Явление полного внутреннего отражения света. Полное внутреннее отражение

Если n 1 >n 2 , то >α, т.е. если свет переходит из среды оптически более плотной в среду оптически менее плотную, то угол преломления больше угла падения (рис. 3)

Предельный угол падения. Если α=α п,=90˚ и луч будет скользить вдоль раздела сред воздух-вода.

Если α’>α п, то свет не пройдет во вторую прозрачную среду, т.к. полностью отразится. Это явление называется полным отражением света . Угол падения α п, при котором преломленный луч скользит вдоль поверхности раздела сред, называется предельным углом полного отражения.

Полное отражение можно наблюдать в равнобедренной прямоугольной стеклянной призме (рис.4), которая широко используется в перископах, биноклях, рефрактометрах и др.

а) Свет падает перпендикулярно первой грани и поэтому здесь не проходит преломления (α=0 и =0). Угол падения на вторую грань α=45˚, т.е.>α п, (для стекла α п =42˚). Поэтому на этой грани свет испытывает полное отражение. Это поворотная призма, которая поворачивает луч на 90˚.

б) В этом случае свет внутри призмы испытывает уже двукратное полное отражение. Это тоже поворотная призма, поворачивающая луч на 180˚.

в) В этом случае призма уже оборотная. При выходе лучей из призмы они параллельны падающим, но при этом верхний падающий луч становится нижним, а нижний верхним.

Широкое техническое применение явления полного отражения нашло в световодах.

Световод представляет собой большое число тонких стеклянных нитей, диаметр которых порядка 20мкм, а длинна около 1м каждая. Эти нити параллельны между собой и расположены вплотную (рис. 5)

Каждая нить окружена тонкой оболочкой из стекла, показатель преломления которого меньше, чем самой нити. Световод имеет два торца, взаимное расположение концов нитей на обоих торцах светопровода строго одинаково.

Если у одного торца световода поместить какой-либо предмет и осветить его, то на другом конце световода возникнет изображение этого предмета.

Изображение получается вследствие того, что в торец каждой из нитей попадает свет от какой-либо малой области предмета. Испытывая множество полных отражений, свет выходит из противоположного торца нити, передавая отражение данной малой области предмета.

Т.к. расположение нитей друг относительно друга строго одинаково, то на другом конце появляется соответствующее изображение предмета. Четкость изображения зависит от диаметра нитей. Чем меньше диаметр каждой нити, тем более четким будет являться изображение предмета. Потери световой энергии на пути следования светового луча обычно относительно невелики в жгутах (световодах), поскольку при полном отражении коэффициент отражения сравнительно высок (~0,9999). Потери энергии в основном обусловлены поглощением света веществом внутри волокна.



Например, в видимой части спектра в волокне длинной 1м теряется 30-70% энергии (но в жгуте).

Поэтому для передачи больших световых потоков и сохранения гибкости светопроводящей системы отдельные волокна собираются в жгуты (пучки) – световоды.

Световоды широко применяется в медицине для освещения холодным светом внутренних полостей и передачи изображения. Эндоскоп – специальный прибор для осмотра внутренних полостей (желудок, прямая кишка и т.д.). С помощью световодов передается лазерное излучение для лечебного воздействия на опухоли. Да и сетчатка глаза человека является высокоорганизованной волоконно-оптической системой состоящей из ~ 130х10 8 волокон.

При распространении волн в среде, в том числе и электромагнитных, для нахождения нового фронта волны в любой момент времени используют принцип Гюйгенса.

Каждая точка фронта волны является источником вторичных волн.

В однородной изотропной среде волновые поверхности вторичных волн имеют вид сфер радиуса v×Dt, где v - cкорость распространения волны в среде. Проводя огибающую волновых фронтов вторичных волн, получаем новый фронт волны в данный момент времени (рис. 7.1, а, б).

Закон отражения

Используя принцип Гюйгенса можно доказать закон отражения электромагнитных волн на границе раздела двух диэлектриков.

