Задания с параметром егэ теория. Системы уравнений с параметром

1. Системы линейных уравнений с параметром

Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.

Пример 1.

Найти все значения для параметра а, при которых система уравнений не имеет решений.

{х + (а 2 – 3)у = а,
{х + у = 2.

Решение.

Рассмотрим несколько способов решения данного задания.

1 способ . Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а 1 = b/b 1 ≠ c/c 1). Тогда имеем:

1/1 = (а 2 – 3)/1 ≠ а/2 или систему

{а 2 – 3 = 1,
{а ≠ 2.

Из первого уравнения а 2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.

Ответ: а = -2.

2 способ . Решаем методом подстановки.

{2 – у + (а 2 – 3)у = а,
{х = 2 – у,

{(а 2 – 3)у – у = а – 2,
{х = 2 – у.

После вынесения в первом уравнении общего множителя у за скобки, получим:

{(а 2 – 4)у = а – 2,
{х = 2 – у.

Система не имеет решений, если первое уравнение не будет иметь решений, то есть

{а 2 – 4 = 0,
{а – 2 ≠ 0.

Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.

Ответ: а = -2.

Пример 2.

Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.

{8х + ау = 2,
{ах + 2у = 1.

Решение.

По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а 1 = b/b 1 = c/c 1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.

Ответ: а = 4.

2. Системы рациональных уравнений с параметром

Пример 3.

{3|х| + у = 2,
{|х| + 2у = a.

Решение.

Умножим первое уравнение системы на 2:

{6|х| + 2у = 4,
{|х| + 2у = a.

Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а < 4) или ни одного (при а > 4).

Ответ: а = 4.

Пример 4.

Найти все значения параметра а, при которых система уравнений имеет единственное решение.

{х + у = а,
{у – х 2 = 1.

Решение.

Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1) . Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:

1,25 = 0,5 + а;

Ответ: а = 0,75.

Пример 5.

Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.

{ах – у = а + 1,
{ах + (а + 2)у = 2.

Решение.

Из первого уравнения выразим у и подставим во второе:

{у = ах – а – 1,
{ах + (а + 2)(ах – а – 1) = 2.

Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:

ах + а 2 х – а 2 – а + 2ах – 2а – 2 = 2;

а 2 х + 3ах = 2 + а 2 + 3а + 2.

Квадратный трехчлен а 2 + 3а + 2 представим в виде произведения скобок

(а + 2)(а + 1), а слева вынесем х за скобки:

(а 2 + 3а)х = 2 + (а + 2)(а + 1).

Очевидно, что а 2 + 3а не должно быть равным нулю, поэтому,

а 2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.

Ответ: а ≠ 0; ≠ -3.

Пример 6.

Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.

{х 2 + у 2 = 9,
{у – |х| = а.

Решение.

Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы

х 2 + у 2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.

Ответ: а = 3.

Остались вопросы? Не знаете, как решать системы уравнений?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Доклад на ГМО учителя математики МБОУ СОШ №9

Молчановой Елены Владимировны

«Подготовка к ЕГЭ по математике: задачи с параметрами ».

Поскольку в школьных учебниках нет определения параметра, я предлагаю взять за основу следующий его простейший вариант.

Определение . Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

Что означает «решить задачу с параметром»?

Естественно, это зависит от вопроса в задаче. Если, например, требуется решить уравнение, неравенство, их систему или совокупность, то это означает предъявить обоснованный ответ либо для любого значения параметра, либо для значения параметра, принадлежащего заранее оговоренному множеству.

Если же требуется найти значения параметра, при которых множество решений уравнения, неравенства и т. д. удовлетворяет объявленному условию, то, очевидно, решение задачи и состоит в поиске указанных значений параметра.

Более прозрачное понимание того, что означает решить задачу с параметром, у читателя сформируется после ознакомления с примерами решения задач на последующих страницах.

Какие основные типы задач с параметрами?

Тип 1. Уравнения, неравенства, их системы и совокупности, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству.

Этот тип задач является базовым при овладении темой «Задачи с параметрами», поскольку вложенный труд предопределяет успех и при решении задач всех других основных типов.

Тип 2. Уравнения, неравенства, их системы и совокупности, для которых требуется определить количество решений в зависимости от значения параметра (параметров).

