Транспорт кислорода в организме человека осуществляется. Транспортировка газов кровью

Большая часть кислорода в организме млекопитающих переносится кровью в виде химического соединения с гемоглобином. Свободно растворенного кислорода в крови всего 0.3%. Реакцию оксигенации, превращение дезоксигемоглобина в оксигемоглобин, протекающую в эритроцитах капилляров легких можно записать следующим образом:

Нв + 4О 2 Нв(О 2 ) 4

Эта реакция протекает очень быстро – время полунасыщения гемоглобина кислородом около 3 миллисекунд. Гемоглобин обладает двумя удивительными свойствами, которые позволяют ему быть идеальным переносчиком кислорода. Первое – это способность присоединять кислород, а второе – отдавать его. Оказывается способность гемоглобина присоединять и отдавать кислород зависит от напряжения кислорода в крови. Попробуем изобразить графически зависимость количества оксигенированного гемоглобина от напряжения кислорода в крови, и тогда нам удастся выяснить: в каких случаях гемоглобин присоединяет кислород, а в каких отдает. Гемоглобин и оксигемоглобин неодинаково поглощают световые лучи, поэтому их концентрацию можно определить спектрометрическими методами.

График, отражающий способность гемоглобина присоединять и отдавать кислород называется «Кривая диссоциации оксигемоглобина». По оси абсцисс на этом графике отложено количество оксигемоглобина в процентах ко всему гемоглобину крови, по оси ординат – напряжение кислорода в крови в мм рт. ст.

Рисунок 9А. Кривая диссоциации оксигемоглобина в норме

Рассмотрим график в соответствии с этапами транспорта кислорода: самая высокая точка соответствует тому напряжению кислорода, которое наблюдается в крови легочных капилляров – 100 мм рт.ст. (столько же, сколько и в альвеолярном воздухе). Из графика видно, что при таком напряжении весь гемоглобин переходит в форму оксигемоглобина – насыщается кислородом полностью. Попробуем рассчитать, сколько кислорода связывает гемоглобин. Один моль гемоглобина может связать 4 моля О 2 , а 1грамм Нв связывает 1,39 мл О 2 в идеале, а на практике 1,34 мл . При концентрации гемоглобина в крови, например, 140 г/литр количество связанного кислорода составит 140 × 1,34 = 189,6 мл/литр крови. Количество кислорода, которое может связать гемоглобин при условии его полного насыщения, называется кислородной емкостью крови (КЕК). В нашем случае КЕК = 189,6 мл.

Обратим внимание на важную особенность гемоглобина – при снижении напряжения кислорода в крови до 60 мм рт.ст, насыщение практически не изменяется – почти весь гемоглобин присутствует в виде оксигемоглобина. Эта особенность позволяет связывать максимально возможное количество кислорода при снижении его содержания в окружающей среде (например, на высоте до 3000 метров).

Кривая диссоциации имеет s – образный характер, что связано с особенностями взаимодействия кислорода с гемоглобином. Молекула гемоглобина связывает поэтапно 4 молекулы кислорода. Связывание первой молекулы резко увеличивает связывающую способность, так же действуют и вторая, и третья молекулы. Этот эффект называется кооперативное действие кислорода

Артериальная кровь поступает в большой круг кровообращения и доставляется к тканям. Напряжение кислорода в тканях, как видно из таблицы 2, колеблется от 0 до 20 мм рт. ст., незначительное количество физически растворенного кислорода диффундирует в ткани, его напряжение в крови снижается. Снижение напряжения кислорода сопровождается диссоциацией оксигемоглобина и освобождением кислорода. Освободившийся из соединения кислород переходит в физически растворенную форму и может диффундировать в ткани по градиенту напряжения.. На венозном конце капилляра напряжение кислорода равно 40 мм.рт.ст, что соответствует примерно 73% насыщения гемоглобина. Крутая часть кривой диссоциации соответствует напряжению кислорода обычному для тканей организма – 35 мм рт.ст и ниже.

Таким образом, кривая диссоциации гемоглобина отражает способность гемоглобина присоединять кислород, если напряжение кислорода в крови высоко, и отдавать его при снижении напряжения кислорода.

Переход кислорода в ткани осуществляется путем диффузии, и описывается законом Фика, следовательно зависит от градиента напряжений кислорода.

