Второе правило менделя. Законы Менделя

1. Охарактеризуйте первый и второй законы Г. Менделя.

Первый закон Менделя (закон единообразия гибридов первого поколения) гласит, что при скрещивании организмов, различающихся аллельными признаками, в первом поколении гибридов проявляется лишь один из них – доминантный, а альтернативный ему, рецессивный, остаётся скрытым.

Второй закон Менделя (закон расщепления) гласит, что при скрещивании между собой двух гибридов первого поколения во втором поколении проявляются в определённом соотношении оба признака исходных родительских форм.

2. В чем сходство и различие третьего закона Г. Менделя и закона Т. Моргана?

Сходство заключается в том, и в третьем законе Менделя и в законе Моргана речь идет о наследовании двух различных признаков. Различия же в том, что в законе Менделя это независимое наследование, а в законе Моргана идет речь о сцепленном (совместном) наследовании признаков.

3. Какова роль наследственности и изменчивости в живой природе?

Благодаря наследственности обеспечивается сохранение видов на протяжении значительных промежутков (до сотен миллионов лет) времени. Однако условия окружающей среды меняются (иногда существенно) с течением времени, и в таких случаях изменчивость, приводящая к разнообразию особей внутри вида, обеспечивает его выживание. Какие-то из особей оказываются более приспособленными к новым условиям, это и позволяет им выжить. Кроме того, изменчивость позволяет видам расширять границы своего местообитания, осваивать новые территории.

4. Универсальны ли законы Г. Менделя и применимы ли они к человеку?

Да. Законы Менделя универсальны и применены ко всем живым организмам.

5. Охарактеризуйте зависимость между понятиями «ген», «аллель», «кроссинговер».

Гены - участок молекулы ДНК, который отвечает за построение одного белка или РНК организма. Аллели - формы состояния одного и того же гена, занимающие идентичные локусы в гомологичных хромосомах и обусловливающие фенотипически различия одного и того же признака. Кроссинговер - перекрест, взаимный обмен гомологичными участками гомологичных хромосом.

6. Что такое мутация? Когда и где происходят мутации?

Мутации - внезапные наследуемые изменения генетического материала, вызывающие изменения каких-либо признаков и свойств организма. Мутации могут быть естественными, спонтанными, т. е. возникающими непроизвольно, или искусственными, возникающими при воздействии на организмы различных факторов – мутагенов.

7. Какие виды скрещивания изучал Г. Мендель?

Моногибридное и дигибридное скрещивание.

8. В чем особенность множественного действия генов?

Плейотропия - явление множественного действия гена. Выражается в способности одного гена влиять на несколько фенотипических признаков. Пример: ген, отвечающий за образование красного пигмента в цветке, способствует его появлению в стебле, листьях, вызывает удлинение стебля, увеличение массы семян.

Третий закон Менделя - это закон независимого распределения признаков. Под этим подразумевается, что каждый ген одной аллельной пары может оказаться в гамете с любым другим геном из другой аллельной пары. Например, если организм гетерозиготен по двум исследуемым генам (AaBb), то он образует следующие типы гамет: AB, Ab, aB, ab. То есть, например, ген A может оказаться в одной гамете как с геном B, так и b. Это же касается и других генов (их произвольного сочетания с неаллельными генами).

Третий закон Менделя проявляется уже при дигибридном скрещивании (тем более при тригибридном и полигибридном), когда чистые линии различаются по двум исследуемым признакам . Мендель скрестил сорт гороха с желтыми гладкими семена с сортом, у которого были зеленые морщинистые семена, и получил исключительно желтые гладкие семена F 1 . Далее он вырастил из семян растения F 1 , позволил им самоопыляться и получил семена F 2 . И здесь он наблюдал расщепление: появились растения как с зелеными, так и морщинистыми семенами. Самое удивительное было то, что среди гибридов второго поколения оказались не только растения с желтыми гладкими и зелеными морщинистыми семенами. Также были желтые морщинистые и зеленые гладкие семена, т. е. произошла рекомбинация признаков, и получились такие комбинации, которые не встречались у исходных родительских форм.

Анализируя количественное соотношение разных семян F 2 , Мендель обнаружил следующее:

    Если рассматривать каждый признак по отдельности, то он расщеплялся в отношении 3:1, как при моногибридном скрещивании. То есть на каждые три желтых семени приходилось одно зеленое, а на каждые 3 гладких - 1 морщинистое.

    Появились растения с новыми комбинациями признаков.