Обращаю внимание на то, что при решении задач данного типа нет необходимости ни решать заданные уравнения, неравенства, их системы и совокупности и т. д., ни приводить эти решения; такая лишняя в большинстве случаев работа является тактической ошибкой, приводящей к неоправданным затратам времени. Однако не стоит абсолютизировать сказанное, так как иногда прямое решение в соответствии с типом 1 является единственным разумным путем получения ответа при решении задачи типа 2.

Тип 3. Уравнения, неравенства, их системы и совокупности, для которых требуется найти все те значения параметра, при которых указанные уравнения, неравенства, их системы и совокупности имеют заданное число решений (в частности, не имеют или имеют бесконечное множество решений).

Легко увидеть, что задачи типа 3 в каком-то смысле обратны задачам типа 2.

Тип 4. Уравнения, неравенства, их системы и совокупности, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых:

1) уравнение выполняется для любого значения переменной из заданного промежутка;
2) множество решений первого уравнения является подмножеством множества решений второго уравнения и т. д.

Комментарий. Многообразие задач с параметром охватывает весь курс школьной математики (и алгебры, и геометрии), но подавляющая часть из них на выпускных и вступительных экзаменах относится к одному из четырех перечисленных типов, которые по этой причине названы основными.

Наиболее массовый класс задач с параметром - задачи с одной неизвестной и одним параметром. Следующий пункт указывает основные способы решения задач именно этого класса.

Каковы основные способы (методы) решения задач с параметром?

Способ I (аналитический). Это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Иногда говорят, что это способ силового, в хорошем смысле «наглого» решения.

Комментарий. Аналитический способ решения задач с параметром есть самый трудный способ, требующий высокой грамотности и наибольших усилий по овладению им.

Способ II (графический). В зависимости от задачи (с переменной x и параметром a ) рассматриваются графики или в координатной плоскости (x; y), или в координатной плоскости (x; a ).

Комментарий. Исключительная наглядность и красота графического способа решения задач с параметром настолько увлекает изучающих тему «Задачи с параметром», что они начинают игнорировать другие способы решения, забывая общеизвестный факт: для любого класса задач их авторы могут сформулировать такую, которая блестяще решается данным способом и с колоссальными трудностями остальными способами. Поэтому на начальной стадии изучения опасно начинать с графических приемов решения задач с параметром.

Способ III (решение относительно параметра). При решении этим способом переменные x и a принимаются равноправными и выбирается та переменная, относительно которой аналитическое решение признается более простым. После естественных упрощений возвращаемся к исходному смыслу переменных x и a и заканчиваем решение.

Перейду теперь к демонстрации указанных способов решения задач с параметром, так как это мой любимый метод решения заданий данного типа.

Проанализировав все задания с параметрами, решаемыми графическим методом, я знакомство с параметрами начинаю с заданий ЕГЭ В7 2002 года:

При каком целом значении к уравнение 45х – 3х 2 – х 3 + 3к = 0 имеет ровно два корня?

Эти задания позволяют, во первых, вспомнить как строить графики с использованием производной, а во-вторых, объяснить смысл прямой у = к.

На последующих занятиях я пользуюсь подборкой легких и средних по уровню конкурсных задач с параметрами для подготовки к ЕГЭ, уравнений с модулем. Эти задания можно рекомендовать учителям по математике в качестве стартового комплекта упражнений для обучения работе с параметром, заключенным под знак модуля. Большинство номеров решаются графическим способом и предоставляют учителю готовый план урока (или двух уроков) с сильным учеником. Начальная подготовка к ЕГЭ по математике на упражнениях, близких по сложности к реальным номерам С5. Многие из предложенных заданий взяты из материалов для подготовки к ЕГЭ 2009 года, а некоторые – из интернета из опыта коллег.

1) Укажите все значения параметра p , при которых уравнение имеет 4 корня?
Ответ:

2) При каких значениях параметра а уравнение не имеет решений?
Ответ:

3) Найдите все значения а, при каждом из которых уравнение имеет ровно 3 корня?
Ответ: а=2

4) При каких значениях параметра b уравнение имеет единственное решение? Ответ:

5) Найдите все значения m , при которых уравнение не имеет решений.
Ответ:

6) Найдите все значения а, при которых уравнение имеет ровно 3 различных корня. (Если значений а более одного, то в ответе запишите их сумму.)

Ответ: 3

7) При каких значениях b уравнение имеет ровно 2 решения?
Ответ:

8) Укажите такие параметры k , при которых уравнение имеет не менее двух решений.
Ответ:

9) При каких значениях параметра p уравнение имеет только одно решение?
Ответ:

10) Найдите все значения а, при каждом из которых уравнение (х + 1) имеет ровно 2 корня? Если значений а окажется несколько, то в ответ запишите их сумму.