Можно узнать, сколько кислорода извлекается тканью. Для этого нужно определить количество кислорода в артериальной крови и в венозной крови, оттекающей от определенной области. В артериальной крови, как нам удалось вычислить (КЕК) содержится 180-200 мл. кислорода. Венозная кровь в состоянии покоя содержит около 120 мл. кислорода. Попробуем рассчитать коэффициент утилизации кислорода: 180 мл.  120 мл. = 60 мл.- это количество извлеченного тканями кислорода, 60мл./180  100 = 33%. Следовательно, коэффициент утилизации кислорода равен 33% (в норме от 25 до 40%). Как видно из этих данных, не весь кислород утилизируется тканями. В норме в течение одной минуты к тканям доставляется около 1000 мл. кислорода. Если учесть коэффициент утилизации, становится ясно, что ткани извлекают от 250 до 400 мл. кислорода в минуту, остальной кислород возвращается к сердцу в составе венозной крови. При тяжелой мышечной работе коэффициент утилизации повышается до 50 – 60 %.

Однако количество кислорода, которое получают ткани, зависит не только от коэффициента утилизации. При изменении условий во внутренней среде и тех тканях, где осуществляется диффузия кислорода, свойства гемоглобина могут измениться. Изменение свойств гемоглобина отражается на графике и называется «сдвиг кривой». Отметим важную точку на кривой – точка полунасыщения гемоглобина кислородом наблюдается при напряжении кислорода 27 мм рт. ст., при таком напряжении 50 % гемоглобина находится в форме оксигемоглобина, 50% в виде дезоксигемоглобина, следовательно 50 % связанного кислорода – свободно (примерно 100мл/л). Если в ткани увеличивается концентрация углекислого газа, ионов водорода, температура, то кривая сдвигается вправо . В этом случае точка полунасыщения переместится к более высоким значениям напряжения кислорода - уже при напряжении 40 мм рт. ст. будет освобождено 50 % кислорода (рисунок 9Б). Интенсивно работающей ткани гемоглобин отдаст кислород легче. Изменение свойств гемоглобина обусловлены следующими причинами: закисление среды в результате увеличения концентрации углекислого газа действует двумя путями 1) увеличение концентрации ионов водорода способствует отдаче кислорода оксигемоглобином потому, что ионы водорода легче связываются с дезоксигемоглобином, 2) прямое связывание углекислого газа с белковой частью молекулы гемоглобина уменьшает ее сродство к кислороду; увеличение концентрации 2,3-дифосфоглицерата , который появляется в процессе анаэробного гликолиза и тоже встраивается в белковую часть молекулы гемоглобина и снижает его сродство к кислороду.

Сдвиг кривой влево наблюдается, например, у плода, когда в крови определяется большое количество фетального гемоглобина.

Рисунок 9 Б. Влияние изменения параметров внутренней среды

После диффузии кислорода из альвеол в капиллярную кровь его дальнейший транспорт в капилляры периферических тканей совершается почти полностью в связанной с гемоглобином форме. Наличие в эритроцитах гемоглобина позволяет крови транспортировать в 30-100 раз больше кислорода, чем могло бы транспортироваться в виде газа, растворенного в водной составляющей крови.

В клетках тканей тела кислород реагирует с разными веществами, формируя большое количество двуокиси углерода, который потом входит в капилляры ткани и транспортируется обратно в легкие. Двуокись углерода также связывается с разными химическими веществами, находящимися в крови, что увеличивает транспорт двуокиси углерода в 15-20 раз.

В этой статье представлены физические и химические принципы транспорта кислорода и двуокиси углерода в крови и тканевой жидкости как с количественной, так и качественной стороны.

Газы могут переместиться из одной точки в другую путем диффузии и причиной такого передвижения всегда является наличие градиента парциального давления между этими точками. Так, кислород диффундирует в легких из альвеол в капиллярную кровь, потому что парциальное давление кислорода (Рог) в альвеолах больше, чем в крови легочных капилляров. В других тканях тела Ро2 в капиллярной крови выше, чем в тканях, и это заставляет кислород диффундировать в ткани.

