OFDM

Давайте разберемся, в чем же состоит главная особенность стандарта LTE. Так же как и в сетях 3G главным звеном в LTE можно назвать технологию кодирования и передачи данных OFDM-MIMO.

OFDM расшифровывается как Orthogonal Frequency-division Multiplexing и по-русски означает ортогональное частотное разделение каналов с мультиплексированием. Это цифровая схема модуляции, использующая близко расположенные друг от друга ортогональные поднесущие в большом количестве. Все поднесущие моделируются по стандартной схеме модуляции, такой как квадратурная амплитудная модуляция на небольшой символьной скорости с соблюдением общей скорости передачи данных, как и в простых схемах модуляции одной несущей в этой же самой полосе пропускания. В действительности сигналы OFDM генерируются благодаря применению "Быстрого преобразования Фурье".

Данная технология описывает направление сигнала от базовой станции (БС) к вашему мобильному телефону. Что же касается обратного пути сигнала, т.е. уже от телефонного аппарата к базовой станции, техническим разработчикам пришлось отказаться от системы OFDM и воспользоваться другой технологией под названием SC-FDMA. В расшифровке она читается как Single-carrier FDMA и в переводе означает мультиплексирование на одной несущей. Смысл ее в том, что при сложении большого количества ортогональных поднесущих образуется сигнал с большим пик-фактором (отношением амплитуды сигнала к своему среднеквадратичному значению). Для того чтобы такой сигнал мог передаваться без помех необходим высококлассный и довольно дорогой высоколинейный передатчик.

Именно это устройство создало некоторые сложности с получением лицензии на территории России под сети LTE. И, тем не менее, как обычно бывает в нашей стране, несмотря на искусственно созданные сложности, Минкомсвязи России признал перспективным направлением развития сотовых сетей именно стандарт LTE. Однако при проведении тендера на распределение часто 2,3 - 2,4 ГГц в 40 регионах Российской Федерации методом радиодоступа была указана лишь технология OFDMA, что исключает, непосредственно, LTE, т.к. в последнем случае кроме OFDMA необходимо еще и SC-FDMA. Из этого в очередной раз следует полная некомпетентность российских чиновников в тех вопросах, которыми они занимаются.

MIMO - Multiple Input Multiple Output - представляет собой технологию передачи данных с помощью N-антенн и приема информации M-антеннами. При этом принимающие и передающие сигнал антенны разнесены между собой на такое расстояние, чтобы получить слабую степень корреляции между соседними антеннами.

Положение LTE в эфире

На данный момент под сети 4G уже зарезервированы диапазоны частот. Наиболее приоритетными принято считать частоты в районе 2,3 ГГц. Здесь главным примером является Китай со своим сотовым оператором China Mobile, уже выделившим нужный частотный диапазон и проводящий тестовое вещание. С учетом огромного объема местного потребления сотовой связи использование данной частоты обречено на успех и преобладание в Китае.

Другой перспективный диапазон частот - 2,5 ГГц применяется в США, Европе, Японии и Индии. Имеется еще частотная полоса в районе 2,1 ГГц, но она сравнительно небольшая - доступны лишь 15 МГц в диапазоне 2,1 ГГц, а большинство европейских мобильных операторов ограничивают в этом диапазоне полосы до 5 МГц. В будущем, скорее всего, наиболее используемым будет частотный диапазон 3,5 ГГц. Это связано с тем, что на данных частотах в большинстве стран уже используются сети беспроводного широкополосного доступа в интернет и благодаря переходу в LTE операторы получат возможность вновь применять свои частоты без необходимости приобретения новых дорогих лицензий. В случае необходимости под сети LTE могут быть выделены и другие диапазоны частот.

В отношении используемых полос частот и методов распределения в LTE все довольно непонятно и противоречиво, т.к. сам стандарт достаточно гибкий. В разных структурах сети четвертого поколения могут базироваться на полосах частот в диапазоне от 1,4 до 20 МГц, в отличие от фиксированных 5 МГц в 3G (UMTS). Также имеется возможность применения как временного разделения сигналов TDD (Time Division Duplex - дуплексный канал с временным разделением), так и частотного - FDD (Frequency Division Duplex - дуплексный канал с частотным разделением). Например, сеть LTE, строящаяся в Китае, стандарта TD-LTE.

