За счет чего мы слышим. Тексты детских стихов и песенок, используемых в блоге

Голос матери, щебетанье птиц, шелест листвы, лязг машин, раскаты грома, музыка... Человек погружается в океан звуков буквально с первых минут жизни. Звуки заставляют нас волноваться, радоваться, тревожиться, наполняют спокойствием или страхом. А ведь все это не более чем колебания воздуха, звуковые волны, которые, попадая через наружный слуховой проход на барабанную перепонку, вызывают ее колебания. Через систему расположенных в среднем ухе слуховых косточек (молоточек, наковальню и стремечко) звуковые колебания передаются далее во внутреннее ухо, по форме напоминающее раковину виноградной улитки.

Улитка представляет собой сложную гидромеханическую систему. Это тонкостенная костная трубка конической формы, закрученная в спираль. Полость трубки заполнена жидкостью и по всей длине разделена особой многослойной перегородкой. Одним из слоев этой перегородки является так называемая базилярная мембрана, на которой и расположен собственно рецепторный аппарат - кортиев орган. В рецепторных волосковых клетках (поверхность их покрыта мельчайшими протоплазматическими выростами в виде волосков) и происходит удивительный, до конца еще не изученный процесс преобразования физической энергии звуковых колебаний в возбуждение этих клеток. Дальше информация о звуке в виде нервных импульсов по волокнам слухового нерва, чувствительные окончания которого подходят к волосковым клеткам, передается в слуховые центры головного мозга.

Существует и другой путь, по которому звук, минуя наружное и среднее ухо, достигает улитки - непосредственно через кости черепа. Но интенсивность воспринимаемого звука в этом случае значительно меньше, чем при воздушном звукопроведении (отчасти это объясняется тем, что при прохождении через кости черепа энергия звуковых колебаний затухает). Поэтому значение костной звукопроводимости у здорового человека относительно невелико.

Однако способность воспринимать звуки двойным путем используется в диагностике нарушений слуха: если в ходе обследования выясняется, что восприятие звуков путем воздушного звукопроведения нарушено, а путем костного полностью сохранено, врач может сделать вывод, что пострадал только звукопроводящий аппарат среднего уха, звуковосприни-мающий же аппарат улитки не поврежден. В таком случае костное звукопроведение и оказывается своего рода «палочкой-выручалочкой»: больной может пользоваться слуховым аппаратом, от которого звуковые колебания прямо через кости черепа передаются кортиеву органу.

Улитка не только воспринимает звук и трансформирует его в энергию возбуждения рецепторных клеток, но, что не менее важно, осуществляет начальные этапы анализа звуковых колебаний, в частности частотный анализ.

Такой анализ можно провести с помощью технических приборов - частотных анализаторов. Улитка делает это гораздо быстрее и, естественно, на другой «технической базе».

По ходу канала улитки, в направлении от овального окна к ее" вершине постепенно увеличивается ширина перегородки и уменьшается ее жесткость. Поэтому различные участки перегородки резонируют на звуки разных частот: при действии звуков высокой частоты максимальная амплитуда колебаний наблюдается у основания улитки, вблизи овального окна, а низкочастотным звукам соответствует зона максимального резонанса у вершины. Звуки определенной частоты имеют свое преимущественное представительство в определенной части улитковой перегородки и, следовательно, воздействуют только на те нервные волокна, которые связаны с волосковыми клетками возбужденной области кортиева органа. Поэтому каждое нервное волокно реагирует на ограниченный диапазон частот; такой способ анализа получил название пространственного, или по принципу места.

Помимо пространственного, имеется еще и временной, когда частота звука воспроизводится и в реакции рецепторных клеток и до известного предела в реакции волокон слухового нерва. Оказалось, что волосковые клетки обладают свойствами микрофона: они преобразуют энергию звуковых колебаний в электрические колебания той же частоты (так называемый микрофонный эффект улитки). Предполагается, что существуют два способа передачи возбуждения от во-лосковой клетки на нервное волокно. Первый, электрический, когда электрический ток, возникший в результате микрофонного эффекта, непосредственно вызывает возбуждение нервного волокна. И второй, химический, когда возбуждение волосковой клетки передается на волокно с помощью вещества-передатчика, то есть медиатора. Временной и пространственный способы анализа в совокупности обеспечивают хорошее различение звуков по частоте.

Итак, информация о звуке передана волокну слухового нерва, но высшего слухового центра, расположенного в височной доле коры большйх полушарий, она достигает не сразу. Центральная, находящаяся в мозгу, часть слуховой системы состоит из нескольких центров, каждый из которых насчитывает сотни тысяч и миллионы нейронов. В этих центрах существует своеобразная иерархия, и при переходе от нижних к верхним реакция нейронов На звук изменяется.