    Соотношение фенотипов было 9: 3: 3: 1, где на девять желтых гладких семян гороха приходилось три желтых морщинистых, три зеленых гладких и одно зеленое морщинистое.

Третий закон Менделя хорошо иллюстрирует решетка Пеннета. Здесь в заголовках строк и столбцов пишутся возможные гаметы родителей (в данном случае гибридов первого поколения). Вероятность образования каждого типа гаметы составляет ¼. Также равновероятно различное их объединение в одну зиготу.


Мы видим, что образуется четыре фенотипа, два из которых ранее не существовали. Соотношение фенотипов 9: 3: 3: 1. Количество разных генотипов и их соотношение более сложное:

Получается 9 разных генотипов. Их соотношение: 4: 2: 2: 2: 2: 1: 1: 1: 1. При этом гетерозиготы встречаются чаще, а гомозиготы реже.

Если вернуться к тому, что каждый признак наследуется независимо, и по каждому наблюдается расщепление 3:1, то можно вычислить вероятность фенотипов по двум признакам разных аллелей, умножая вероятность проявления каждого аллеля (т. е. не обязательно пользоваться решеткой Пеннета). Так, вероятность гладких желтых семян будет равна ¾ × ¾ = 9/16, гладких зеленых – ¾ × ¼ = 3/16, морщинистых желтых – ¼ × ¾ = 3/16, морщинистых зеленых – ¼ × ¼ = 1/16. Таким образом, мы получаем то же соотношение фенотипов: 9:3:3:1.

Объясняется третий закон Менделя независимым расхождением гомологичных хромосом разных пар при первом делении мейоза. Хромосома, содержащая ген A, может с равной вероятностью уйти в одну клетку как с хромосомой, содержащей ген B, так и с хромосомой, содержащей ген b. Хромосома с геном A никак не привязана к хромосоме с геном B, хотя они обе и были унаследованы от одного родителя. Можно сказать, что в результате мейоза хромосомы перемешиваются. Количество различных их сочетаний вычисляется по формуле 2 n , где n - это количество хромосом гаплоидного набора. Так, если у вида три пары хромосом, то количество различных их комбинаций будет равно 8 (2 3).

Когда не действует закон независимого наследования признаков

Третий закон Менделя, или закон независимого наследования признаков, действует только для генов, локализованных в разных хромосомах или расположенных в одной хромосоме, но достаточно далеко друг от друга.

В основном если гены находятся в одной хромосоме, то они наследуются совместно, т. е. проявляют сцепление между собой, и закон независимого наследования признаков уже не действует.

Например, если бы гены, отвечающие за окраску и форму семян гороха находились в одной хромосоме, то гибриды первого поколения могли бы образовывать гаметы только двух типов (AB и ab), так как в процессе мейоза независимо друг от друга расходятся родительские хромосомы, но не отдельные гены. В таком случае во втором поколении было бы расщепление 3:1 (три желтых гладких на одно зеленое морщинистое).

Однако не так все просто. Из-за существования в природе конъюгации (сближения) хромосом и кроссинговера (обмена участками хромосом) рекомбинируются и гены находящиеся в гомологичных хромосомах. Так, если хромосома с генами AB в процессе кроссинговера обменяется участком с геном B с гомологичной хромосомой, чей участок содержит ген b, то могут получиться новые гаметы (Ab и, например, aB). Процент таких рекомбинантных гамет будет меньше, чем если бы гены находились в разных хромосомах. При этом вероятность кроссинговера зависит от удаленности генов на хромосоме: чем дальше, тем вероятность больше.

Введение.

Генетика – наука, изучающая закономерности наследственности и изменчивости живых организмов.

Человеком давно отмечены три явления, относящиеся к наследственности: во-первых, сходство признаков потомков и родителей; во-вторых, отличия некоторых (иногда многих) признаков потомков от соответствующих родительских признаков; в-третьих, возникновение в потомстве признаков, которые были лишь у далеких предков. Преемственность признаков между поколениями обеспечивается процессом оплодотворения. С незапамятных времен человек стихийно использовал свойства наследственности в практических целях – для выведения сортов культурных растений и пород домашних животных.

Первые идеи о механизме наследственности высказали еще древнегреческие ученые Демокрит, Гиппократ, Платон, Аристотель. Автор первой научной теории эволюции Ж.-Б. Ламарк воспользовался идеями древнегреческих ученых для объяснения постулированного им на рубеже XVIII-XIX вв. принципа передачи приобретенных в течение жизни индивидуума новых признаков потомству. Ч. Дарвин выдвинул теорию пангенезиса, объяснявшую наследование приобретенных признаков

Чарльз Дарвин определял наследственность как свойство всех живых организмов передавать свои признаки и свойства из поколения в поколение, а изменчивость как свойство всех живых организмов приобретать в процессе индивидуального развития новые признаки.