Зона обслуживания базовой станции сети LTE может быть разной. Обычно она составляет около 5 км, но в ряде случаев она может быть увеличена до 30 и даже 100 км, в случае высокого расположения антенн (секторов) базовой станции.

Другое позитивное отличие LTE - большой выбор терминалов. Помимо сотовых телефонов, в сетях LTE будут использоваться многие другие устройства, такие как ноутбуки, планшетные компьютеры, игровые устройства и видеокамеры, снабженные встроенным модулем поддержки сетей LTE. А так как технология LTE обладает поддержкой хендовера и роуминга с сотовыми сетями предыдущих поколений, все данные устройства смогут работать и в сетях 2G/3G.

Структура сетей четвертого поколения

Схема сетей 4G (LTE) выглядит следующим образом:

Как видно из данной схемы, сети LTE включают в себя модули сетей 2,75G (EDGE) и 3G (UMTS). Из-за данной особенности строительство сетей четвертого поколения будет достаточно специфичным и походит скорее на следующую ступень развития сегодняшних технологий, нежели на что-то принципиально новое.

К примеру, в соответствии с такой структурой, звонок или интернет-сессия в зоне действия сети LTE может быть без разрыва соединения передана в сеть 3G (UMTS) или 2G (GSM). Кроме того, сети LTE довольно легко интегрируются с сетями WI-FI (обозначение WLAN Access NW на вышеприведенной схеме) и Интернет.

Остановимся на подсистеме радиодоступа более подробно. По своей структуре сеть радиодоступа RAN - Radio Access Network - выглядит аналогично сети UTRAN UMTS, или eUTRAN, но имеет одно дополнение: приемо-передающие антенны базовых станций взаимосвязаны по определенному протоколу X2, который объединяет их в сотовую сеть - Mesh Network - и дает возможность базовым станциям обмениваться данными между собой напрямую, не задействуя для этого контроллер RNC - Radio Network Controller.

К тому же взаимосвязь базовых станций с системой управления мобильными устройствами MME - Mobility Management Entity - и сервисными шлюзами S-GW - Serving Gateway - осуществляется путем «многих со многими», что позволяет получить большую скорость связи с небольшими задержками.

Технология LTE против WiMAX

Наверняка многим из вас стало интересно, почему будущее именно за LTE? Ведь буквально год-два назад все считали стандартом 4G технологию WiMAX, хорошо известную такими провайдерами широкополосного беспроводного интернета, как Yota и Комстар.

В действительности стандарты LTE и WiMAX достаточно близки между собой. Они оба используют технологию кодирования OFDM и систему передачи данных MIMO. И в том, и в другом стандарте применяются FDD и TDD-дуплекирование при пропускной способности канала до 20 МГц. И обе из систем связи используют в роли своего протокола IP. Соответственно, обе технологии в реальности одинаково хорошо применяют свой частотный диапазон и обеспечивают сравнимую скорость передачи данных интернет-доступа. Но, конечно, есть у них и кое-какие отличия.

Одним из таких отличий является гораздо более простая инфраструктура сети WiMAX, а, следовательно, и более надежная технически. Данная простота стандарта обеспечивается его предназначением исключительно для передачи данных. С другой стороны, «сложности» LTE нужны для обеспечения ее совместимости со стандартами предыдущих поколений - GSM и 3G. И данная совместимость нам с вами, безусловно, потребуется.

Существуют и другие детали в различии между LTE и WiMAX. Например, диспетчеризация радиочастотных ресурсов. В WiMAX она производится по технологии Frequency Diversity Scheduling, согласно которой поднесущие, предоставляемые абоненту, распределяются по всему спектру канала. Это необходимо для рандомизации и усреднения влияния частотно-селективных замираний на широкополосный канал.

В сетях LTE применена другая технология устранения частотно-селективных замираний. Она называется частотно-селективной диспетчеризацией ресурсов - Frequency Selective Scheduling. При этом для каждой абонентской станции и каждого частотного блока несущей создаются индикаторы качества канала CQI - Channel Quality Indicator.

Еще одним очень важным моментом, связанным с планированием сетей связи массового использования - коэффициент переиспользования частот. Его роль - показывать эффективность использования доступной полосы радиочастот для каждой базовой станции в отдельности.