На нижних уровнях центральной части слуховой системы, в слуховых центрах продолговатого мозга, импульсная реакция нейронов на звук хорошо отражает его физические свойства: длительность реакции точно соответствует длительности сигнала; чем больше интенсивность звука, тем больше (до определенного предела) число и частота импульсов и тем больше число нейронов, вовлекаемых в реакцию, и т. д.

При переходе от нижних слуховых центров к верхним постепенно, но неуклонно снижается импульсная активность нейронов. Создается впечатление, что нейроны, составляющие верхушку в иерархии, трудятся гораздо меньше, чем нейроны нижних центров.

И действительно, если у подопытного животного удалить высший слуховой анализатор, почти не нарушается ни абсолютная слуховая чувствительность, то есть способность обнаружения предельно слабых звуков, ни способность к различению звуков по частоте, интенсивности и длительности.

В чем же в таком случае состоит роль верхних центров слуховой системы?

Оказывается, нейроны высших слуховых центров в отличие от нижних работают по принципу избирательности, то есть реагируют лишь на звуки с определенными свойствами. При этом характерно, что они могут откликаться только на сложные звуки, например, на звуки, изменяющиеся во времени по частоте, на движущиеся звуки или только на отдельные слова и звуки речи. Эти факты дают основание говорить о специализированной избирательной реакции нейронов высших слуховых центров на сложные звуковые сигналы.

И это очень важно. Ведь избирательная реакция этих нейронов проявляется по отношению к таким звукам, которые биологически ценны. Для человека это прежде всего звуки речи. Биологически важный звук как бы экстрагируется из лавины окружающих звуков и обнаруживается специализированными нейронами даже при очень слабой его интенсивности и на линии звуковых помех. Именно благодаря этому мы можем различить, к примеру, в грохоте сталепрокатного цеха слова, сказанные собеседником.

Специализированные нейроны обнаруживают свой звук даже в том случае, если изменяются его физические свойства. Какое-либо слово, произнесенное мужским, или женским, или детским голосом, громко или тихо, быстро или медленно, всегда воспринимается как одно и то же слово.

Ученых интересовал вопрос, каким образом достигается высокая избирательность нейронов высших центров. Известно, что нейроны способны реагировать на раздражение не только возбуждением, то есть потоком нервных импульсов, но и торможением - подавлением способности генерировать импульсы. Благодаря процессу торможения ограничивается круг сигналов, на которые нейрон дает реакцию возбуждения. Характерно, что тормозные процессы особенно хорошо выражены именно в верхних центрах слуховой системы. Как известно, процессы торможения и возбуждения требуют затраты энергии. Поэтому никак нельзя считать, что нейроны верхних центров бездельничают; они интенсивно работают, только работа у них иная, чем у нейронов нижних слуховых центров.

А что же происходит с потоками нервных импульсов, идущими от нижних слуховых центров? Как используется эта информация, если высшие центры ее отвергают?

Во-первых, отвергают не всю информацию, а лишь какую-то ее часть. Во-вторых, импульсы от нижних центров идут не только к верхним, они поступают и к двигательным центрам мозга и к так называемым неспецифическим системам, которые имеют непосредственное отношение к организации различных элементов поведения (позы, движения, внимания) и эмоциональных состояний (контактности, агрессии). Эти системы мозга осуществляют свою деятельность на основе интеграции той информации о внешнем мире, которая поступает к ним по разным сенсорным каналам.

Такова в общих чертах сложная и далеко не полностью изученная картина работы слуховой системы. Сегодня многое известно о процессах, происходящих при восприятии звуков, и, как видите, специалисты в значительной степени могут ответить на вопрос, вынесенный в заглавие, «Как мы слышим?». Но пока еще нельзя объяснить, почему одни звуки нам приятны, а другие неприятны, почему одна и та же музыка одному человеку нравится, а другому нет, почему одни физические свойства звуков речи воспринимаются нами как приветливые интонации, а другие как грубые. Эти и другие проблемы решают исследователи одной из интереснейших областей физиологии

Я. Альтман, Е. Радионова, доктор медицинских наук, доктор биологических наук

Ответ ниже

Улитка представляет собой сложную гидромеханическую систему. Это тонкостенная костная трубка конической формы, закрученная в спираль. Полость трубки заполнена жидкостью и по всей длине разделена особой многослойной перегородкой. Одним из слоев этой перегородки является так называемая базилярная мембрана, на которой и расположен собственно рецепторный аппарат - кортиев орган. В рецепторных волосковых клетках (поверхность их покрыта мельчайшими протоплазматическими выростами в виде волосков) и происходит удивительный, до конца еще не изученный процесс преобразования физической энергии звуковых колебаний в возбуждение этих клеток. Дальше информация о звуке в виде нервных импульсов по волокнам слухового нерва, чувствительные окончания которого подходят к волосковым клеткам, передается в слуховые центры головного мозга.