В метаболических процессах клеток кислород используется для образования двуокиси углерода, в результате внутриклеточное давление двуокиси углерода (Рсо2) поднимается до высоких значений, что приводит к диффузии двуокиси углерода в тканевые капилляры. Когда кровь доходит до легких, двуокись углерода диффундирует из крови в альвеолы, т.к. Рсог в крови легочных капилляров выше, чем в альвеолах. Таким образом, транспорт кислорода и двуокиси углерода кровью зависит как от диффузии, так и от кровотока. Далее рассмотрим количественную сторону факторов, определяющих эти явления.

В верхней части рисунка изображена альвеола , расположенная рядом с легочным капилляром, и показана диффузия молекул кислорода из альвеолярного воздуха в кровь. Ро2 в альвеолярной газовой смеси составляет 104 мм рт. ст., а Ро2 в венозной крови, входящей в легочный капилляр через его артериальный конец, составляет только 40 мм рт. ст., т.к. большое количество кислорода было поглощено из крови во время прохождения ее через периферические ткани. Таким образом, начальная разница в парциальном давлении, являющаяся причиной диффузии кислорода в легочные капилляры, составляет 104 - 40, или 64 мм рт. ст. На графике в нижней части рисунка виден резкий подъем Ро2 крови во время прохождения ее через капилляр; к моменту прохождения 1/3 длины капилляра Р02 в крови составляет около 104 мм рт. ст., т.е. почти достигает Р02 в альвеолярном воздухе.

Поглощение кислорода кровью в легких во время физической нагрузки . При тяжелой физической нагрузке потребление кислорода может оказаться в 20 раз выше нормы. При этом из-за повышения сердечного выброса при такой нагрузке время прохождения легочного капилляра кровью может сократиться более чем в 2 раза. Однако в силу существования большого фактора надежности для диффузии кислорода через легочную мембрану кровь ко времени выхода из капилляра все же насыщается кислородом почти до максимального уровня. Это объясняется следующим.

Во-первых, во время физической нагрузки диффузионный объем кислорода возрастает почти в 3 раза. Это происходит главным образом из-за увеличения площади поверхности капилляров, участвующих в процессе диффузии, а также из-за приближения вентиляционно-перфузионного коэффициента в верхних частях легких к идеальной величине. Во-вторых, при отсутствии физической нагрузки кровь достигает почти полного насыщения кислородом уже после прохождения первой трети легочного капилляра и во время прохождения следующих двух третей обычно в нее добавляется очень мало кислорода. Можно сказать, что в покое кровь остается в легочных капиллярах в 3 раза дольше, чем это необходимо для полного насыщения ее кислородом, поэтому во время физической нагрузки кровь может полностью или почти полностью насыщаться кислородом и после сокращения времени пребывания в капиллярах.

Практически весь О 2 (около 20 об % - 20 мл О 2 на 100 мл крови) переносится кровью в виде химического соединения с гемоглобином. В виде физического растворения транспортируется только 0,3 об %. Однако эта фаза весьма важна, так как О 2 из капилляров к тканям и О 2 из альвеол в кровь и в эритроциты проходит через плазму крови в виде физически растворенного газа.

Свойства гемоглобина и его соединения

Этот красный кровяной пигмент, содержащийся в эритроцитах как переносчик О 2 , обладает замечательным свойством присоединять О 2 , когда кровь находится в легком, и отдавать О 2 , когда кровь проходит по капиллярам всех органов и тканей организма. Гемоглобин является хромопротеидом, его молекулярный вес составляет 64 500, он состоит из четырех одинаковых групп - гемов. Гем представляет собой протопорфирин, в центре которого расположен ион двухвалентного железа, играющего ключевую роль в переносе О 2 . Кислород образует обратимую связь с гемом, причем валентность железа не изменяется. При этом восстановленный гемоглобин (Нb) становится окисленным НbО 2 , точнее, Нb(О 2) 4 . Каждый гем присоединяет по одной молекуле кислорода, поэтому одна молекула гемоглобина связывает четыре молекулы О 2 . Содержание гемоглобина в крови у мужчин 130-160 г/л, у женщин 120-140 г/л. Количество О 2 , которое может быть связано в 100 мл крови, у мужчин составляет около 20 мл (20 об %) - кислородная емкость крови, у женщин она на 1-2 об % меньше, так как у них меньше Нb. После разрушения старых эритроцитов в норме и в результате патологических процессов прекращается и дыхательная функция гемоглобина, поскольку он частично «теряется» через почки, частично фагоцитируется клетками мононуклеарной фагоцитирующей системы .