Ответ: - 3

11) Найдите все значения а, при которых уравнение имеет ровно 3 корня? (Если значений а более одного, то в ответ запишите их сумму).

Ответ: 4

12) При каком наменьшем натуральном значении параметра а уравнение = 11 имеет только положительные корни?

Ответ: 19

13) Найдите все значения а, при каждом из которых уравнение = 1 имеет ровно 3 корня? (Если значений а более одного, то в ответе запишите их сумму).

Ответ:- 3

14) Укажите такие значения параметра t , при которых уравнение имеет 4 различных решения. Ответ:

15) Найдите такие параметры m , при которых уравнение имеет два различных решения. Ответ:

16) При каких значениях параметра p уравнение имеет ровно 3 экстремума? Ответ:

17) Укажите все возможные параметры n, при которых функция имеет ровно одну точку минимума. Ответ:

Опубликованный комплект регулярно используется мной для работы со способным, но не самым сильным учеником, претендующим, тем не менее, на высокий балл ЕГЭ за счет решения номера С5. Подготовку такого ученика учитель проводит в несколько этапов, выделяя для тренировки отдельных навыков, необходимых для поиска и реализации длинных решений, отдельные уроки. Эта подборка подходит для стадии формирования представлений о плавающих рисунках в зависимости от параметра. Номера 16 и 17 составлены по образцу реального уравнения с параметром на ЕГЭ 2011г. Задачи выстроены в порядок возрастания их сложности.

Задание C5 по математике ЕГЭ 2012

Здесь мы имеем традиционную задачу с параметром, требующую умеренного владения материалом и применения нескольких свойств и теорем. Это задание является одним из самых сложных заданий Единого государственного экзамена по математике. Оно рассчитано, прежде всего, на тех, кто собирается продолжать образование в вузах с повышенными требованиями к математической подготовке абитуриентов. Для успешного решения задачи важно свободно оперировать изученными определениями, свойствами, теоремами, применять их в различных ситуациях, анализировать условие и находить возможные пути решения.

На сайте подготовки к ЕГЭ Александра Ларина с 11.05.2012 года были предложены тренировочные варианты №1 – 22 с заданиями уровня «С», С5 некоторых из них были аналогичны тем заданиям, которые были на реальном экзамене. Например, найдите все значения параметра а, при каждом из которых графики функций f (х) = и g (х) = а(х + 5) + 2 не имеют общих точек?

Разберем решение задания С5 из экзамена 2012 года.

Задание С5 из ЕГЭ-2012

При каких значениях параметра a уравнение имеет не менее двух корней.

Решим эту задачу графически. Построим график левой части уравнения: и график правой части: и сформулируем вопрос задачи так: при каких значениях параметра a графики функций и имеют две или более общих точки.

В левой части исходного уравнения параметр отсутствует, поэтому мы можем построить график функции .

Будем строить это график с помощью функции :

1. Сдвинем график функции на 3 единицы вниз вдоль оси OY, получим график функции :

2. Построим график функции . Для этого часть графика функции , расположенную ниже оси ОХ, отобразим симметрично относительно этой оси:

Итак, график функции имеет вид:

График функции

Задание 1 #6329

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых система \[\begin{cases} (x-2a-2)^2+(y-a)^2=1\\ y^2=x^2\end{cases}\]

имеет ровно четыре решения.

(ЕГЭ 2018, основная волна)

Второе уравнение системы можно переписать в виде \(y=\pm x\) . Следовательно, рассмотрим два случая: когда \(y=x\) и когда \(y=-x\) . Тогда количество решений системы будет равно сумме количества решений в первом и во втором случаях.

1) \(y=x\) . Подставим в первое уравнение и получим: \ (заметим, что в случае \(y=-x\) мы поступим так же и тоже получим квадратное уравнение)
Чтобы исходная система имела 4 различных решения, нужно, чтобы в каждом из двух случаев получилось по 2 решения.
Квадратное уравнение имеет два корня, когда его \(D>0\) . Найдем дискриминант уравнения (1):
\(D=-4(a^2+4a+2)\) .
Дискриминант больше нуля: \(a^2+4a+2<0\) , откуда \(a\in (-2-\sqrt2; -2+\sqrt2)\) .