Существует и другой путь, по которому звук, минуя наружное и среднее ухо, достигает улитки - непосредственно через кости черепа. Но интенсивность воспринимаемого звука в этом случае значительно меньше, чем при воздушном звукопроведении (отчасти это объясняется тем, что при прохождении через кости черепа энергия звуковых колебаний затухает). Поэтому значение костной звукопроводимости у здорового человека относительно невелико.

Однако способность воспринимать звуки двойным путем используется в диагностике нарушений слуха: если в ходе обследования выясняется, что восприятие звуков путем воздушного звукопроведения нарушено, а путем костного полностью сохранено, врач может сделать вывод, что пострадал только звукопроводящий аппарат среднего уха, звуковосприни-мающий же аппарат улитки не поврежден. В таком случае костное звукопроведение и оказывается своего рода «палочкой-выручалочкой»: больной может пользоваться слуховым аппаратом, от которого звуковые колебания прямо через кости черепа передаются кортиеву органу.

Улитка не только воспринимает звук и трансформирует его в энергию возбуждения рецепторных клеток, но, что не менее важно, осуществляет начальные этапы анализа звуковых колебаний, в частности частотный анализ.

По ходу канала улитки, в направлении от овального окна к ее" вершине постепенно увеличивается ширина перегородки и уменьшается ее жесткость. Поэтому различные участки перегородки резонируют на звуки разных частот: при действии звуков высокой частоты максимальная амплитуда колебаний наблюдается у основания улитки, вблизи овального окна, а низкочастотным звукам соответствует зона максимального резонанса у вершины. Звуки определенной частоты имеют свое преимущественное представительство в определенной части улитковой перегородки и, следовательно, воздействуют только на те нервные волокна, которые связаны с волосковыми клетками возбужденной области кортиева органа. Поэтому каждое нервное волокно реагирует на ограниченный диапазон частот; такой способ анализа получил название пространственного, или по принципу места.

Помимо пространственного, имеется еще и временной, когда частота звука воспроизводится и в реакции рецепторных клеток и до известного предела в реакции волокон слухового нерва. Оказалось, что волосковые клетки обладают свойствами микрофона: они преобразуют энергию звуковых колебаний в электрические колебания той же частоты (так называемый микрофонный эффект улитки). Предполагается, что существуют два способа передачи возбуждения от во-лосковой клетки на нервное волокно. Первый, электрический, когда электрический ток, возникший в результате микрофонного эффекта, непосредственно вызывает возбуждение нервного волокна. И второй, химический, когда возбуждение волосковой клетки передается на волокно с помощью вещества-передатчика, то есть медиатора. Временной и пространственный способы анализа в совокупности обеспечивают хорошее различение звуков по частоте.

Голос матери, щебетанье птиц, шелест листвы, лязг машин, раскаты грома, музыка... Человек погружается в океан звуков буквально с первых минут жизни. Звуки заставляют нас волноваться, радоваться, тревожиться, наполняют спокойствием или страхом. А ведь все это не более чем колебания воздуха, звуковые волны, которые, попадая через наружный слуховой проход на барабанную перепонку, вызывают ее колебания. Через систему расположенных в среднем ухе слуховых косточек (молоточек, наковальню и стремечко) звуковые колебания передаются далее во внутреннее ухо, по форме напоминающее раковину виноградной улитки.

Улитка представляет собой сложную гидромеханическую систему. Это тонкостенная костная трубка конической формы, закрученная в спираль. Полость трубки заполнена жидкостью и по всей длине разделена особой многослойной перегородкой. Одним из слоев этой перегородки является так называемая базилярная мембрана, на которой и расположен собственно рецепторный аппарат - кортиев орган. В рецепторных волосковых клетках (поверхность их покрыта мельчайшими протоплазматическими выростами в виде волосков) и происходит удивительный, до конца еще не изученный процесс преобразования физической энергии звуковых колебаний в возбуждение этих клеток. Дальше информация о звуке в виде нервных импульсов по волокнам слухового нерва, чувствительные окончания которого подходят к волосковым клеткам, передается в слуховые центры головного мозга.

Существует и другой путь, по которому звук, минуя наружное и среднее ухо, достигает улитки - непосредственно через кости черепа. Но интенсивность воспринимаемого звука в этом случае значительно меньше, чем при воздушном звукопроведении (отчасти это объясняется тем, что при прохождении через кости черепа энергия звуковых колебаний затухает). Поэтому значение костной звукопроводимости у здорового человека относительно невелико.

Однако способность воспринимать звуки двойным путем используется в диагностике нарушений слуха: если в ходе обследования выясняется, что восприятие звуков путем воздушного звукопроведения нарушено, а путем костного полностью сохранено, врач может сделать вывод, что пострадал только звукопроводящий аппарат среднего уха, звуковосприни-мающий же аппарат улитки не поврежден. В таком случае костное звукопроведение и оказывается своего рода «палочкой-выручалочкой»: больной может пользоваться слуховым аппаратом, от которого звуковые колебания прямо через кости черепа передаются кортиеву органу.