Гем может подвергаться не только оксигенации, но и истинному окислению. При этом железо из двухвалентного превращается в трехвалентное. Окисленный гем носит название гематина (метгема), а вся полипептидная молекула в целом - метгемоглобина. В крови человека в норме метгемоглобин содержится в незначительных количествах, но при отравлениях некоторыми ядами, при действии некоторых лекарств, например, кодеина, фенацетина, его содержание увеличивается. Опасность таких состояний заключается в том, что окисленный гемоглобин очень слабо диссоциирует (не отдает О 2 тканям) и, естественно, не может присоединять дополнительно молекулы О 2 , то есть он теряет свои свойства переносчика кислорода. Так же опасно соединение гемоглобина с угарным газом (СО) - карбоксигемоглобин, поскольку сродство гемоглобина к СО в 300 раз больше, чем к кислороду, и НbСО диссоциирует в 10000 раз медленнее, чем НbО 2 . Даже при крайне низких парциальных давлениях угарного газа гемоглобин превращается в карбоксигемоглобин: Hb+СО = HbСО. В норме на долю HbСО приходится лишь 1 % общего количества гемоглобина крови, у курильщиков - значительно больше: к вечеру оно достигает 20%. Если в воздухе содержится 0,1% СО, то около 80% гемоглобина переходит в карбоксигемоглобин и выключается из транспорта О 2 . Опасность образования большого количества НbСО подстерегает пассажиров на автомобильных дорогах.

Образование оксигемоглобина происходит в капиллярах легких очень быстро. Время полунасыщения гемоглобина кислородом составляет всего лишь 0,01 с (длительность пребывания крови в капиллярах легких в среднем 0,5 с). Главным фактором, обеспечивающим образование оксигемоглобина, является высокое парциальное давление О 2 в альвеолах (100 мм рт.ст.) .

Пологий характер кривой образования и диссоциации оксигемоглобина в верхней ее части свидетельствует о том, что в случае значительного падения Ро 2 в воздухе содержание О 2 в крови будет сохраняться достаточно высоким (рис. 3.1).

Рис. 3.1. Кривые образования и диссоциации оксигемоглобина (Hb) и оксимиоглобина (Mb) при рН 7,4 и t 37°C

Так, даже при падении РО, в артериальной крови до 60 мм рт.ст. (8,0 кПа) насыщение гемоглобина кислородом равно 90% - это весьма важный биологический факт: организм все еще будет обеспечен О 2 (например, при подъеме в горы, полетах на низких высотах - до 3 км), т. е. имеется высокая надежность механизмов обеспечения организма кислородом.

Процесс насыщения гемоглобина кислородом в легких отражает верхняя часть кривой от 75 % до 96-98%. В венозной крови, поступающей в капилляры легких, РО, равно 40 мм рт.ст. и достигает в артериальной крови 100 мм рт.ст., как Ро 2 в альвеолах. Имеется ряд вспомогательных факторов, способствующих оксигенации крови:

1) отщепление от карбгемоглобина СО 2 и удаление его (эффект Вериго);

2) понижение температуры в легких;

3) увеличение рН крови (эффект Бора).

Диссоциация оксигемоглобина происходит в капиллярах, когда кровь от легких приходит к тканям организма. При этом гемоглобин не только отдает О 2 тканям, но и присоединяет образовавшийся в тканях СО 2 . Главным фактором, обеспечивающим диссоциацию оксигемоглобина, является падение Ро 2 , который быстро потребляется тканями. Образование оксигемоглобина в легких и диссоциация его в тканях проходят в пределах одного и того же верхнего участка кривой (75-96% насыщения гемоглобина кислородом). В межклеточной жидкости Ро 2 уменьшается до 5-20 мм рт.ст., а в клетках падает до 1 мм рт.ст. и меньше (когда Ро 2 в клетке становится равным 0,1 мм рт.ст., клетка погибает). Поскольку возникает большой градиент Ро 2 (в пришедшей артериальной крови он около 95 мм рт.ст.), диссоциация оксигемоглобина идет быстро, и О 2 переходит из капилляров в ткань. Длительность полудиссоциации равна 0,02 с (время прохождения каждого эритроцита через капилляры большого круга около 2,5 с), что достаточно для отщепления О 2 (огромный запас времени) .