Наследование признаков осуществляется через размножение. При половом размножении новые поколения возникают в результате оплодотворения. Материальные основы наследственности заключены в половых клетках. При бесполом или вегетативном размножении новое поколение развивается или из одноклеточных спор, или из многоклеточных образований. И при этих формах размножения связь между поколениями осуществляется через клетки, в которых заключены материальные основы наследственности (элементарные единицы наследственности) – гены – представляют собой участки ДНК хромосом.

Совокупность генов, которую организм получает от родителей, составляет его генотип. Совокупность внешних и внутренних признаков – это фенотип. Фенотип развивается в результате взаимодействия генотипа и условий внешней среды. Так или иначе основой остаются признаки которые несут в себе гены.

Закономерности, по которым признаки передаются из поколения в поколение, первым открыл великий чешский ученый Грегор Мендель. Он открыл и сформулировал три закона наследования, которые легли в основу современной генетики.

Жизнь и научные исследования Грегора Иоганна Менделя.

Моравский монах и генетик растений. Иоганн Мендель родился 1822 году в местечке Хейнцендорф (ныне Гинчице в Чехии), где его отец владел небольшим крестьянским наделом. Грегор Мендель, по свидетельству знавших его, действительно был добрым и приятным человеком. После получения начального образования в местной деревенской школе и позже, по окончании коллегии пиаристов в Лейпнике он был в 1834 году принял в Троппаунскую императорско-королевскую гимназию в первый грамматический класс. Четырьмя годами спустя родители Иоганна в результате стечения многих, быстро следовавших друг за другом, несчастливых событий были полностью лишены возможности возмещать необходимые расходы, связанные с учебой, а их сын, будучи тогда лишь 16 лет от роду, вынужден был совершенно самостоятельно заботиться о собственном содержании. В 1843 году Мендель был принят в Августинский монастырь святого Томаша в Альтбрюнне, где и принял имя Грегор. В 1846 году Мендель слушал также лекции по хозяйствованию, садоводству и виноградарству в Философском институте в Брюнне. В 1848 году, завершив курс богословия, с глубоким почтением Мендель получил разрешение готовиться к экзаменам на степень доктора философии. Когда же в следующем году он укрепился в намерении экзаменоваться, то ему было вручено предписание занять место супплента императорско-королевской гимназии в Цнайме, чему он последовал с радостью.

В 1851 году настоятель монастыря направил Менделя учиться в венский университет, где он, среди прочего, изучал ботанику. После окончания университета Мендель преподавал естественные науки в местной школе. Благодаря этому шагу его материальное положение в корне изменилось. В столь необходимом для каждых занятий благотворном благополучии физического существования к нему, с глубоким почтением, вернулись и мужество и силы, и он в течение пробного года штудировал предписанные классические предметы с большим прилежанием и любовью. В свободные часы занимался он маленьким ботанико-минералогическим собранием, предоставленным в монастыре в его распоряжение. Его пристрастие к области естествознания становилось тем большим, чем большие возможности получал он отдаваться ему. Хотя упомянутый в этих занятиях был лишен какого-либо руководства, а путь автодидакта здесь, как ни в какой иной науке, труден и ведет к цели медленно, все же за оное время Мендель приобрел такую любовь к изучению природы, что он не жалел уже сил для заполнения изменившихся у него пробелов путем самообучения и следуя советам людей, обладавших практическим опытом. 3 апреля 1851 года «учительский корпус» училища принял решение пригласить для временного замещения профессорской должности каноника монастыря святого Томаша господина Грегора Менделя. Помологические успехи Грегора Менделя дали ему право на звездный титул и на временное исполнение должности супплента по естественной истории в приготовительном классе Технического училища. В первом семестре учебы он занимался только десять часов в неделю и только у Доплера. Во втором семестре он занимался в неделю уже по двадцать часов. Из них десять – физикой у Доплера, пять в неделю – зоологией у Рудольфа Кнера. Одиннадцать часов в неделю – ботаникой у профессора Фенцля: кроме лекций по морфологии и систематике, он проходил еще специальный практикум по описанию и определению растений. В третьем семестре он записался уже на тридцать два часа занятий в неделю: десять часов – физика у Доплера, десять – химия у Роттенбахера: всеобщая химия, медицинская химия, фармакологическая химия и практикум по аналитической химии. Пять – на зоологию у Кнера. Шесть часов занятий у Унгера, одного из первых цитологов в мире. В его лабораториях он изучал анатомию и физиологию растений и проходил практикум по технике микроскопии. И еще - раз в неделю на кафедре математики – практикум по логарифмированию и тригонометрии.