2) \(y=-x\) . Получаем квадратное уравнение: \ Дискриминант больше нуля: \(D=-4(9a^2+12a+2)>0\) , откуда \(a\in \left(\frac{-2-\sqrt2}3; \frac{-2+\sqrt2}3\right)\) .

Необходимо проверить, не совпадают ли решения в первом случае с решениями во втором случае.

Пусть \(x_0\) – общее решение уравнений (1) и (2), тогда \ Отсюда получаем, что либо \(x_0=0\) , либо \(a=0\) .
Если \(a=0\) , то уравнения (1) и (2) получаются одинаковыми, следовательно, имеют одинаковые корни. Этот случай нам не подходит.
Если \(x_0=0\) – их общий корень, то тогда \(2x_0^2-2(3a+2)x_0+(2a+2)^2+a^2-1=0\) , откуда \((2a+2)^2+a^2-1=0\) , откуда \(a=-1\) или \(a=-0,6\) . Тогда вся исходная система будет иметь 3 различных решения, что нам не подходит.

Учитывая все это, в ответ пойдут:

Ответ:

\(a\in\left(\frac{-2-\sqrt2}3; -1\right)\cup\left(-1; -0,6\right)\cup\left(-0,6; -2+\sqrt2\right)\)

Задание 2 #4032

Уровень задания: Равен ЕГЭ

Найдите все значения \(a\) , при каждом из которых система \[\begin{cases} (a-1)x^2+2ax+a+4\leqslant 0\\ ax^2+2(a+1)x+a+1\geqslant 0 \end{cases}\]

имеет единственное решение.

Перепишем систему в виде: \[\begin{cases} ax^2+2ax+a\leqslant x^2-4\\ ax^2+2ax+a\geqslant -2x-1 \end{cases}\] Рассмотрим три функции: \(y=ax^2+2ax+a=a(x+1)^2\) , \(g=x^2-4\) , \(h=-2x-1\) . Из системы следует, что \(y\leqslant g\) , но \(y\geqslant h\) . Следовательно, чтобы система имела решения, график \(y\) должен находиться в области, которая задается условиями: “выше” графика \(h\) , но “ниже” графика \(g\) :

(будем называть “левую” область областью I, “правую” область – областью II)
Заметим, что при каждом фиксированном \(a\ne 0\) графиком \(y\) является парабола, вершина которой находится в точке \((-1;0)\) , а ветви обращены либо вверх, либо вниз. Если \(a=0\) , то уравнение выглядит как \(y=0\) и графиком является прямая, совпадающая с осью абсцисс.
Заметим, что для того, чтобы исходная система имела единственное решение, нужно, чтобы график \(y\) имел ровно одну общую точку с областью I или с областью II (это значит, что график \(y\) должен иметь единственную общую точку с границей одной из этих областей).

Рассмотрим по отдельности несколько случаев.

1) \(a>0\) . Тогда ветви параболы \(y\) обращены вверх. Чтобы у исходной системы было единственное решение, нужно, чтобы парабола \(y\) касалась границы области I или границы области II, то есть касалась параболы \(g\) , причем абсцисса точки касания должна быть \(\leqslant -3\) или \(\geqslant 2\) (то есть парабола \(y\) должна коснуться границы одной из областей, которая находится выше оси абсцисс, раз парабола \(y\) лежит выше оси абсцисс).

\(y"=2a(x+1)\) , \(g"=2x\) . Условия касания графиков \(y\) и \(g\) в точке с абсциссой \(x_0\leqslant -3\) или \(x_0\geqslant 2\) : \[\begin{cases} 2a(x_0+1)=2x_0\\ a(x_0+1)^2=x_0^2-4 \\ \left[\begin{gathered}\begin{aligned} &x_0\leqslant -3\\ &x_0\geqslant 2 \end{aligned}\end{gathered}\right. \end{cases} \quad\Leftrightarrow\quad \begin{cases} \left[\begin{gathered}\begin{aligned} &x_0\leqslant -3\\ &x_0\geqslant 2 \end{aligned}\end{gathered}\right.\\ a=\dfrac{x_0}{x_0+1}\\ x_0^2+5x_0+4=0 \end{cases}\] Из данной системы \(x_0=-4\) , \(a=\frac43\) .
Получили первое значение параметра \(a\) .

2) \(a=0\) . Тогда \(y=0\) и видно, что прямая имеет бесконечное множество общих точек с областью II. Следовательно, это значение параметра нам не подходит.