Кроме главного фактора (градиента Ро 2) имеется и ряд вспомогательных факторов, способствующих диссоциации оксигемоглобина в тканях. К ним относятся:

1) накопление СО 2 в тканях;

2) закисление среды;

3) повышение температуры.

Таким образом, усиление метаболизма любой ткани ведет к улучшению диссоциации оксигемоглобина. Кроме того, диссоциации оксигемоглобина способствует 2,3-дифосфоглицерат - промежуточный продукт, образующийся в эритроцитах при расщеплении глюкозы. При гипоксии его образуется больше, что улучшает диссоциацию оксигемоглобина и обеспечение тканей организма кислородом. Ускоряет диссоциацию оксигемоглобина также и АТФ, но в значительно меньшей степени, так как 2,3-дифосфоглицерата в эритроцитах содержится в 4-5 раз больше, чем АТФ.

Миоглобин также присоединяет О 2 . По последовательности аминокислот и третичной структуре молекула миоглобина очень сходна с отдельной субъединицей молекулы гемоглобина. Однако молекулы миоглобина не соединяются между собой с образованием тетрамера, что, по-видимому, объясняет функциональные особенности связывания О 2 . Сродство миоглобина к О 2 больше, чем у гемоглобина: уже при напряжении Ро 2 3-4 мм рт.ст. 50% миоглобина насыщено кислородом, а при 40 мм рт.ст. насыщение достигает 95%. Однако миоглобин труднее отдает кислород. Это своего рода запас О 2 , который составляет 14% от общего количества О 2 , содержащегося в организме. Оксимиоглобин начинает отдавать кислород только после того, как парциальное давление О 2 падает ниже 15 мм рт.ст. Благодаря этому он играет в покоящейся мышце роль кислородного депо и отдает О 2 только тогда, когда исчерпываются запасы оксигемоглобина, в частности, во время сокращения мышцы кровоток в капиллярах может прекращаться в результате их сдавливания, мышцы в этот период используют запасенный во время расслабления кислород. Это особенно важно для сердечной мышцы, источником энергии которой является в основном аэробное окисление. В условиях гипоксии содержание миоглобина возрастает. Сродство миоглобина с СО меньше, чем гемоглобина.

Связывание кислорода гемоглобином. Кислород, поступающий в кровь, сначала растворяется в плазме крови. При Ри0 100 мм рт. ст. в 100 мл плазмы растворяется всего 0,3 мл 02. Хотя растворенного кислорода и немного, но эта его форма играет важную промежуточную роль в газообмене. Такой кислород по градиенту концентрации проникает через мембрану эритроцита и сначала растворяется в его цитоплазме. Только после этого 02 вступает в соединение с Ре2+ гема и образует соединения, которые называют окси-гемоглобином (НЬ02). При этом валентность железа не изменяется. Оксигемоглобин - маломощная соединение, которое легко распадается в тканях. Прямую реакцию именуют оксигенацией, а обратный процесс, что происходит в тканях, - дезоксигенацією гемоглобина (рис. 83).

Каждая молекула гемоглобина способна присоединить четыре молекулы кислорода, что в пересчете на 1г гемоглобина означает 1,34 мл 02. Зная уровень гемоглобина крови, легко подсчитать кислородную емкость крови (КЕК):

КЕК = НЬ- 1,34.

Например: 15 o 1,34 = 20 (мл) кислорода содержится в 100 мл крови. Учитывая то, что те самые 100 мл крови содержат лишь 0,3 мл растворенного 02, можно сделать вывод, что основное количество кислорода, который транспортируется кровью, химически связан с гемоглобином.

Рис. 83.