1850 год, жизнь складывалась неплохо. Мендель уже мог сам себя содержать, и пользовался у коллег большим уважением, ибо хорошо справляться со своими обязанностями, и был очень приятен в общении. Его любили ученики.

В 1851 году Грегор Мендель замахнулся на кардинальный вопрос биологии – на проблему изменчивости и наследственности. Именно тогда он начал проводить опыты по направленному культивированию растений. Мендель доставлял различные растения из дальних и ближних окрестностей Брюнна. Культивировал растения по группам в специально отведенной для каждой из них части монастырского сада при различных внешних условиях. Он занимался кропотливыми метеонаблюдениями. Больше всего экспериментов и наблюдений Грегор проводил с горохом, который, начиная с 1854-го, из года в год каждую весну высевал в маленьком садике под окнами прелатуры. На горохе оказалось не сложно ставить четкий гибридизационный опыт. Для этого нужно лишь вскрыть пинцетом крупный, хоть еще и не дозревший цветок, оборвать пыльники, и самостоятельно предопределять ему «пару» для скрещивания. Поскольку самоопыление исключено, сорта гороха представляют собою, как правило, «чистые линии» с неизменяющимися от поколения к поколению константными признаками, которые очерчены крайне четко. Мендель выделил признаки, определявшие межсортовые различия: окраску кожуры зрелых зерен и – отдельно – зерен незрелых, форму зрелых горошин, цвет «белка» (эндоспермы), длину оси стебля, расположение и окраску бутонов. Тридцать с лишним сортов использовал он в эксперименте, и каждый из сортов предварительно был подвергнут двухлетнему испытанию на «константность» , на «постоянство признаков» , на «чистоту кровей» – в 1854-м и в 1855-м. Восемь лет шли эксперименты с горохом. Сотни раз за восемь цветений своими руками он аккуратно обрывал пыльники и, набрав на пинцет пыльцу с тычинок цветка другого сорта, наносил ее на рыльце пестика. На десять тысяч растений, полученных в итоге скрещиваний и от самоопылившихся гибридов, было заведено десять тысяч паспортов. Записи в них аккуратны: когда родительское растение выращено, какие цветы у него были, чьей пыльцой произведено оплодотворение, какие горошины – желтые или зеленые, гладкие или морщинистые – получены, какие цветы – окраска по краям, окраска в центре – распустились, когда получены семена, сколько из них желтых, сколько зеленых, круглых, морщинистых, сколько из них отобрано для посадки, когда они высажены и так далее.

Результатом его исследований стал доклад «Опыты над растительными гибридами», который был прочитан брюннским естествоиспытателем в 1865-м. В докладе сказано: «Поводом для постановки опытов, которым посвящена настоящая статья, послужило искусственное скрещивание декоративных растений, производившееся с целью получения новых, различающихся по окраске форм. Для постановки дальнейших опытов с целью проследить развитие помесей в их потомстве дала толчок бросающаяся в глаза закономерность, с которой гибридные формы постоянно возвращались к своим родоначальным формам». Как это нередко случается в истории науки, работа Менделя, не сразу получила должное признание у современников. Итоги его опытов были обнародованы на заседании Общества естественных наук города Брюнна, а затем опубликованы в журнале этого Общества, но идеи Менделя в то время не нашли поддержки. Номер журнала с описанием революционной работы Менделя в течение тридцати лет пылился в библиотеках. Лишь в конце XIX века ученые, занимавшиеся проблемами наследственности, открыли для себя труды Менделя, и он смог получить (уже посмертно) заслуженное признание.

Первый закон Менделя

Скрещивание двух организмов называется гибридизацией, потомство от скрещивания двух особей с разной наследственностью называют гибридным, а отдельную особь - гибридом. Моно гибридным называется скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков. Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух признаков, развитие которых обусловлено парой аллельных генов. Все остальные признаки, свойственные данным организмам, во внимание не принимаются.

Если скрестить растения гороха с желтыми и зелеными семенами, то у всех полученных в результате этого скрещивания гибридов семена будут желтыми. Такая же картина наблюдается при скрещивании растений, обладающих гладкой и морщинистой формой семян; все потомство первого поколения будет иметь гладкую форму семян:

Поэтому первый закон Менделя получил название Закон единообразия гибридов первого поколения.