3) \(a<0\) . Тогда ветви параболы \(y\) обращены вниз. Чтобы у исходной системы было единственное решение, нужно, чтобы парабола \(y\) имела одну общую точку с границей области II, лежащей ниже оси абсцисс. Следовательно, она должна проходить через точку \(B\) , причем, если парабола \(y\) будет иметь еще одну общую точку с прямой \(h\) , то эта общая точка должна быть “выше” точки \(B\) (то есть абсцисса второй точки должна быть \(<1\) ).

Найдем \(a\) , при которых парабола \(y\) проходит через точку \(B\) : \[-3=a(1+1)^2\quad\Rightarrow\quad a=-\dfrac34\] Убеждаемся, что при этом значении параметра вторая точка пересечения параболы \(y=-\frac34(x+1)^2\) с прямой \(h=-2x-1\) – это точка с координатами \(\left(-\frac13; -\frac13\right)\) .
Таким образом, получили еще одно значение параметра.

Так как мы рассмотрели все возможные случаи для \(a\) , то итоговый ответ: \

Ответ:

\(\left\{-\frac34; \frac43\right\}\)

Задание 3 #4013

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых система уравнений \[\begin{cases} 2x^2+2y^2=5xy\\ (x-a)^2+(y-a)^2=5a^4 \end{cases}\]

имеет ровно два решения.

1) Рассмотрим первое уравнение системы как квадратное относительно \(x\) : \ Дискриминант равен \(D=9y^2\) , следовательно, \ Тогда уравнение можно переписать в виде \[(x-2y)\cdot (2x-y)=0\] Следовательно, всю систему можно переписать в виде \[\begin{cases} \left[\begin{gathered}\begin{aligned} &y=2x\\ &y=0,5x\end{aligned}\end{gathered}\right.\\ (x-a)^2+(y-a)^2=5a^4\end{cases}\] Совокупность задает две прямые, второе уравнение системы задает окружность с центром в \((a;a)\) и радиусом \(R=\sqrt5a^2\) . Чтобы исходное уравнение имело два решения, нужно, чтобы окружность пересекала график совокупности ровно в двух точках. Вот чертеж, когда, например, \(a=1\) :


Заметим, что так как координаты центра окружности равны, то центр окружности “бегает” по прямой \(y=x\) .

2) Так как у прямой \(y=kx\) тангенс угла наклона этой прямой к положительному направлению оси \(Ox\) равен \(k\) , то тангенс угла наклона прямой \(y=0,5x\) равен \(0,5\) (назовем его \(\mathrm{tg}\,\alpha\) ), прямой \(y=2x\) – равен \(2\) (назовем его \(\mathrm{tg}\,\beta\) ). Заметим, что \(\mathrm{tg}\,\alpha\cdot \mathrm{tg}\,\beta=1\) , следовательно, \(\mathrm{tg}\,\alpha=\mathrm{ctg}\,\beta=\mathrm{tg}\,(90^\circ-\beta)\) . Следовательно, \(\alpha=90^\circ-\beta\) , откуда \(\alpha+\beta=90^\circ\) . Это значит, что угол между \(y=2x\) и положительным направлением \(Oy\) равен углу между \(y=0,5x\) и положительным направлением \(Ox\) :


А так как прямая \(y=x\) является биссектрисой I координатного угла (то есть углы между ней и положительными направлениями \(Ox\) и \(Oy\) равны по \(45^\circ\) ), то углы между \(y=x\) и прямыми \(y=2x\) и \(y=0,5x\) равны.
Все это нам нужно было для того, чтобы сказать, что прямые \(y=2x\) и \(y=0,5x\) симметричны друг другу относительно \(y=x\) , следовательно, если окружность касается одной из них, то она обязательно касается и второй прямой.
Заметим, что если \(a=0\) , то окружность вырождается в точку \((0;0)\) и имеет лишь одну точку пересечения с обеими прямыми. То есть этот случай нам не подходит.
Таким образом, для того, чтобы окружность имела 2 точки пересечения с прямыми, нужно, чтобы она касалась этих прямых:


Видим, что случай, когда окружность располагается в третьей четверти, симметричен (относительно начала координат) случаю, когда она располагается в первой четверти. То есть в первой четверти \(a>0\) , а в третьей \(a<0\) (но такие же по модулю).
Поэтому рассмотрим только первую четверть.