Улитка не только воспринимает звук и трансформирует его в энергию возбуждения рецепторных клеток, но, что не менее важно, осуществляет начальные этапы анализа звуковых колебаний, в частности частотный анализ.

Такой анализ можно провести с помощью технических приборов - частотных анализаторов. Улитка делает это гораздо быстрее и, естественно, на другой «технической базе».

По ходу канала улитки, в направлении от овального окна к ее" вершине постепенно увеличивается ширина перегородки и уменьшается ее жесткость. Поэтому различные участки перегородки резонируют на звуки разных частот: при действии звуков высокой частоты максимальная амплитуда колебаний наблюдается у основания улитки, вблизи овального окна, а низкочастотным звукам соответствует зона максимального резонанса у вершины. Звуки определенной частоты имеют свое преимущественное представительство в определенной части улитковой перегородки и, следовательно, воздействуют только на те нервные волокна, которые связаны с волосковыми клетками возбужденной области кортиева органа. Поэтому каждое нервное волокно реагирует на ограниченный диапазон частот; такой способ анализа получил название пространственного, или по принципу места.

Помимо пространственного, имеется еще и временной, когда частота звука воспроизводится и в реакции рецепторных клеток и до известного предела в реакции волокон слухового нерва. Оказалось, что волосковые клетки обладают свойствами микрофона: они преобразуют энергию звуковых колебаний в электрические колебания той же частоты (так называемый микрофонный эффект улитки). Предполагается, что существуют два способа передачи возбуждения от во-лосковой клетки на нервное волокно. Первый, электрический, когда электрический ток, возникший в результате микрофонного эффекта, непосредственно вызывает возбуждение нервного волокна. И второй, химический, когда возбуждение волосковой клетки передается на волокно с помощью вещества-передатчика, то есть медиатора. Временной и пространственный способы анализа в совокупности обеспечивают хорошее различение звуков по частоте.

Итак, информация о звуке передана волокну слухового нерва, но высшего слухового центра, расположенного в височной доле коры большйх полушарий, она достигает не сразу. Центральная, находящаяся в мозгу, часть слуховой системы состоит из нескольких центров, каждый из которых насчитывает сотни тысяч и миллионы нейронов. В этих центрах существует своеобразная иерархия, и при переходе от нижних к верхним реакция нейронов На звук изменяется.

На нижних уровнях центральной части слуховой системы, в слуховых центрах продолговатого мозга, импульсная реакция нейронов на звук хорошо отражает его физические свойства: длительность реакции точно соответствует длительности сигнала; чем больше интенсивность звука, тем больше (до определенного предела) число и частота импульсов и тем больше число нейронов, вовлекаемых в реакцию, и т. д.

При переходе от нижних слуховых центров к верхним постепенно, но неуклонно снижается импульсная активность нейронов. Создается впечатление, что нейроны, составляющие верхушку в иерархии, трудятся гораздо меньше, чем нейроны нижних центров.

И действительно, если у подопытного животного удалить высший слуховой анализатор, почти не нарушается ни абсолютная слуховая чувствительность, то есть способность обнаружения предельно слабых звуков, ни способность к различению звуков по частоте, интенсивности и длительности.

В чем же в таком случае состоит роль верхних центров слуховой системы?

Оказывается, нейроны высших слуховых центров в отличие от нижних работают по принципу избирательности, то есть реагируют лишь на звуки с определенными свойствами. При этом характерно, что они могут откликаться только на сложные звуки, например, на звуки, изменяющиеся во времени по частоте, на движущиеся звуки или только на отдельные слова и звуки речи. Эти факты дают основание говорить о специализированной избирательной реакции нейронов высших слуховых центров на сложные звуковые сигналы.

И это очень важно. Ведь избирательная реакция этих нейронов проявляется по отношению к таким звукам, которые биологически ценны. Для человека это прежде всего звуки речи. Биологически важный звук как бы экстрагируется из лавины окружающих звуков и обнаруживается специализированными нейронами даже при очень слабой его интенсивности и на линии звуковых помех. Именно благодаря этому мы можем различить, к примеру, в грохоте сталепрокатного цеха слова, сказанные собеседником.

Специализированные нейроны обнаруживают свой звук даже в том случае, если изменяются его физические свойства. Какое-либо слово, произнесенное мужским, или женским, или детским голосом, громко или тихо, быстро или медленно, всегда воспринимается как одно и то же слово.

Ученых интересовал вопрос, каким образом достигается высокая избирательность нейронов высших центров. Известно, что нейроны способны реагировать на раздражение не только возбуждением, то есть потоком нервных импульсов, но и торможением - подавлением способности генерировать импульсы. Благодаря процессу торможения ограничивается круг сигналов, на которые нейрон дает реакцию возбуждения. Характерно, что тормозные процессы особенно хорошо выражены именно в верхних центрах слуховой системы. Как известно, процессы торможения и возбуждения требуют затраты энергии. Поэтому никак нельзя считать, что нейроны верхних центров бездельничают; они интенсивно работают, только работа у них иная, чем у нейронов нижних слуховых центров.