Угол падения равен углу отражения. Лучи, падающий и отраженный, вместе с перпендикуляром к границе раздела двух диэлектриков, лежат в одной плоскости. Ð a = Ð b. (7.1)

Пусть на плоскую границу СД раздела двух сред падает плоская световая волна (лучи 1 и 2, рис. 7.2). Угол a между лучом и перпендикуляром к СД называют углом падения. Если в данный момент времени фронт падающей волны ОВ достигает т. О, то согласно принципу Гюйгенса эта точка

Рис. 7.2

начинает излучать вторичную волну. За время Dt = ВО 1 /v падающий луч 2 достигает т. О 1 . За это же время фронт вторичной волны, после отражения в т. О, распространяясь в той же среде, достигает точек полусферы, радиусом ОА = v Dt = BO 1 .Новый фронт волны изображен плоскостью АО 1 , а направление распространения - лучом ОА. Угол b называют углом отражения. Из равенства треугольников ОАО 1 и ОВО 1 следует закон отражения: угол падения равен углу отражения.

Закон преломления

Оптически однородная среда 1 характеризуется , (7.2)

Отношение n 2 / n 1 = n 21 (7.4)

называют

(7.5)

Для вакуума n = 1.

Из-за дисперсии (частоты света n » 10 14 Гц), например, для воды n =1,33, а не n = 9 (e = 81), как это следует из электродинамики для малых частот. Если скорость распространения света в первой среде v 1 , а во второй - v 2 ,

Рис. 7.3

то за время Dt прохождения падающей плоской волной расстояния АО 1 в первой среде АО 1 ­ = v 1 Dt. Фронт вторичной волны, возбуждаемый во второй среде (в соответствии с принципом Гюйгенса), достигает точек полусферы, радиус которой ОВ = v 2 Dt. Новый фронт волны, распространяемой во второй среде, изображается плоскостью ВО 1 (рис. 7.3), а направление ее распространения - лучами ОВ и О 1 С (перпендикулярными к фронту волны). Угол b между лучом ОВ и нормалью к границе раздела двух диэлектриков в точке О называют углом преломления. Из треугольников ОАО 1 и ОВО 1 следует, что АО 1 = ОО 1 sin a, OB = OO 1 sin b.

Их отношение и выражает закон преломления (закон Снеллиуса):

. (7.6)

Отношение синуса угла падения к синусу угла преломления равно относительному показателю преломления двух сред.

Полное внутреннее отражение

Рис. 7.4

Согласно закону преломления на границе раздела двух сред можно наблюдать полное внутреннее отражение , если n 1 > n 2 , т. е. Ðb >Ða (рис. 7.4). Следовательно, существует такой предельный угол падения Ða пр, когда Ðb = 90 0 . Тогда закон преломления (7.6) принимает следующий вид:

sin a пр = , (sin 90 0 =1) (7.7)

При дальнейшем увеличении угла падения Ða > Ða пр свет полностью отражается от границы раздела двух сред.

Такое явление называют полным внутренним отражением и широкоиспользуют в оптике, например, для изменения направления световых лучей (рис. 7. 5, а, б).

Применяется в телескопах, биноклях, волоконной оптике и других оптических приборах.

В классических волновых процессах, таких, как явление полного внутреннего отражения электромагнитных волн, наблюдаются явления, аналогичные туннельному эффекту в квантовой механике, что связано с корпускулярно-волновыми свойствами частиц.

Действительно, при переходе света из одной среды в другую наблюдается преломление света, связанное с изменением скорости его распространения в различных средах. На границе раздела двух сред луч света разделяется на два: преломленный и отраженный.

На грань 1 прямоугольной равнобедренной стеклянной призмы перпендикулярно падает луч света и, не преломляясь падает на грань 2, наблюдается полное внутреннее отражение, так как угол падения (Ða = 45 0) луча на грань 2 больше предельного угла полного внутреннего отражения (для стекла n 2 = 1,5; Ða пр = 42 0).

Если на некотором расстоянии H ~ l/2 от грани 2 поместить такую же призму, то луч света пройдет через грань 2 * и выйдет из призмы через грань 1 * параллельно лучу, падавшему на грань 1. Интенсивность J прошедшего светового потока экспоненциально убывает с увеличением промежутка h между призмами по закону:

,

где w - некоторая вероятность прохождения луча во вторую среду; d - коэффициент, зависящий от показателя преломления вещества; l - длина волны падающего света

Следовательно, проникновение света в «запрещенную» область представляет собой оптическую аналогию квантового туннельного эффекта.

Явление полного внутреннего отражения действительно является полным, так как при этом отражается вся энергия падающего света на границу раздела двух сред, чем при отражении, например, от поверхности металлических зеркал. Используя это явление можно проследить еще одну аналогию между преломлением и отражением света, с одной стороны, и излучением Вавилова-Черенкова, с другой стороны.