Заметим, что \(OQ=\sqrt{(a-0)^2+(a-0)^2}=\sqrt2a\) , \(QK=R=\sqrt5a^2\) . Тогда \ Тогда \[\mathrm{tg}\,\angle QOK=\dfrac{\sqrt5a^2}{\sqrt{2a^2-5a^4}}\] Но, с другой стороны, \[\mathrm{tg}\,\angle QOK=\mathrm{tg}\,(45^\circ-\alpha)=\dfrac{\mathrm{tg}\, 45^\circ-\mathrm{tg}\,\alpha}{1+\mathrm{tg}\,45^\circ\cdot \mathrm{tg}\,\alpha}\] следовательно, \[\dfrac{1-0,5}{1+1\cdot 0,5}=\dfrac{\sqrt5a^2}{\sqrt{2a^2-5a^4}} \quad\Leftrightarrow\quad a=\pm \dfrac15\] Таким образом, мы уже сразу получили и положительное, и отрицательное значение для \(a\) . Следовательно, ответ: \

Ответ:

\(\{-0,2;0,2\}\)

Задание 4 #3278

Уровень задания: Равен ЕГЭ

Найдите все значения \(a\) , для каждого из которых уравнение \

имеет единственное решение.

(ЕГЭ 2017, официальный пробный 21.04.2017)

Сделаем замену \(t=5^x, t>0\) и перенесем все слагаемые в одну часть: \ Получили квадратное уравнение, корнями которого по теореме Виета являются \(t_1=a+6\) и \(t_2=5+3|a|\) . Для того, чтобы исходное уравнение имело один корень, достаточно, чтобы полученное уравнение с \(t\) тоже имело один (положительный!) корень.
Заметим сразу, что \(t_2\) при всех \(a\) будет положительным. Таким образом, получаем два случая:

1) \(t_1=t_2\) : \ &a=-\dfrac14 \end{aligned} \end{gathered} \right.\]

2) Так как \(t_2\) всегда положителен, то \(t_1\) должен быть \(\leqslant 0\) : \

Ответ:

\((-\infty;-6]\cup\left\{-\frac14;\frac12\right\}\)

Задание 5 #3252

Уровень задания: Равен ЕГЭ

\[\sqrt{x^2-a^2}=\sqrt{3x^2-(3a+1)x+a}\]

имеет ровно один корень на отрезке \(\) .

(ЕГЭ 2017, резервный день)

Уравнение можно переписать в виде: \[\sqrt{(x-a)(x+a)}=\sqrt{(3x-1)(x-a)}\] Таким образом, заметим, что \(x=a\) является корнем уравнения при любых \(a\) , так как уравнение принимает вид \(0=0\) . Для того, чтобы этот корень принадлежат отрезку \(\) , нужно, чтобы \(0\leqslant a\leqslant 1\) .
Второй корень уравнения находится из \(x+a=3x-1\) , то есть \(x=\frac{a+1}2\) . Для того, чтобы это число было корнем уравнения, нужно, чтобы оно удовлетворяло ОДЗ уравнения, то есть: \[\left(\dfrac{a+1}2-a\right)\cdot \left(\dfrac{a+1}2+a\right)\geqslant 0\quad\Rightarrow\quad -\dfrac13\leqslant a\leqslant 1\] Для того, чтобы этот корень принадлежал отрезку \(\) , нужно, чтобы \ Таким образом, чтобы корень \(x=\frac{a+1}2\) существовал и принадлежал отрезку \(\) , нужно, чтобы \(-\frac13\leqslant a\leqslant 1\) .
Заметим, что тогда при \(0\leqslant a\leqslant 1\) оба корня \(x=a\) и \(x=\frac{a+1}2\) принадлежат отрезку \(\) (то есть уравнение имеет два корня на этом отрезке), кроме случая, когда они совпадают: \ Таким образом, нам подходят \(a\in \left[-\frac13; 0\right)\) и \(a=1\) .

Ответ:

\(a\in \left[-\frac13;0\right)\cup\{1\}\)

Задание 6 #3238

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет единственный корень на отрезке \(.\)

(ЕГЭ 2017, резервный день)

Уравнение равносильно: \ ОДЗ уравнения: \[\begin{cases} x\geqslant 0\\ x-a\geqslant 0\\3a(1-x) \geqslant 0\end{cases}\] На ОДЗ уравнение перепишется в виде: \

1) Пусть \(a<0\) . Тогда ОДЗ уравнения: \(x\geqslant 1\) . Следовательно, для того, чтобы уравнение имело единственный корень на отрезке \(\) , этот корень должен быть равен \(1\) . Проверим: \ Не подходит под \(a<0\) . Следовательно, эти значения \(a\) не подходят.