А что же происходит с потоками нервных импульсов, идущими от нижних слуховых центров? Как используется эта информация, если высшие центры ее отвергают?

Во-первых, отвергают не всю информацию, а лишь какую-то ее часть. Во-вторых, импульсы от нижних центров идут не только к верхним, они поступают и к двигательным центрам мозга и к так называемым неспецифическим системам, которые имеют непосредственное отношение к организации различных элементов поведения (позы, движения, внимания) и эмоциональных состояний (контактности, агрессии). Эти системы мозга осуществляют свою деятельность на основе интеграции той информации о внешнем мире, которая поступает к ним по разным сенсорным каналам.

Такова в общих чертах сложная и далеко не полностью изученная картина работы слуховой системы. Сегодня многое известно о процессах, происходящих при восприятии звуков, и, как видите, специалисты в значительной степени могут ответить на вопрос, вынесенный в заглавие, «Как мы слышим?». Но пока еще нельзя объяснить, почему одни звуки нам приятны, а другие неприятны, почему одна и та же музыка одному человеку нравится, а другому нет, почему одни физические свойства звуков речи воспринимаются нами как приветливые интонации, а другие как грубые. Эти и другие проблемы решают исследователи одной из интереснейших областей физиологии

Прежде чем перейти к ознакомлению с устройством радиоприемников, усилителей и других приборов, применяемых при радиовещании и радиосвязи, необходимо уяснить, что такое звук, как он возникает и распространяется, как устроены и работают микрофоны, познакомиться с устройством и работой громкоговорителей.

Звуковые колебания и волны. Если ударить по струне какого-либо музыкального инструмента (например, гитары, балалайки), то она начнет колебаться, т. е. совершать движения то в одну, то в другую сторону от своего начального положения (положения покоя). Такие механические колебания, вызывающие ощущение звука, называются звуковыми.

Наибольшее расстояние, на которое струна отклоняется в процессе колебаний от своего положения покоя, носит название амплитуды колебаний.

Передача звука от колеблющейся струны до нашего уха происходит следующим образом. В то время, когда средняя часть струны перемещается в сторону, где мы находимся, она «теснит» «находящиеся около нее с этой стороны частицы воздуха и этим создает «сгущение» этих частиц, т. е. около струны возникает область повышенного воздушного давления. Это увеличенное в некотором объеме воздуха давление передается соседним его слоям; в результате область «сгущенного» воздуха распространяется в окружающем пространстве. В следующий момент времени, когда средняя часть струны перемещается в обратную сторону, около нее возникает некоторое «разрежение» воздуха (область пониженного давления), которое распространяется вслед за областью «сгущенного» воздуха.

За «разрежением» воздуха следует опять «сгущение» (так как средняя часть струны опять будет двигаться в нашу сторону) и т. д. Таким образом, при каждом колебании (движении вперед и назад) струны в воздухе возникнут область повышенного давления и область пониженного давления, которые удаляются от струны.

Подобным же образом звуковые волны создаются при работе громкоговорителя.

Звуковые волны несут в себе энергию, полученную от колеблющейся струны или диффузора (бумажного конуса) громкоговорителя, и распространяются в воздухе со скоростью около 340 м/сек. Когда звуковые волны достигают уха, они приводят в колебание его барабанную перепонку. В тот момент, когда уха достигает область «сгущения» звуковой волны, барабанная перепонка несколько прогибается внутрь. Когда же до нее доходит область «разрежения» звуковой волны, барабанная перепонка выгибается несколько наружу. Так как сгущения и разрежения в звуковых волнах следуют все время друг за другом, то и барабанная перепонка то прогибается внутрь, то выгибается наружу, т. е. совершает колебания. Эти колебания передаются через сложную систему среднего и внутреннего уха по слуховому нерву в мозг, и в результате мы ощущаем звук.

Чем больше амплитуда колебаний струны и ближе к ней находится ухо, тем более громким воспринимается звук.

Динамический диапазон. При очень больших давлениях на барабанную перепонку, т. е. при очень громких звуках (например, при пушечном выстреле), ощущается боль в ушах. На средних звуковых частотах (см. ниже) болевое ощущение возникает, когда звуковое давление достигает величины примерно 1 г/см2, или 1 000 бар *. Увеличение ощущения громкости при дальнейшем усилении звукового давления уже не чувствуется.

*Бар — единица, применяемая для измерения величины звукового давления.

Очень слабое звуковое давление на барабанную перепонку не вызывает ощущения звука. Наименьшее звуковое давление, ‘при котором наше ухо начинает слышать, называется порогом чувствительности уха. На средних частотах (см. ниже) порог чувствительности уха составляет примерно 0,0002 бара.

Таким образом, область нормального ощущения звука лежит между двумя границами: нижней — порогом чувствительности и верхней, при которой возникает болевое ощущение в ушах. Эта область носит название динамического диапазона слуха.