ИНТЕРФЕРЕНЦИЯ ВОЛН

7.2.1. Роль векторов и

На практике в реальных средах могут распространяться одновременно несколько волн. В результате сложения волн наблюдается ряд интересных явлений: интерференция, дифракция, отражение и преломление волн и т. д.

Эти волновые явления характерны не только для механических волн, но и электрических, магнитных, световых и т. д. Волновые свойства проявляют и все элементарные частицы, что было доказано квантовой механикой.

Одно из интереснейших волновых явлений, которое наблюдается при распространении в среде двух и более волн, получило название интерференции. Оптически однородная среда 1 характеризуется абсолютным показателем преломления , (7.8)

где с - скорость света в вакууме; v 1 - cкорость света в первой среде.

Среда 2 характеризуется абсолютным показателем преломления

где v 2 - скорость света во второй среде.

Отношение (7.10)

называют относительным показателем преломления второй среды относительно первой. Для прозрачных диэлектриков, у которых m = 1, используя теорию Максвелла, или

где e 1 , e 2 - диэлектрические проницаемости первой и второй сред.

Для вакуума n = 1. Из-за дисперсии (частоты света n » 10 14 Гц), например, для воды n =1,33, а не n = 9 (e = 81), как это следует из электродинамики для малых частот. Свет - электромагнитные волны. Поэтому электромагнитное поле определяется векторами и , характеризующими напряженности электрического и магнитного полей cоответственно. Однако во многих процессах взаимодействия света с веществом, например, таких, как воздействие света на органы зрения, фотоэлементы и другие приборы, определяющая роль принадлежит вектору , который в оптике называют световым вектором.

    На рисунке а показан нормальный луч, который проходит границу «воздух — плексиглас» и выходит из плексигласовой пластины, не претерпевая никакого отклонения при прохождении двух границ между плексигласом и воздухом. На рисунке б показан луч света, входящий в полукруглую пластину нормально без отклонения, но составляющий угол у с нормалью в точке О внутри пластины плексигласа. Когда луч покидает более плотную среду (плексиглас), скорость его распространения в менее плотной среде (воздухе) увеличивается. Поэтому он преломляется, составляя угол х по отношению к нормали в воздухе, который больше, чем у.

    Исходя из того что n = sin (угол, который луч составляет с нормалью в воздухе) / sin (угол, который луч составляет с нормалью в среде), плексигласа n n = sin x/sin у. Если производится несколько измерений х и у, то показатель преломления плексигласа может быть подсчитан усреднением результатов для каждой пары величин. Угол у может быть увеличен путем перемещения источника света по дуге круга с центром в точке О.

    Результатом этого является увеличение угла х до тех пор, пока не достигается положение, показанное на рисунке в , т. е. пока х не станет равен 90 о . Ясно, что угол х не может быть больше. Угол, который теперь луч образует с нормалью внутри плексигласа, называется критическим или предельным углом с (это тот угол падения на границу из более плотной среды в менее плотную, когда угол преломления в менее плотной среде составляет 90°).

    Обычно наблюдается слабый отраженный луч, так же как и яркий луч, который преломляется вдоль прямого края пластины. Это является следствием частичного внутреннего отражения. Заметьте также, что когда используется белый свет, то свет, появляющийся вдоль прямого края, разлагается на цвета спектра. Если источник света продвинут далее вокруг дуги, как на рисунке г , так что I внутри плексигласа становится больше критического угла с и преломления на границе двух сред не происходит. Вместо этого луч испытывает полное внутреннее отражение под углом r по отношению к нормали, где r = i.

    Чтобы произошло полное внутреннее отражение , угол падения i должен быть измерен внутри более плотной среды (плексигласа) и он должен быть больше критического угла с. Заметьте, что закон отражения также справедлив для всех углов падения больше критического угла.

    Критический угол бриллианта составляет лишь 24°38". Его «высверк», таким образом, зависит от той легкости, с которой происходит множественное полное внутреннее отражение, когда он освещается светом, что в большой мере зависит от искусной огранки и полировки, усиливающей этот эффект. Ранее было определено, что n = 1 /sin с, поэтому точное измерение критического угла с позволит определить n.