2) Пусть \(a=0\) . Тогда ОДЗ уравнения: \(x\geqslant 0\) . Уравнение перепишется в виде: \ Полученный корень подходит под ОДЗ и входит в отрезок \(\) . Следовательно, \(a=0\) – подходит.

3) Пусть \(a>0\) . Тогда ОДЗ: \(x\geqslant a\) и \(x\leqslant 1\) . Следовательно, если \(a>1\) , то ОДЗ – пустое множество. Таким образом, \(0 Рассмотрим функцию \(y=x^3-a(x^2-3x+3)\) . Исследуем ее.
Производная равна \(y"=3x^2-2ax+3a\) . Определим, какого знака может быть производная. Для этого найдем дискриминант уравнения \(3x^2-2ax+3a=0\) : \(D=4a(a-9)\) . Следовательно, при \(a\in (0;1]\) дискриминант \(D<0\) . Значит, выражение \(3x^2-2ax+3a\) положительно при всех \(x\) . Следовательно, при \(a\in (0;1]\) производная \(y">0\) . Следовательно, \(y\) возрастает. Таким образом, по свойству возрастающей функции уравнение \(y(x)=0\) может иметь не более одного корня.

Следовательно, для того, чтобы корень уравнения (точка пересечения графика \(y\) с осью абсцисс) находился на отрезке \(\) , нужно, чтобы \[\begin{cases} y(1)\geqslant 0\\ y(a)\leqslant 0 \end{cases}\quad\Rightarrow\quad a\in \] Учитывая, что изначально в рассматриваемом случае \(a\in (0;1]\) , то ответ \(a\in (0;1]\) . Заметим, что корень \(x_1\) удовлетворяет \((1)\) , корни \(x_2\) и \(x_3\) удовлетворяют \((2)\) . Также заметим, что корень \(x_1\) принадлежит отрезку \(\) .
Рассмотрим три случая:

1) \(a>0\) . Тогда \(x_2>3\) , \(x_3<3\) , следовательно, \(x_2\notin .\) Тогда уравнение будет иметь один корень на \(\) в одном из двух случаях:
- \(x_1\) удовлетворяет \((2)\) , \(x_3\) не удовлетворяет \((1)\) , или совпадает с \(x_1\) , или удовлетворяет \((1)\) , но не входит в отрезок \(\) (то есть меньше \(0\) );
- \(x_1\) не удовлетворяет \((2)\) , \(x_3\) удовлетворяет \((1)\) и не равен \(x_1\) .
Заметим, что \(x_3\) не может быть одновременно меньше нуля и удовлетворять \((1)\) (то есть быть больше \(\frac35\) ). Учитывая это замечание, случаи записываются в следующую совокупность: \[\left[ \begin{gathered}\begin{aligned} &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2>0\\ 3-a\leqslant \dfrac35\end{cases}\\ &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2\leqslant 0\\ 3-a> Решая данную совокупность и учитывая, что \(a>0\) , получим: \

2) \(a=0\) . Тогда \(x_2=x_3=3\in .\) Заметим, что в этом случае \(x_1\) удовлетворяет \((2)\) и \(x_2=3\) удовлетворяет \((1)\) , то есть уравнение имеет два корня на \(\) . Это значение \(a\) нам не подходит.

3) \(a<0\) . Тогда \(x_2<3\) , \(x_3>3\) и \(x_3\notin \) . Рассуждая аналогично пункту 1), нужно решить совокупность: \[\left[ \begin{gathered}\begin{aligned} &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2>0\\ 3+a\leqslant \dfrac35\end{cases}\\ &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2\leqslant 0\\ 3+a> \dfrac35\end{cases} \end{aligned}\end{gathered}\right.\] Решая данную совокупность и учитывая, что \(a<0\) , получим: \\]

Ответ:

\(\left(-\frac{13}5;-\frac{12}5\right] \cup\left[\frac{12}5;\frac{13}5\right)\)

Цель данной работы – изучение различных способов решения задач с параметрами. Возможность и умение решать задачи с параметрами демонстрируют владение методами решения уравнений и неравенств, осмысленное понимание теоретических сведений, уровень логического мышления, стимулируют познавательную деятельность. Для развития этих навыков необходимы длительнее усилия, именно поэтому в профильных 10-11 классах с углубленным изучением точных наук введен курс: “Математический практикум”, частью которого является решение уравнений и неравенств с параметрами. Курс входит в число дисциплин, включенных в компонент учебного плана школы.