Отметим, что увеличение звукового давления не дает пропорционального увеличения громкости звука. Ощущение громкости возрастает гораздо медленнее, чем звуковое давление.

Децибелы. В пределах динамического диапазона ухо может почувствовать увеличение «или уменьшение громкости простого однотонного звука (при слушании его в полной тишине), если звуковое давление на средних частотах соответственно увеличивается или уменьшается примерно на 12%, т. е. в 1,12 раза. Исходя из этого, весь динамический диапазон слуха разбит на 120 уровней громкости, подобно тому, как шкала термометра между точками таяния льда и кипения воды разделена на 100 градусов. Уровни громкости по этой шкале измеряются в особых единицах— децибелах (сокращенно пишут дб).

В любой части этой шкалы изменение уровня громкости на 1 дб соответствует изменению звукового давления в 1,12 раза. Нуль децибел («нулевой» уровень громкости) соответствует порогу чувствительности уха, т. е. звуковому давлению 0,0002 бара. При уровне свыше 120 дб возникает болевое ощущение в ушах.

Для примера укажем, что при тихом разговоре на расстояни 1 м от говорящего получается уровень громкости около 40—50 дб, что соответствует эффективному звуковому давлению 0,02—0,06 бара; наибольший уровень громкости звучания симфонического оркестра составляет 90— 95 дб (звуковое давление 7—12 бар).

При пользовании радиоприемниками радиослушатели, применяясь к размерам своих комнат, звучание громкоговорителя регулируют так, что при самых громких звуках на расстоянии 1 м от громкоговорителя получается уровень громкости 75—85 дб (соответственно звуковые давления примерно 1—3,5 бара). В условиях сельских местностей вполне достаточно иметь максимальный уровень громкости звучания радиопередачи не свыше 80 дб (звуковое давление 2 бара).
Шкалой децибел в радиотехнике широко пользуются также для сравнения уровней громкости. Чтобы узнать, во сколько раз одно звуковое давление больше другого, когда известна разница между соответствующими им уровнями громкости в децибелах, нужно число 1,12 умножить само на себя столько раз, сколько мы имеем децибел. Так, изменение уровня громкости на 2 (56 соответствует изменению звукового давления в 1,12 . 1,12, т. е. примерно в 1,25 раза; изменение уровня на 3 дб имеет место при изменении звукового давления в 1,12- 1,12 . 1,12, т. е. приблизительно в 1,4 раза. Подобным же образом можно определить, что 6 дб соответствуют изменению звукового давления примерно в 2 раза, 10 дб—приблизительно <в 3 раза, 20 дб — в 10 раз, 40 дб — в 100 раз и т. д.

Период и частота колебаний. Звуковые колебания характеризуются не только амплитудой, но также периодом и частотой. Периодом колебания называется время, в течение которого струна (или любое другое тело, создающее звук, например диффузор громкоговорителя) перемещается из одного крайнего положения в другое и обратно, т. е. совершает одно полное колебание.

Частотой звуковых колебаний называется число колебаний звучащего тела, совершаемых в течение 1 сек. Она измеряется в герцах (сокращенно пишут гц).

Если например, за 1 сек. (происходит 440 периодов колебаний струны (эта частота соответствует музыкальной ноте ля), то говорят, что она колеблется с частотой 440 гц. Частота и период колебаний являются величинами, обратными друг другу, например при частоте колебаний 440 гц период колебаний равен 1/440 сек.; если период колебания равен 1/1 000 сек., то частота этих колебаний 1000 гц.

Полоса звуковых частот. От частоты колебаний зависит высота звука или тона. Чем больше частота колебаний, тем выше звук (тон), а чем меньше частота колебаний, тем он ниже. Самый низкий звук, который может услышать человек, имеет частоту около 20 гц, а самый высокий—около 16 000—20 000 гц. В этих пределах или, как говорят, в этой полосе частот находятся создаваемые человеческими голосами и музыкальными инструментами звуковые колебания.

Заметим, что речь и музыка, а также разного рода шумы представляют собой звуковые колебания с очень сложней комбинацией различных частот (тонов различной высоты), непрерывно изменяющейся в процессе разговора или музыкального исполнения.

Гармоники. Звук, воспринимаемый ухом как тон одной определенной высоты (например, звук струны музыкального инструмента, свисток паровоза), на самом деле состоит из многих разных тонов, частоты которых относятся друг к другу как целые числа (один -к двум, один к трем и т. д.). Так, например, тон с частотой 440 гц (нота ля) одновременно сопровождается дополнительными тонами с частотами 440 . 2 = 880 гц, 440 -3=1 320 гц и т. д. Эти дополнительные частоты называются гармониками (или обертонами). Число показывающее, во сколько- раз частота данной гармоники больше основной частоты называется номером гармоники. Например, для основной частоты 440 гц частота 880 гц будет второй гармоникой, частота 1 320 гц — третьей и т. д. Гармоники всегда звучат слабее основного тона.