Если пользоваться терминами, появившимися через много лет после работы Менделя, то можно сказать, что клетки растений гороха одного сорта содержат по два гена только желтой окраски, а гены растений другого сорта – по два гена только зеленой окраски. Гены ответственные за развитие одного признака (например, цвета семян), получили название аллельных генов . Следовательно, у гибрида, первого поколения из каждой пары альтернативных признаков развивается только один. Второй признак как бы исчезает, не проявляется. Явление преобладания у гибрида при знака одного из родителей Г. Мендель назвал домини рованием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, а противоположный, т, е. подавляемый, признак - рецессивным. Грегор Мендель решил заменить описание признаков растений абстрактным кодом «А, B, C, D, E, F, G» и «a, b, c, d, e, f, g» и тогда от наблюдения за судьбой одной пары признаков он перешел к наблюдению за двумя, тремя, четырьмя парами одновременно. Большими A, B, C, D, E, F, G он обозначил доминантные признаки; малыми a, b, c, d, e, f, g - рецессивные. Если в генотипе организма (зиготы) два одинаковых аллельных гена - оба доминантные или оба рецессивные (АА или аа), такой организм называется гомозиготным. Если же из пары аллельных генов один доминантный, а другой рецессивный (Аа), то такой организм носит название гетерозиготного.

Закон расщепления, или второй закон Менделя.

Если потомков первого поколения, одинаковых по изу­чаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей появляются в оп­ределенном числовом соотношении: 3 / 4 особей будут иметь доминантный признак, ¼ рецессивный:

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть кото­ рого несет доминантный признак, а часть - рецессив­ ный, называется расщеплением. Следовательно, рецес­сивный признак у гибридов первого поколения не исчез, а был только подавлен и проявится во втором гибридном поколении.

Гипотеза чистоты гамет. Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. В гибриде присутствуют оба фактора - доминантный и рецессивный, но в виде признака проявляется доми­нантный наследственный фактор, рецессивный же по­давляется. Связь между поколениями при половом раз­множении осуществляется через половые клетки - га­ меты. Следовательно, необходимо допустить, что каж­дая гамета несет только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, бу­дет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слия­ние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет при­водить к развитию организма с доминантным призна­ком.

Расщепление потомства при скрещивании гетерози­готных особей Мендель объяснил тем, что гаметы гене­тически чисты, т. е. несут только один ген из аллельнои пары. Гипотезу (теперь ее называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.

Почему и как это происходит? Известно, что в каж­дой клетке организма имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромо­сомы содержат два одинаковых гена. Генетически «чис­тые» гаметы образуются следующим образом: при слиянии мужских и женских гамет получается гибрид с диплоидным (двойным) набором хромосом.

Как видно из схемы (приложение 2), половину хромосом зигота по­лучает от отцовского организма, половину - от мате­ринского.

В процессе образования гамет у гибрида гомологич­ные хромосомы во время I мейотического деления также попадают в разные клетки.

По данной аллельнои паре образуются два сорта гамет. При оплодотворении гаметы, несущие одинако­вые или разные аллели, случайно встречаются друг с другом. В силу статистической вероятности при доста­точно большом количестве гамет в потомстве 25 % гено­типов будут гомозиготными доминантными, 50 % - ге­терозиготными, 25 % - гомозиготными рецессивными, т. е. устанавливается отношение 1АА:2Аа:1 аа.

Соответственно по фенотипу потомство второго по­коления при моногибридном скрещивании распределя­ется в отношении 3:1 (¾ особей с доминантным при­знаком, ¼ особей с рецессивным).

Цитологической основой расщепления признаков при моногибридном скрещивании является расхождение гомологичных хромосом к разным полюсам клетки и образование гаплоидных половых клеток в мейозе.

В рассмотренных выше примерах правило единообразия выражалось в том, что все гибриды внешне были похожи на одного из родителей. Это наблюдается не всегда. Часто признаки у Гетерозиготных форм носят промежуточный характер, т.е. доминирование может быть не полным. Схема скрещивания двух наследственных форм растения Ночная красавица:

Одна из них обладает красными цветками (и это доминантный признак), а другая – белыми. На схеме видно, что все гибриды первого поколения имеют розовые цветки. Во втором поколении происходит расщепление в отношении 1:2:1, т.е. один красный цветок (гомозигота), два розовых цветка (гетерозигота), один белый (гомозигота). Это явление получило название неполное доминирование.