    Исследование 1. Определить n для плексигласа методом нахождения критического угла

    Поместите полукруглую пластину плексигласа в центре большого листа белой бумаги и тщательно обведите ее очертания. Найдите среднюю точку О прямого края пластины. При помощи транспортира постройте нормаль NO, перпендикулярную этому прямому краю в точке О. Вновь поместите пластину в ее очертания. Передвигайте источник света вокруг дуги влево от NO, все время направляя падающий луч на точку О. Когда преломленный луч пойдет вдоль прямого края, как показано на рисунке, отметьте путь падающего луча тремя точками Р 1 , Р 2 , и P 3 .

    Временно уберите пластину и соедините три эти точки прямой линией, которая должна пройти через О. При помощи транспортира измерьте критический угол с между прочерченным падающим лучом и нормалью. Вновь аккуратно поместите пластину в ее очертания и повторите проделанное прежде, но на этот раз двигайте источник света вокруг дуги вправо от NO, непрерывно направляя луч на точку О. Запишите два измеренных значения с в таблицу результатов и определите среднее значение критического угла с. Затем определите показатель преломления n n для плексигласа по формуле n n = 1 /sin с.

    Прибор для исследования 1 может быть также использован для того, чтобы показать, что для лучей света, распространяющихся в более плотной среде (плексиглас) и падающих на границу раздела «плексиглас — воздух» под углами, большими критического угла с, угол падения i равен углу отражения r.

    Исследование 2. Проверить закон отражения света для углов падения, больших критического угла

    Поместить полукруглую пластину плексигласа на большой лист белой бумаги и тщательно обведите ее очертания. Как и в первом случае, найдите среднюю точку О и постройте нормаль NO. Для плексигласа критический угол с = 42°, следовательно, углы падения i > 42° больше критического угла. При помощи транспортира постройте лучи под углами 45°, 50°, 60°, 70° и 80° к нормали NO.

    Вновь аккуратно поместите пластину плексигласа в ее очертания и направьте луч света из источника света вдоль линии 45°. Луч направится к точке О, отразится и появится с дугообразной стороны пластины по другую сторону от нормали. Отметьте три точки P 1 , Р 2 и Р 3 на отраженном луче. Временно уберите пластину и соедините три точки прямой линией, которая должна пройти через точку О.

    При помощи транспортира измерьте угол отражения r между и отраженным лучом, записав результаты в таблицу. Аккуратно поместите пластину в ее очертания и повторите проделанное для углов 50°, 60°, 70° и 80° к нормали. Запишите значение r в соответствующее место таблицы результатов. Постройте график зависимости угла отражения r от угла падения i. Прямолинейный график, построенный в диапазоне углов падения от 45° до 80°, будет достаточен, чтобы показать, что угол i равен углу r.

Полное внутреннее отражение

Вну́треннее отраже́ние - явление отражения электромагнитных волн от границы раздела двух прозрачных сред при условии, что волна падает из среды с бо́льшим показателем преломления .

Неполное внутреннее отражение - внутреннее отражение, при условии, что угол падения меньше критического угла. В этом случае луч раздваивается на преломлённый и отражённый.

Полное внутреннее отражение - внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. К тому же, коэффициент отражения при полном внутреннем отражении не зависит от длины волны .

Этот оптический феномен наблюдается для широкого спектра электромагнитного излучения включая и рентгеновский диапазон .

В рамках геометрической оптики объяснение явления тривиально: опираясь на закон Снелла и учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего коэффициента преломления к большему коэффициенту, электромагнитная волна должна полностью отражаться в первую среду.

В соответствии с волновой теорией явления, электромагнитная волна всё же проникает во вторую среду - там распространяется так называемая «неоднородная волна», которая экспоненциально затухает и энергию с собой не уносит. Характерная глубина проникновения неоднородной волны во вторую среду порядка длины волны.

Полное внутреннее отражение света

Рассмотрим внутреннее отражение на примере двух монохроматических лучей, падающих на границу раздела двух сред. Лучи падают из зоны более плотной среды (обозначена более тёмным голубым цветом) с коэффициентом преломления на границу с менее плотной средой (обозначена светло-голубым цветом) с коэффициентом преломления.

Красный луч падает под углом , то есть на границе сред он раздваивается - частично преломляется и частично отражается. Часть луча преломляется под углом .

Зелёный луч падает и полностью отражается src="/pictures/wiki/files/100/d833a2d69df321055f1e0bf120a53eff.png" border="0">.

Полное внутреннее отражение в природе и технике

Отражение рентгеновских лучей

Преломление рентгеновских лучей при скользящем падении было впервые сформулировано М. А. Кумаховым, разработавшим рентгеновское зеркало , и теоретически обосновано Артуром Комптоном в 1923 году .