Наличием гармоник и соотношением амплитуд различных гармоник обусловливается тембр звука, т. е. его «окраска», отличающая данный звук от другого звука с той же основной частотой. Так, если наиболее сильной будет третья гармоника, звук приобретает один тембр. Если же наиболее сильной будет какая-либо другая гармоника, звук будет иметь другой тембр. Изменение силы звучания различных гармоник приводит к изменению или искажению тембра звука.

В. Н. ДОГАДИН и Р. М. МАЛИНИН
КНИГА СЕЛЬСКОГО РАДИОЛЮБИТЕЛЯ

Наверняка, все видели волны на поверхности пруда или озера, то есть на воде, и как они ударяются о берег.

Звук - это такая же волна , только мы ее не видим, потому что она "волнуется" в воздухе. И попадает прямо к нам в ушки. Внутри уха есть такая мембранка, которая называется барабанная перепонка. Звуковая волна ударяется в барабанную перепонку (внутри уха она соединена с тремя маленькими косточками молоточком, стремечком и наковаленкой). Барабанная перепонка прогибается и опять возвращается в свое положение, а наш умный мозг улавливает эти изменения и узнает звук.

Но ухо человека слышит не все звуки.

Если звуковая волна ударяется в барабанную перепонку слишком часто, перепонка не успевает так же быстро прогибаться и выпрямляться, и мы звук не слышим. Такой звук называют ультразвуком (или высокочастотным). Так "разговаривают" дельфины и летучие мыши, собаки и кошки, и даже муравьи. Ультразвуки издают бабочки, саранча, кузнечики.

Свойства ультразвука используются людьми для отпугивания грызунов. Мыши, крысы, кроты и землеройки хорошо слышат его, расценивают как сигнал опасности и убегают.

Если звуковая волна очень редко ударяется в перепонку, мы ее тоже не слышим. Такие звуки называют инфразвуками (или низкочастотными) . Так "разговаривают" слоны. Тигры издают инфразвуки, для устрашения.

Инфразвук возникает при землетрясениях, извержениях вулканов, при штормах, во время ураганов и бурь. Инфразвук может распространяться на большие расстояния (имеет малое поглощение в воде, в земле и в воздухе).

Это свойство инфразвука используется людьми для предсказания цунами и ураганов. Многие животные слышат инфразвук, и задолго до землетрясения или урагана убегают или прячутся. Медузы хорошо слышат надвигающийся шторм и заранее (за 20 часов) уплывают на глубину.

Инфразвук плохо действует на человека.
Если человек находится в зоне сильного инфразвука, он может испытать беспричинный страх, головокружение, сильную усталость, упасть в обморок и на время потерять зение. Инфразвук может вызвать сильню боль в ушах и даже убить (разрыв сосудов и сердца).

Дополнительная информация

Люди и животные слышат ушами. А чем еще могут слышать живые существа?

Рыбы слышат телом. С каждого бока у рыбы есть боковая линия. И еще у рыб есть органы слуха внутри головы.

Медузы имеют маленькие органы слуха на краю своего колокола рядом с малюсенькими глазками.

Птицы хорошо слышат, у них есть уши. Если отодвинуть перышки по бокам головы мы увидим на каждой стороне небольшое отверстие - это и есть уши.

Лягушки слышат ушами. У них ушные отверстия располагаются на голове, по бокам.

Кузнечики и саранча слышат ногами. На передних лапках, покрытых волосками есть мембрана - это и есть "уши". А вторая пара ушей расположена под коленками.

У пчел "уши" тоже находятся на лапках (на лапки натянуты перепонки)

Комары слышат антеннами на голове.

Осы и шмели тоже имеют на голове волоски между глаз, которыми слышат.

У цикад уши-мембраны расположены в брюшке.

Жаль, что наши уши не могут слышать эти неслышимые звуки. Но люди научились преобразовывать неслышимые звуки в слышимые. И теперь мы можем проникнуть в тайны природы. Мы можем послушать как поют киты

И как разговаривают дельфины .

Слух - великий дар, которым наделено человечество. Восприятие звуков помогает людям избегать опасности, общаться между собой и получать ощущения, рождающие эмоции. До тех пор пока этот дар при нас, мы редко задумываемся о том, как мы слышим и как воспринимаем звуковое многообразие окружающего мира.

При полной или даже частичной утрате слуха люди, как правило, испытывают большие затруднения. Абсолютная тишина так же вредна для нашей психики, как и сильный шум. Но даже в подобных ситуациях всегда есть выход, который позволяет облегчить страдания, связанные с потерей слуха. Все дело в том, как и что мы слышим, как идентифицируем и различаем звуки.