При неполном доминировании доминантный ген в гетерозиготном состоянии не всегда полностью подавляет рецессивный ген. В ряде случаев гибрид fi не воспроизводит полностью ни одного из родительских признаков и признак носит промежуточный характер с большим или меньшим уклонением к доминантному или рецессивному состоянию. Но все особи этого поколения единообразны по данному признаку. Неполное доминирование - широко распространен­ное явление. Оно обнаружено при изучении наследова­ния окраски цветка у львиного зева, окраски шерсти у крупного рогатого скота и овец, биохимических при­знаков у человека и т. д. Промежуточные признаки, возникающие вследствие неполного доминирования, нередко представляют эстетическую или материальную ценность для человека. Возникает вопрос: можно ли вы­вести путем отбора, например, сорт ночной красавицы с розовой окраской цветков? Очевидно, нет, потому что этот признак развивается только у гетерозигот и при скрещивании их между собой всегда происходит рас­щепление:

Неполное доминирование - широко распространен­ное явление. Оно обнаружено при изучении наследова­ния окраски цветка у львиного зева, окраски шерсти у крупного рогатого скота и овец, биохимических при­знаков у человека и т. д. Промежуточные признаки, возникающие вследствие неполного доминирования, нередко представляют эстетическую или материальную ценность для человека. Возникает вопрос: можно ли вы­вести путем отбора, например, сорт ночной красавицы с розовой окраской цветков? Очевидно, нет, потому что этот признак развивается только у гетерозигот и при скрещивании их между собой всегда происходит рас­щепление.

Закон независимого комбинирования, или третий закон Менделя.

Изучение Менделем наследования од­ной пары аллелей дало возможность установить ряд важных генетических закономерностей: явление доми­нирования, неизменность рецессивных аллелей у гибри­дов, расщепление потомства гибридов в отношении 3:1, а также предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельнои пары. Одна­ко организмы различаются по многим генам. Устано­вить закономерности наследования двух пар альтерна­тивных признаков и более можно путем дигибридного или полигибридного скрещивания, т.е. скрещивание родительских форм, различающихся по двум парам признаков.

Для дигибридного скрещивания Мендель взял гомо­зиготные растения гороха, отличающиеся по двум показателям - окраски семян (желтые, зеленые) и формы семян (гладкие, морщинистые). Доминантные признаки - желтая окраска (А) и гладкая форма (В) семян. Каж­дое растение образует один сорт гамет по изучаемым аллелям: При слиянии гамет все потомство будет единообразным:

Решетка Паннета

При образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в I делении мейоза ген А может попасть в одну гамету с геном В или с геном Ь. Точно так же ген а может оказаться в одной гамете с геном В или с геном Ь. Поэтому у гибрида образуются четыре типа гамет: АВ, Ав, аВ, ав . Во время оплодотворения каждая из четырех типов гамет одного организма слу­чайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета, в которой по горизонтали выписываются гаметы одного родителя, по вертикали - гаметы другого родителя. В квадратики вносятся генотипы зигот, образующиеся при слиянии гамет.

Легко подсчитать, что по фенотипу потомство делит­ся на 4 группы: 9 желтых гладких, 3 желтых морщини­стых, 3 зеленых гладких, 1 желтая морщинистая (9:3:3:1). Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1. Это можно выразить алгебраически как квадрат двучлена

(3+1)² = 3² +2·3+1² или 9+3+3+1

Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещива­нии, т. е. независимо от другой пары признаков.

При оплодотворении гаметы соединяются по прави­лам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают раз­личные комбинации генов. Теперь можно сформулировать третий закон Менде­ля: при скрещивании двух гомозиготных особей, отлича­ ющихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Законы Менделя служат основой для анализа рас­щепления в более сложных случаях: при различиях осо­бей по трем, четырем парам признаков и более.

Условия соблюдения законов наследования Менделя

Законы открытые Грегором Менделем применимы в генетике не всегда. Существуют многие условия соблюдения законов Менделя. Для таких случаев существуют другие законы (например: закон Моргана), или объяснения.

Сформулируем основные условия соблюдения законов наследования.

Для соблюдения закона единообразия гибридов первого поколения необходимо, чтобы:

· родительские организмы были гомозиготными;

· гены разных аллелей находились в различных хромосомах, а не в одной (иначе может произойти явление «сцепленного наследования»).

Закон расщепления будет соблюдаться, если

· у гибридов наследственные факторы сохраняются в неизменном виде;

Закон независимого распределения генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь слу­чае.

· если пары аллельных генов расположены в разных парах гомологичных хромосом.

Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении; либо к искажению соотношения различных генотипов и фенотипов. Законы Менделя имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. В целом они справедливы для аутосомных генов с полной пенетрантностью (100%-ой частотой проявления анализируемого признака; 100%-ая пенетрантность подразумевает, что признак выражен у всех носителей аллеля, детерминирующего развитие этого признака) и постоянной экспрессивностью; постоянная экспрессивность подразумевает, что фенотипическая выраженность признака одинакова или примерно одинакова у всех носителей аллеля, детерминирующего развитие этого признака.

Заключение.

Законы Грегора Менделя, в настоящее время, имеют широкое применение в селекции растений, животных и микроорганизмов, в медицине, генной инженерии и многих других отраслях жизни человека.Также Они применяются в решении задач по генетике.

Важно заметить, что Мендель формулировал законы и делал выводы во времена, когда ни о ДНК, ни о генах и хромосомах было ни чего не известно. Однако он оказался совершенно прав, и хотя и не сразу, но его теории были признаны и взяты за основу развивающейся науки – генетики.

Менделевская теория наследственности, т.е. совокупность представлений о наследственных детерминантах и характере их передачи от родителей к потомкам, по своему смыслу прямо противоположна доменделевским теориям, в частности теории пангенезиса, предложенной Дарвином. В соответствии с этой теорией признаки родителей прямо, т.е. от всех частей организма, передаются потомству. Поэтому характер признака потомка должен прямо зависеть от свойств родителя. Это полностью противоречит выводам, сделанным Менделем: детерминанты наследственности, т.е. гены, присутствуют в организме относительно независимо от него самого. Характер признаков (фенотип) определяется их случайным сочетанием. Они не модифицируются какими-либо частями организма и находятся в отношениях доминантности-рецессивности. Таким образом, менделевская теория наследственности противостоит идее наследования приобретенных в течение индивидуального развития признаков.

Опыты Менделя послужили основой для развития современной генетики – науки, изучающей два основных свойства организма – наследственность и изменчивость. Ему удалось выявить закономерности наследования благодаря принципиально новым методическим подходам:

1) Мендель удачно выбрал объект исследования;

2) он проводил анализ наследования отдельных признаков в потомстве скрещиваемых растений, отличающихся по одной, двум и трем парам контрастных альтернативных признаков. В каждом поколении велся учет отдельно по каждой паре этих признаков;

3) он не просто зафиксировал полученные результаты, но и провел их математическую обработку.

Перечисленные простые приемы исследования составили принципиально новый, гибридологический метод изучения наследования, ставший основой дальнейших исследований в генетике.

Список используемой литературы.

Общая биология: Учебник для 9-10 кл. ср. шк./Полянский Ю.И., Браун А. Д., Верзилин Н. М. и др.; М.: Просвещение, 1987. -287 с.: ил.

В 50-60-х годах XIX века австрийский биолог и монах Грегор Мендель проводил опыты по скрещиванию гороха. В результате статистической обработки данных Мендель не только установил, но и смог объяснить ряд генетических закономерностей. Это при том, что в то время ничего не знали о ДНК и генах как носителях наследственной информации. Грегора Менделя считают отцом генетики.

Еще до Менделя ряд ученых в начале XIX века отмечали, что у гибридов некоторых растений проявляется признак только одного родителя. Но только Мендель догадался исследовать статистические соотношения гибридов в ряду нескольких поколений. Кроме того ему повезло с выбором объекта для экспериментов - гороха посевного. Мендель изучал семь признаков этого растения, и почти все они наследовались, как находящиеся в разных хромосомах и наблюдалось полное доминирование. Если бы нашлись сцепленные признаки, а также наследуемые по типу неполного доминирования или кодоминирования и др., то это бы внесло путаницу в исследования ученого.

Установленные Менделем закономерности наследования сейчас называют первым, вторым и третьим законами Менделя. Первый закон Менделя - это закон единообразия гибридов первого поколения.

Мендель проводил моногибридное скрещивание. Он брал чистые линии, различающиеся только по одной альтернативной паре признаков. Например, растения с желтыми и зелеными семенами (или гладкими и морщинистыми, или высоким и низким стеблем, или пазушными и верхушечными цветками и др.) Проводил перекрестное опыление чистых линий и получал гибриды первого поколения. (Обозначение поколений F 1 , F 2 ввели в начале XX века.) У всех гибридов F 1 наблюдался признак только одного из родителей. Этот признак Мендель назвал доминантным. Другими словами, все гибриды первого поколения были единообразны.

Второй, рецессивный, признак в первом поколении исчезал. Однако он проявлялся во втором поколении. И это требовало какого-то объяснения.