Базовая структура переиспользования частотного диапазона WiMAX состоит из 3-х частотных каналов. При использовании трехсекторной конфигурации сайтов (базовых станций определенного частотного диапазона), в каждом из секторов реализован один из 3-х частотных каналов. При этом коэффициент переиспользования частот равняется 3-м. Иными словами, в каждой из точек пространства имеется лишь треть радиочастотного диапазона.

Работа сотовой сети LTE (4G) производится с коэффициентом переиспользования частот равном 1. То есть, получается, что все базовые станции LTE работают на одной несущей. Внутрисистемные помехи в подобной системе сводятся к минимуму благодаря частотно-селективной диспетчеризации, гибкому частотному плану и координации помех между отдельными сотами. Абонентам в центре каждой соты могут даваться ресурсы из всей полосы свободного канала, а пользователям на краях сот предоставляются частоты только из определенных поддиапазонов.

Перечисленные выше особенности сетей LTE и WiMAX оказывают большое влияние на одну из их главных характеристик - степень радиопокрытия. Отталкиваясь от данного параметра определяется необходимое количество базовых станций для качественного покрытия конкретной территории. Соответственно, он напрямую влияет и на конечную стоимость строительства сетей LTE.

Согласно расчетом, сеть LTE способна обеспечить лучшую зону покрытия при одинаковом числе базовых станций, что является несомненным плюсом для всех операторов сотовой связи.

В наше время, быстрыми темпами распространяется мобильная связь четвёртого поколения - 4G, на подходе уже пятое поколение связи так называемое 5G. В основном стандартом в 4G на данный момент является LTE . Как нам говорит история, ЛТЕ не был первым стандартом четвёртого поколения, первым широко распространённым был стандарт WiMAX (на нем работали провайдер FreshTel и Yota). Максимальная скорость передачи данных WiMAX - 40 Мбит/с, однако реальные показатели от 10 до 20 Мбит/с.

Но вернёмся к нашему LTE. Именно он сейчас наиболее распространён в России. Но что такое 4G LTE ? LTE (с англ. Long-Term Evolution ) - это стандарт беспроводной высокоскоростной передачи данных для мобильных устройств. Основан он на всё тех же GSM/UMTS протоколах, однако теоретические и реальные скорости передачи данных в сетях LTE значительно выше, порой даже превосходят проводные соединения.

Стандарт четвертого поколения (ЛТЕ) бывает двух видов, различия между которыми довольно существенны.

FDD - Frequency Division Duplex (частотный разнос входящего и исходящего канала)
TDD - Time Division Duplex (временной разнос входящего и исходящего канала).

Грубо говоря, FDD - это параллельный LTE, а TDD - последовательный LTE. Например, при ширине канала в 20 МГц в FDD LTE часть диапазона (15 МГц) отдаётся для загрузки (download), а часть (5 МГц) для выгрузки (upload). Таким образом каналы не пересекаются по частотам, что позволяет работать одновременно и стабильно для загрузки и выгрузки данных. В TDD LTE всё тот же канал в 20 МГц полностью отдаётся и как для загрузки, так и для выгрузки, а данные передаются в ту и другую сторону поочерёдно, при этом приоритет имеет всё таки загрузка. В целом FDD LTE предпочтительней, т.к. он работает быстрее и стабильнее.

Частоты LTE

Мобильные сети LTE (FDD и TDD) работают на разных частотах в разных странах. Во многих странах эксплуатируются сразу несколько частотных диапазонов. Стоит отметить, то не всё оборудование умеет работать на разных, частотных диапазонах. FDD-диапазоны нумеруются с 1 по 31, TDD-диапазоны с 33 по 44. Существуют дополнительно несколько стандартов, которым еще не присвоены номера. Спецификации на частотные полосы называются бендами (BAND). В России и Европе в основном используются band 7, band 20, band 3 и band 38.