Со школьной скамьи всем хорошо известно, что звук - это колебания воздуха. Воспринимает их орган слуха, в котором выделяют звукопроводящий, звуковоспринимающий и звукоанализирующий отделы. Наружное ухо подобно локатору улавливает звук, среднее ухо при помощи специальных косточек - молоточка, наковальни и стремечка, преобразовывает звуковые колебания в механические, которые затем в отделе внутреннего уха, называемого кортиевым органом или улиткой, преобразуются в электрические импульсы посредством специальных рецепторов. Затем по нервным волокнам подобно электрическому току они проводятся в височные доли головного мозга - центр управления нашими звуковыми ощущениями.

Погружаясь в мир звуков, мы мало думаем о том, что именно слышим, и как звуковые волны превращаются в ощущения. Пение птиц, барабанная дробь, гул мотора, рев сирены, оперная ария, шепот или громкая речь по-разному воспринимаются нашим ухом и интерпретируются нашим мозгом.

Характеризуя звукововосприятие и звукоощущение, оперируют такими понятиями, как громкость звука и тембр звука и порог слышимости. Именно эти параметры определяют в результате, как мы слышим звуки. Оказывается, что все они субъективны, то есть зависят непосредственно от индивидуального восприятия, привычек, вкусов, среды воспитания. Для кого-то музыка может показать невыносимо громкой и раздражающей, другой человек будет воспринимать ее только лишь как приятный звуковой фон. При этом орган слуха у этих людей функционирует абсолютно одинаково. Фактически все перечисленные параметры являются психологическими характеристиками, и то, как мы воспринимаем и слышим звуки, в большей степени зависит от психических процессов и эмоционального фона. Люди с ухудшенным слухом не могут полноценно воспринимать окружающую реальность, поэтому им рекомендовано пройти или записаться на ряд лечебных процедур. При каждом отдельном случае специалисты подбирают для пациентов индивидуальные методы восстановления слуха.

Как оценить слух?

Все методы исследования и оценки слуха делят на две большие группы:

  • Субъективные
  • Объективные

Субъективные методы оценки слуха

К субъективным методам исследования относят аудиометрию, позволяющую оценить минимальный порог звука разных частот, который способно воспринять ухо обследуемого человека. Собственно, показатели аудиометрии и определяют, как мы слышим, а критерии оценки определены на уровне субъективного восприятия: понятно или не понятно, громко или тихо, высоко или низко, слышно или не слышно.

Аудиометрия

Для оценки слуха методом аудиометрии используют акуметрию, когда в качестве звукового раздражителя выступает камертон или человеческая речь, или тональную пороговую аудиометрию, которую выполняют при помощи электронно-акустических приборов - аудиометров.

Данный метод позволяет определить, связаны ли причины тугоухости с нарушением звукопроведения или звуковосприятия. Приведем пример, как это происходит при снижении слуха, связанном с заболеваниями наружного и среднего отделов уха, которые проводят звук. В этом случае мы хуже слышим низкие (басовые) тона, и врачи говорят о кондуктивной тугоухости.

При нарушении восприятия высоких тонов предполагают, что они связаны с проблемами звуковосприятия, и говорят о перцептивной тугоухости.

Кроме того, аудиометрия позволяет определить резерв органа внутреннего уха - улитки, который позволяет оценить степень возможности восстановления слуха.

Объективные методы оценки слуха

Объективно оценить слух можно путем регистрации электрических импульсов, возникающих в различных отделах слухового аппарата при воздействии на него звуковым раздражителем. Из объективных методов сегодня активно используются отоакустическая эмиссия и электрокохлеография, которые основаны на регистрации слуховых вызванных потенциалов, а также импедансометрия.

Как улучшить слух при различных заболеваниях без слухового аппарата?

Природа как нельзя лучше позаботилась о человеке, предусмотрев множество вариантов компенсации при потере функциональности органов чувств. По этой причине полное отсутствие слуха встречается крайне редко.

Два уха существуют не только для определения направления звука, но для страховки от полной потери слуха. Вероятность полного выхода из строя одновременно обоих органов мала. Как правило, хотя бы минимально одно ухо будет принимать и обрабатывать звук.
Если не функционирует звукопроводящий аппарат, принимающий звук по воздуху, подключается к работе так называемый костный путь передачи, когда эту функцию берут на себя кости черепа и доставляют звуки непосредственно в улитку. Как известно, именно благодаря этому механизму мы слышим под водой.

Шанс улучшить слух всегда есть, даже при полной глухоте, работая над психической составляющей психологических характеристик, эмоциональным фоном и чувствительностью в целом. Узнать подробно, что делать, как работать в этом направлении, приобрести практические навыки и получить первые положительные результаты можно, став слушателем уникального курса М.С. Норбекова «Восстановление слуха». помогут Вам нормализовать функцию слухового аппарата, решить проблемы, связанные с психологическим и эмоциональным фоном, наладить общение, улучшить качество жизни и восприятие окружающего мира. Уже после первого занятия Вы почувствуете изменения, возвращающие Вас в увлекательный мир звуков.