Ассоциация и диссоциация оксигемоглобина

Интенсивность образования (ассоциации) оксигемоглобина обусловлена парциальным напряжением 02 в крови: чем выше уровень Р0 , тем больше образуется оксигемоглобина. Однако зависимость эта не прямо пропорциональная. Она имеет вид 8-образной кривой, определять которую удобнее за скоростью диссоциации оксигемоглобина (рис. 84). 8-образный характер ее определяется тем, что с увеличением количества молекул 02, которые присоединяются к каждой молекулы оксигемоглобина, этот процесс протекает активнее (автокаталіз). Так, если при отсутствии кислорода в крови (Р0 = 0) оксигемоглобина нет, а при Р0 = 10 мм рт. ст. 10 % гемоглобина переходит в оксигемоглобин, то при Р0 = 20 мм рт. ст. содержится уже около 30 % оксигемоглобина, а при Р0 = 40 мм рт. ст. - около 80 % оксигемоглобина, приР0 = 100 мм рт. ст. в крови будет содержаться около 100 % оксигемоглобина.

Необходимо уделить особое внимание двум участкам кривой: верхней, идущей почти параллельно оси ординат, и средний - резко падает вниз. Конфигурация первого участка свидетельствует о способности гемоглобина активно захватывать 02 в легких, а второй-легко отдавать его в тканях. Так, в процессе поглощения 02 кровью в легких уже при Р0а= 60 мм рт. ст. почти весь гемоглобин может присоединить кислород (более 90 % оксигемоглобина).

Рис. 84. в условиях нормы; 2 - за увеличения рН или температуры; С - за снижения рН или температуры; 4 - Р50О2

В смешанной венозной крови, полученной из правого предсердия, при Р0 в 40 мм рт. ст. содержание оксигемоглобина еще превышает 70 %. При КЕК в 20 мл1100 мл он составляет еще около 15 мл1100 мл крови создает резерв 02. Начиная со значения Р0 40 мм рт. ст., кривая круто опускается вниз. Вследствие даже незначительного уменьшения Р0 ниже 40 мм рт. ст., что происходит в тканях в случае более интенсивного их функционирования, скорость диссоциации оксигемоглобина резко увеличивается. Это обеспечивает значительное ускорение поступления кислорода к тканям из предыдущего объема крови. Например, при Рю, что равняется 20 мм рт. ст., оксигемоглобина остается лишь 30 %. Итак, ткани из каждых 100 мл крови получают уже не 5 мл кислорода, как в условиях нормы, а около 14 мл, то есть почти втрое больше.

Можно отметить, что благодаря такой особенности гемоглобина человек может жить высоко в горах, выполнять интенсивную мышечную работу и не всегда умирать от недостатка 02 при снижении уровня гемоглобина крови (анемии), затруднении газообмена через мембрану (например при пневмонии).

Изменение наклона кривой диссоциации оксигемоглобина.

Наклон кривой, т. е. скорость диссоциации оксигемоглобина в крови человека, не постоянен и в некоторых условиях может меняться. Скорость диссоциации оксигемоглобина обусловлено химическим сродством гемоглобина к 02 и некоторых внешних факторов, которые изменяют характер кривой. К таким факторам относятся температура, рН, Рго.

Форма кривой диссоциации оксигемоглобина в значительной степени зависит от концентрации в крови ионов Н+. При снижении рН кривая сдвигается вправо, что свидетельствует об уменьшении сродства гемоглобина с 02 и активации поступления его в ткани. Повышение рН увеличивает сродство и сдвигает кривую влево - возрастает поступление кислорода в кровь. Влияние рН на сродство гемоглобина с 02 называется эффектом Бора. Эффект Бора при многих состояниях в норме и патологии играет существенную роль в газотранспортной функции крови. Образование большого количества СО2 в тканях способствует увеличению отдачи 02 за счет снижения сродства гемоглобина с 02, а выделение СО2 в легких, уменьшая рН крови, наоборот, улучшает оксигенацию. СО2 также влияет на кривую диссоциации оксигемоглобина.

При снижении температуры отдача 02 окси-гемоглобином замедляется, а повышение температуры ускоряет этот процесс.

Показателем, характеризующим интенсивность применения кислорода тканями, является различие уровня оксигемоглобина крови, притекающей и оттекающей (артериовенозное различие по кислороду, АВР-02).

Таким образом, практическое отсутствие в организме запасов кислорода компенсируется возможностью резкого увеличения применения его из кровотока за счет повышения АВР-02. Интенсивное функционирование тканей, когда больше образуется СО2, Н+ и повышается температура, создает условия для увеличения доставки кислорода клеткам.

Отравления угарным газом.