FDD LTE бенды и частоты
Номер полосы LTE Частотный диапазон Upload (МГц) Частотный диапазон Download (МГц) Ширина диапазона (МГц)
band 1 1920 - 1980 2110 - 2170 2x60
band 2 1850 - 1910 1930 - 1990 2x60
band 3 1710 - 1785 1805 -1880 2x75
band 4 1710 - 1755 2110 - 2155 2x45
band 5 824 - 849 869 - 894 2x25
band 6 830 - 840 875 - 885 2x10
band 7 2500 - 2570 2620 - 2690 2x70
band 8 880 - 915 925 - 960 2x35
band 9 1749.9 - 1784.9 1844.9 - 1879.9 2x35
band 10 1710 - 1770 2110 - 2170 2x60
band 11 1427.9 - 1452.9 1475.9 - 1500.9 2x20
band 12 698 - 716 728 - 746 2x18
band 13 777 - 787 746 - 756 2x10
band 14 788 - 798 758 - 768 2x10
band 15 1900 - 1920 2600 - 2620 2x20
band 16 2010 - 2025 2585 - 2600 2x15
band 17 704 - 716 734 - 746 2x12
band 18 815 - 830 860 - 875 2x15
band 19 830 - 845 875 - 890 2x15
band 20 832 - 862 791 - 821 2x30
band 21 1447.9 - 1462.9 1495.5 - 1510.9 2x15
band 22 3410 - 3500 3510 - 3600 2x90
band 23 2000 - 2020 2180 - 2200 2x20
band 24 1625.5 - 1660.5 1525 - 1559 2x34
band 25 1850 - 1915 1930 - 1995 2x65
band 26 814 - 849 859 - 894 2x35
band 27 807 - 824 852 - 869 2x17
band 28 703 - 748 758 - 803 2x45
band 29 н/д 717 - 728 11
band 30 2305 - 2315 2350 - 2360 2x10
band 31 452.5 - 457.5 462.5 - 467.5 2x5
TDD LTE бенды и частоты
Номер полосы LTE Частотный диапазон (МГц) Ширина диапазона (МГц)
band 33 1900 - 1920 20
band 34 2010 - 2025 15
band 35 1850 - 1910 60
band 36 1930 - 1990 60
band 37 1910 - 1930 20
band 38 2570 - 2620 50
band 39 1880 - 1920 40
band 40 2300 - 2400 100
band 41 2496 - 2690 194
band 42 3400 - 3600 200
band 43 3600 - 3800 200
band 44 703 - 803 100

Приведём список частотных диапазонов сетей 4G LTE операторов России. Существуют также региональные сети четвертого поколения местных операторов, работающих в других частотных диапазонах.

Сети 4G LTE в России
Оператор Частотный диапазон /↓ (МГц) Ширина канала (МГц) Тип дуплекса Номер полосы
Yota 2500-2530 / 2620-2650 2x30 FDD band 7
Мегафон 2530-2540 / 2650-2660 2x10 FDD band 7
Мегафон 2575-2595 20 TDD band 38
МТС 2540-2550 / 2660-2670 2x10 FDD band 7
МТС 2595-2615 20 TDD band 38
Билайн 2550-2560 / 2670-2680 2x10 FDD band 7
Теле2 2560-2570 / 2680-2690 2x10 FDD band 7
МТС 1710-1785 / 1805-1880 2x75 FDD band 3
Теле2 832-839.5 / 791-798.5 2x7.5 FDD band 20
МТС 839.5-847 / 798.5-806 2x7.5 FDD band 20
Мегафон 847-854.5 / 806-813.5 2x7.5 FDD band 20
Билайн 854.5-862 / 813.5-821 2x7.5 FDD band 20

Скорость 4G LTE

Скорость передачи данных, прежде всего зависит от ширины частотного диапазона того или иного оператора, а так же типа повторителя, используемого в сети. Например, для канала в 10 МГц скорость 4G (LTE), будет равняться 75 Мбит/с. Именно с такой номинальной скоростью работают сети LTE FDD (band 7) операторов Теле2, МТС и Билайн .

Что же касается оператора Мегафон, он может позволить себе больше. Несколько лет назад произошло слияние, а точнее поглощение Мегафоном, оператора Йоты, то сейчас Мегафон имеет лицензии и на частоты Yota, соответственно максимальная ширина канала может достигать 40 МГц в частотном диапазоне 2600 МГц (band 7), что в теории даёт целых 300 Мбит/с. Но в основном сеть Мегафон 4G работает в канале 15-20 МГц, что даёт скорость загрузки 100-150 Мбит/с.

В самом начале весны 2008 года Международный Союз электросвязи принял решение о старте разработки нового стандарта сотовой связи – 4G. Согласно принятым постановлениям, главным отличием самого современного на сегодняшний день стандарта связи 4G от стандарта 3G является максимальная или, точнее сказать, пиковая скорость передачи данных.