Другие волновые явления

Демонстрация преломления, а значит и эффекта полного внутреннего отражения возможна, например, для звуковых волн на поверхности и в толще жидкости при переходе между зонами различной вязкости или плотности.

Явления, сходные с эффектом полного внутреннего отражения электромагнитного излучения, наблюдаются для пучков медленных нейтронов.

Если на поверхность раздела падает вертикально поляризованная волна под углом Брюстера , то будет наблюдаться эффект полного преломления - отраженная волна будет отсутствовать.

Примечания

Wikimedia Foundation . 2010 .

  • Полное дыхание
  • Полное изменение

Смотреть что такое "Полное внутреннее отражение" в других словарях:

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - отражение эл. магн. излучения (в частности, света) при его падении на границу раздела двух прозрачных сред из среды с большим показателем преломления. П. в. о. осуществляется, когда угол падения i превосходит нек рый предельный (критический) угол … Физическая энциклопедия

    Полное внутреннее отражение - Полное внутреннее отражение. При прохождении света из среды с n1 > n2 происходит полное внутреннее отражение, если угол падения a2 > aпр; при угле падения a1 Иллюстрированный энциклопедический словарь

    Полное внутреннее отражение - отражение оптического излучения (См. Оптическое излучение) (света) или электромагнитного излучения другого диапазона (например, радиоволн) при его падении на границу раздела двух прозрачных сред из среды с большим преломления показателем… … Большая советская энциклопедия

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - электромагнитных волн, происходит при прохождении их из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2 под углом падения a, превышающим предельный угол aпр, определяемый соотношением sinaпр=n2/n1. Полным… … Современная энциклопедия

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ, ОТРАЖЕНИЕ без ПРЕЛОМЛЕНИЯ света на границе. При прохождении света из более плотной среды (например, стекло) в менее плотную (вода или воздух) существует зона углов преломления, в которой свет не проходит через границу … Научно-технический энциклопедический словарь

    полное внутреннее отражение - Отражение света от среды оптически менее плотной с полным возвращением в среду, из которой он падает. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… … Справочник технического переводчика

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - электромагнитных волн происходит при их наклонном падении на границу раздела 2 сред, когда излучение проходит из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2, а угол падения i превышает предельный угол… … Большой Энциклопедический словарь

    полное внутреннее отражение - электромагнитных волн, происходит при наклонном падении на границу раздела 2 сред, когда излучение проходит из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2, а угол падения i превышает предельный угол iпр … Энциклопедический словарь

При некотором угле падения света ${\alpha }_{pad}={\alpha }_{pred}$, который называют предельным углом , угол преломления равен $\frac{\pi }{2},\ $при этом преломленный луч скользит по поверхности раздела сред, следовательно, преломленный луч отсутствует. Тогда из закона преломления можно записать, что:

Рисунок 1.

В случае полного отражения уравнение:

не имеет решения в области действительных значений угла преломления (${\alpha }_{pr}$). В таком случае $cos{(\alpha }_{pr})$ чисто мнимая величина. Если обратиться к Формулам Френеля, то их удобно представить в виде:

где угол падения обозначен $\alpha $ (для краткости написания), $n$ -- показатель преломления среды, где свет распространяется.

Из формул Френеля видно, что модули $\left|E_{otr\bot }\right|=\left|E_{otr\bot }\right|$, $\left|E_{otr//}\right|=\left|E_{otr//}\right|$, что означает, что отражение является «полным».

Замечание 1

Надо отметить, что неоднородная волна во второй среде не исчезает. Так, если $\alpha ={\alpha }_0={arcsin \left(n\right),\ то\ }$ $E_{pr\bot }=2E_{pr\bot }.$ Нарушения закона сохранения энергии в данном случае нет. Так как формулы Френеля справедливы для монохроматического поля, то есть к установившемуся процессу. В таком случае закон сохранения энергии требует, чтобы среднее за период изменение энергии во второй среде было равно нулю. Волна и соответствующая доля энергии проникает через грани цу раздела во вторую среду на небольшую глубину порядка длины волны и движется в ней параллельно границе раздела с фазовой скоростью, которая меньше фазовой скорости волны во второй среде. Он возвращается в первую среду в точке, которая смещена относительно точки входа.