Опираясь на результаты двух скрещиваний (F 1 и F 2), Мендель понял, что за каждый признак у растений отвечают два фактора. У чистых линий они были также парны, но одинаковы по своей сути. Гибриды первого поколения получали по одному фактору от каждого из родителей. Эти факторы не сливались, а сохраняли обособленность друг от друга, но проявится мог только один (который оказывался доминантным).

Первый закон Менделя не всегда формулируют как закон единообразия гибридов первого поколения. Встречается и подобная формулировка: п ризнаки организма определяются парами факторов, а в гаметах по одному фактору на каждый признак . (Эти «факторы» Менделя в настоящее время называют генами.) Действительно, важный вывод, который можно было сделать из опытов Менделя - это то, что организмы содержат по два носителя информации о каждом признаки, передают через гаметы потомкам по одному фактору, и в организме факторы, обуславливавшие один и тот же признак, не смешиваются между собой.

Более глубокое генетическое, а также цитологическое и молекулярное объяснение законы Менделя получили позднее. Были выявлены исключения из законов, которые также были объяснены.

Чистые линии - это гомозиготы. У них исследуемая пара аллелей одинакова (например, AA или aa). Выступая в качестве родителя (P) одно растение образует гаметы, содержащие только ген A, а другое - только ген a. Получившиеся от их скрещивания гибриды первого поколения (F 1) являются гетерозиготами, так как имеют генотип Aa, который при полном доминировании фенотипически проявляется также как гомозиготный генотип AA. Именно эту закономерность описывает первый закон Менделя.

На схеме ниже w - ген, отвечающий за белый цвет цветка, R - за красный (данный признак доминантный). Черными линиями обозначены разные варианты встречи гамет. Все они равновероятны. (Такая «прорисовка» встречи гамет будет важна при объяснении второго закона Менделя.) В любом случае (при любой встрече родительских гамет) у гибридов первого поколения формируются одинаковые генотипы - Rw.

Скрещивание:

1. Моногибридное. Наблюдение ведется только по одному признаку, т.е. отслеживаются аллели одного гена.
2. Дигибридное. Наблюдение ведется по двум признакам, те.е отслеживаются аллели двух генов.

Генетические обозначения:

Р – родители; F – потомство, число указывает на порядковый номер поколения, F1, F2.

Х – значок скрещивания, мужские особи, женские особи; А, а, В, в, С, с – отдельно взятые наследственные признаки. А, В, С – доминантные аллели гена, а, в, с – рецессивные аллели гена. Аа – , гетерозигота; аа – рецессивная гомозигота, АА – доминантная гомозигота.

Моногибридное скрещивание.

Классическим примером моногибридного скрещивания является скрещивание сортов с желтыми и зелеными семенами: все потомки имели желтые семена. Мендель пришел к выводу, что у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один – доминантный, а второй – рецессивный – не развивается, как бы исчезает.

Р АА * аа – родители (чистые линии)

А, а – родителей

Аа – первое поколение гибридов

Эта закономерность была названа законом единообразия гибридов первого поколения или законом доминирования. Это первый закон Менделя: при скрещивании двух организмов, относящихся к разным чистым линиям (двух организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей.

Второй закон Менделя

Семена гибридов первого поколения использовались Менделем для получения вроторого поколения. При скрещивании происходит расщепление признаков в определенном числовом отношении. Часть гибридов несет доминантный признак, часть – рецессивный.

F1 Аа * Аа А, а, А, а F2 АА (0,25); Аа (0,25); Аа (0,25); аа (0,25)

В потомстве происходит расщепление признаков в соотношении 3:1.

Для объяснения явлений доминирования и расщепления Мендель предложил ипотезу чистоты гамет: наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде.

Второй закон Менделя
можно сформулировать: при скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по – 1:2:1.

Третий закон Менделя
: при дигибридном скрещивании у гибридов второго поколения каждая пара контрастных признаков наследуется независимо от других и дает с ними разные сочетания. Закон справедлив лишь в тех случаях, когда анализируемые признаки не сцеплены друг с другом, т.е. находятся в негомологичных хромосомах.

Рассмотрим опыт Менделя, в котором он изучал независимое наследование признаков у гороха. Одно из скрещиваемых растений имело гладкие, желтые семена, а другое морщинистые и зеленые. В первом поколении гибридов растения имели гладкие и желтые семена. Во втором поколении произошло расщепление по фенотипу 9:3:3:1.

Третий закон Менделя формулируется так: расщепление по каждой паре генов идет независимо от других пар генов.