Так, для находящихся в движении мобильных устройств эта скорость должна составлять в среднем 10 Мбит/секунду, а для неподвижных устройств – 1 Гбит/секунду (!). Для сравнения: скорость проводного интернета у различных провайдеров в среднем колеблется в диапазоне 10–100 Мбит/секунду. То есть нетрудно подсчитать, что скорость передачи данных в стандарте 4G должна превышать существующие стандартные скорости в 10–100 раз.

История создания стандарта

Первой «ласточкой» стандарта 4G стал формат связи LTE, который позволяет увеличить существующую скорость передачи информации примерно в 10 раз, то есть пиковая скорость передачи данных для неподвижных устройств связи составляет 100 Мбит/секунду. Но даже такой скорости вполне достаточно для качественного просмотра телепередач в режиме реального времени, а для закачки кинофильма стандартного объема на мобильное устройство может понадобиться не более одной–двух минут.

В адрес стандарта LTE раздается немало критических замечаний по поводу отступлений от соблюдения заявленных параметров передачи информации. Покрытие сети LTE в настоящее время нестабильно и во многом зависит от возможностей конкретного мобильного оператора. Как уже отмечалось, максимальная скорость передачи данных может достигать 100 Мбит/секунду, однако в реальных условиях этот показатель не превышает в среднем 42 Мбит/секунду. Безусловно, это приличный показатель, но вот до заявленных разработчиками стандарта 4G скоростей в один Гбит/секунду явно недотягивает. По этой причине в некоторых странах мира стандарт не торопятся отнести к прогрессивной 4G технологии.

Очевидным минусом стандарта LTE является низкая скорость отдачи информации. Данную проблему можно решить путем увеличения количества операторов сотовой связи и, соответственно, предоставляемых ими услуг.

Несмотря на все существующие недостатки, стандарт LTE явно превосходит существующие стандарты 3G и тем более 2G по всем параметрам. Стандарт LTE, точнее сказать, его структура, кардинальным образом отличается от менее технически развитых стандартов. Прежде всего, отличия коснулись подсистем базовых станций и коммуникационных подсистем. Изменения коснулись и саму технологию обмена данными между пользователем и базовой станцией. В стандарте LTE абсолютно все типы информации (будь то голос или же видео) передаются в формате своеобразных пакетов.

Ключевые составляющие стандарта

Среди ключевых составляющих стандарта LTE можно выделить следующие:

  • обслуживающий шлюз SGW (Serving Gateway) является соединяющим звеном с существующими сетями 2G и 3G конкретного мобильного оператора. Этот способ позволяет в значительной степени улучшить качество соединения в сети в случае ухудшения условий приема и при увеличении нагрузки на сеть;
  • шлюз соединения с сетями других мобильных операторов PGW маршрутизирует пакеты информации в сеть конкретного оператора;
  • узел управления мобильностью MME предназначен для координации и, собственно, управления мобильностью абонентов сети;
  • узел выставления счетов абонентам за предоставленные услуги PCRF, как следует из названия, предназначен для вычислений и предоставления счета абоненту мобильного оператора.

Основой стандарта LTE является использование технологии передачи информации MIMO с применением системы кодирования OFDM. Принцип действия технологии MIMO основан на применении приемных и передающих антенн разного типа, причем расположение этих антенн предусматривает практически полное отсутствие корреляционной зависимости.

Современные сети стандарта 4G в основном работают на частоте 2,3 ГГц. Еще одним распространенным диапазоном является частота 2,5 ГГц – на этой частоте работает очень много сотовых операторов Евразии, Японии и Соединенных Штатов Америки. Есть также частота 2,1 ГГц, однако большого распространения она не получила из-за узкого диапазона (от пяти до пятнадцати МГц). Новые возможности применения стандарта 4G благодаря повсеместному использованию в большинстве стран Старого Света широкополосного интернета получает частота 3,5 ГГц. Этот диапазон позволит безболезненно без приобретения и настройки дорогостоящего оборудования операторам сотовой сети использовать уже действующую и прекрасно работающую частоту для перехода на нее сети LTE.

Если же рассматривать возможность использования частот для стандарта мобильной связи 4G, то можно с уверенностью заявлять о пригодности диапазона частот от 1,4 до 20 ГГц.