Проникновение волны во вторую среду можно наблюдать в эксперименте. Интенсивность световой волны во второй среде заметна только на расстояниях меньших длины волны. Около поверхности раздела, на которую падает волна света, которая испытывает полное отражение, на стороне второй среды можно видеть свечение тонкого слоя, если во второй среде есть флуоресцирующее вещество.

Полное отражение вызывает возникновение миражей, когда поверхность земли имеет высокую температуру. Так, полное отражение света, которое идет от облаков приводит к появлению впечатления, что на поверхности нагретого асфальта находятся лужи.

При обычном отражении отношения $\frac{E_{otr\bot }}{E_{pad\bot }}$ и $\frac{E_{otr//}}{E_{pad//}}$ всегда вещественны. При полном отражении они комплексны. Это значит, что в таком случае фаза волны терпит скачок, при этом он отличен от нуля или $\pi $. Если волна поляризована перпендикулярно плоскости падения, то можно записать:

где ${\delta }_{\bot }$ - искомый скачок фазы. Приравняем вещественные и мнимые части, имеем:

Из выражений (5) получаем:

Соответственно, для волны, которая поляризована в плоскости падения можно получить:

Скачки фаз ${\delta }_{//}$ и ${\delta }_{\bot }$ не одинаковы. Отраженная волна будет поляризована эллиптически.

Применение полного отражения

Допустим, что две одинаковые среды разделены тонким воздушным промежутком. На него падает световая волна под углом, который больше, чем предельный. Может сложиться так, что она проникнет в воздушный промежуток как неоднородная волна. Если толщина зазора мала, то данная волна достигнет второй границы вещества и при этом будет не очень ослабленной. Перейдя из воздушного промежутка в вещество, волна превратится снова в однородную. Такой опыт был проведен еще Ньютоном. Ученый прижимал к гипотенузной грани прямоугольной призмы другую призму, которая со шлифована сферически. При этом свет проходил во вторую призму не только там, где они соприкасаются, но и в небольшом кольце вокруг контакта, в месте, где толщина зазора сравнима с длинной волны. Если наблюдения проводились в белом свете, то край кольца имел красноватую окраску. Так и должно быть, так как глубина проникновения пропорциональна длине волны (для красных лучей она больше, чем для синих). Изменяя толщину промежутка, можно изменять интенсивность проходящего света. Это явление легло в основу светового телефона, который был запатентован фирмой Цейсс. В этом устройстве в качестве одной из сред выступает прозрачная мембрана, которая совершает колебания под действием звука, падающего на нее. Свет, который проходит сквозь воздушный промежуток, изменяет интенсивность в такт с изменениями силы звука. Попадая на фотоэлемент, он порождает переменный ток, который меняется в соответствии с изменениями силы звука. Полученный ток усиливается и используется далее.

Явления проникновения волн сквозь тонкие промежутки не специфичны для оптики. Это возможно для волны любой природы, если фазовая скорость в промежутке выше, чем фазовая скорость в окружающей среде. Важное значение данное явление имеет в ядерной и атомной физике.

Явление полного внутреннего отражения используют для изменения направления распространения света. С этой целью используют призмы.

Пример 1

Задание: Приведите пример явления полного отражения, которое часто встречается.

Решение:

Можно привести такой пример. Если шоссейная дорога сильно нагрета, то температура воздуха максимальна около поверхности асфальта и убывает при увеличении расстояния от дороги. Значит, показатель преломления воздуха минимален у поверхности и растет при увеличении расстояния. Как результат этого, лучи, имеющие небольшой угол относительно поверхности шоссе терпят полное отражение. Если сконцентрировать свое внимание, при движении в автомобиле, на подходящем участке поверхности шоссе, то можно увидеть довольно далеко едущую впереди машину в перевернутом виде.

Пример 2

Задание: Каков угол Брюстера для пучка света, который падает на поверхность кристалла, если предельный угол полного отражения для данного пучка на границе раздела воздух -- кристалл равен 400?

Решение:

\[{tg(\alpha }_b)=\frac{n}{n_v}=n\left(2.2\right).\]

Из выражения (2.1) имеем:

Подставим правую часть выражения (2.3) в формулу (2.2), выразим искомый угол:

\[{\alpha }_b=arctg\left(\frac{1}{{sin \left({\alpha }_{pred}\right)\ }}\right).\]

Проведем вычисления:

\[{\alpha }_b=arctg\left(\frac{1}{{sin \left(40{}^\circ \right)\ }}\right)\approx 57{}^\circ .\]

Ответ: ${\alpha }_b=57{}^\circ .$