Оксид углерода (СО) имеет большую (примерно в 350 раз) сродство с гемоглобином, чем кислород. Поэтому даже при очень малых его концентрациях в воздухе, а следовательно, и крови, образуются соединения карбоксигемоглобина (НЬСО). В связи с тем, что это соединения устойчивы, способность гемоглобина связывать кислород резко снижается. Обусловлено это тем, что СО связывается с молекулами железа в хэме, а при этом происходит сдвиг кривой диссоциации влево. В результате даже свободные молекулы гемоглобина хуже взаимодействуют с кислородом.

Диссоциация карбоксигемоглобина происходит очень медленно, поэтому в случае легкой степени отравления пострадавшего необходимо вынести на свежий воздух или давать кислород для дыхания.

Транспорт кислорода осуществляется в основном эритроцитами. Из 19 об.% кислорода, извлекаемого из артериальной крови, только 0,3 об.% растворены в плазме, остальное же количество О2 содержится в эритроцитах и находится в химической связи с гемоглобином. Гемоглобин (Нb) образует с кислородом непрочное, легко диссоциирующее соединение - оксигемоглобин (НbO02). Связывание кислорода гемоглобином зависит от напряжения кислорода и является легко обратимым процессом. При понижении напряжения кислорода оксигемоглобин отдает кислород.

Кривые диссоциации оксигемоглобнна . Если отложить по оси абсцисс парциальные давления кислорода, а но оси ординат - процент насыщения гемоглобина кислородом, т. е. процент гемоглобина, перешедшего в оксигемоглобин, то мы получим кривую диссоциации оксигемоглобина. Эта кривая (рис. 55, А ) имеет форму гиперболы и показывает, чте между парциальным давлением кислорода и количеством образующегося оксигемоглобина нет прямой пропорциональной зависимости. Левая часть кривой круто поднимается кверху. Правая же часть кривой имеет почти горизонтальное направление.

Рис. 55. Кривые диссоциации оксигемоглобина в водном растворе (А) и в крови (Б) при напряжении углекислого газа 40 мм рт. ст. (по Баркрофту).

То, что связывание гемоглобином кислорода дает такую кривую, имеет важное физиологическое значение. В зоне относительно высокого парциального давления кислорода, соответствующего давлению его в альвеолах легких, изменение давления кислорода в пределах 100-60 мм рт. ст. почти не оказывает влияния на горизонтальный ход кривой, т. е. почти не изменяет количества образовавшегося оксигемоглобина.

Приведенная на рис. 55 кривая А получается при исследовании растворов чистого гемоглобина в дистиллированной воде. В естественных же условиях плазма крови содержит различные соли и углекислоту, которые несколько изменяют кривую диссоциации оксигемоглобина. Левая часть кривой приобретает изгиб и вся кривая напоминает букву S. Из рис. 55 (кривая В) видно, что средняя часть кривой направляется круто книзу, а нижняя приближается к горизонтальному направлению.

Следует отметить, что нижняя часть кривой характеризует свойства гемоглобина в зоне низких , которые близки к имеющимся в тканях. Средняя же часть кривой дает представление о свойствах гемоглобина при тех величинах напряжения кислорода, которые имеются в артериальной и венозной крови

Резкое снижение способности гемоглобина связывать кислород в присутствии углекислого газа отмечается прп парциальном давлении кислорода, равном 40 мл рт. ст., т. е. при том его напряжении, которое имеется в венозной крови. Это свойство гемоглобина имеет важное значение для организма. В капиллярах тканей напряжение углекислого газа в крови увеличивается и потому уменьшается способность гемоглобина связывать кислород, что облегчает отдачу кислорода тканям. В альвеолах легких, где часть углекислого газа переходит в альвеолярный воздух, сродство гемоглобина к кислороду возрастает, что облегчает образование оксигемоглобина.

Особенно резкое снижение способности гемоглобина связывать кислород отмечается в крови мышечных капилляров во время интенсивной мышечной работы, когда в кровь поступают кислые продукты обмена веществ, в частности молочная кислота. Это способствует отдаче большого количества кислорода мышцам.

Способность гемоглобина связывать и отдавать кислород изменяется также в зависимости от температуры. Оксигемоглобин при одном и том же парциальном давлении кислорода в окружающей среде отдает больше кислорода при температуре тела человека (37-38°), чем при более низкой температуре.