Успешному изучению методов решения задач с параметрами могут помочь элективный или факультативный курсы, или компонент за сеткой по теме: “Задачи с параметрами”.

Рассмотрим четыре больших класса задач с параметрами:

  1. Уравнения, неравенства и их системы, которые необходимо решить для любого значения параметра, либо для значений параметра, принадлежащих определенному множеству.
  2. Уравнения, неравенства и их системы, для которых требуется определить количество решений в зависимости от значения параметра.
  3. Уравнения, неравенства и их системы, для которых требуется найти все те значения параметра, при которых указанные уравнения (системы, неравенства) имеют заданное число решений.
  4. Уравнения, неравенства и их системы, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Методы решений задач с параметрами.

1. Аналитический метод.

Это способ прямого решения, повторяющий стандартные процедуры нахождения ответа в задачах без параметра.

Пример 1. Найдите все значения параметра a , при которых уравнение:

(2a – 1)x 2 + ax + (2a – 3) =0 имеет не более одного корня.

При 2a – 1 = 0 данное уравнение квадратным не является, поэтому случай a =1/2 разбираем отдельно.

Если a = 1/2, то уравнение принимает вид 1/2x – 2 = 0, оно имеет один корень.

Если a ≠ 1/2, то уравнение является квадратным; чтобы оно имело не более одного корня необходимо и достаточно, чтобы дискриминант был неположителен:

D = a 2 – 4(2a – 1)(2a – 3) = -15a 2 + 32a – 12;

Чтобы записать окончательный ответ, необходимо понять,

2. Графический метод.

В зависимости от задачи (с переменной x и параметром a ) рассматриваются графики в координатной плоскости (x;y ) или в плоскости (x;a ).

Пример 2. Для каждого значения параметра a определите количество решений уравнения .

Заметим, что количество решений уравнения равно количеству точек пересечения графиков функций и y = a.

График функции показан на рис.1.

y = a – это горизонтальная прямая. По графику несложно установить количество точек пересечения в зависимости от a (например, при a = 11 – две точки пересечения; при a = 2 – восемь точек пересечения).

Ответ: при a < 0 – решений нет; при a = 0 и a = 25/4 – четыре решения; при 0 < a < 6 – восемь решений; при a = 6 – семь решений; при

6 < a < 25/4 – шесть решений; при a > 25/4 – два решения.

3. Метод решения относительно параметра.

При решении этим способом переменные х и а принимаются равноправными, и выбирается та переменная, относительно которой аналитическое решение становится более простым. После упрощений нужно вернуться к исходному смыслу переменных х и а и закончить решение.

Пример 3. Найти все значения параметра а , при каждом из которых уравнение = -ax +3a +2 имеет единственное решение.

Будем решать это уравнение заменой переменных. Пусть = t , t ≥ 0 , тогда x = t 2 + 8 и уравнение примет вид at 2 + t + 5a – 2 = 0 . Теперь задача состоит в том, чтобы найти все а , при которых уравнение at 2 + t + 5a – 2 = 0 имеет единственное неотрицательное решение. Это имеет место в следующих случаях.

1) Если а = 0, то уравнение имеет единственное решение t = 2.

Решение некоторых типов уравнений и неравенств с параметрами.

Задачи с параметрами помогают в формировании логического мышления, в приобретении навыков исследовательской деятельности.

Решение каждой задачи своеобразно и требует к себе индивидуального, нестандартного подхода, поскольку не существует единого способа решения таких задач.

. Линейные уравнения.

Задача № 1. При каких значениях параметра b уравнение не имеет корней?

. Степенные уравнения, неравенства и их системы.

Задача №2. Найти все значения параметра a , при которых множество решений неравенства:

содержит число 6, а также содержит два отрезка длиной 6, не имеющие общих точек.

Преобразуем обе части неравенства.

Для того, чтобы множество решений неравенства содержало число 6, необходимо и достаточно выполнение условия:

Рис.4

При a > 6 множество решений неравенства: .

Интервал (0;5) не может содержать ни одного отрезка длины 6. Значит, два непересекающихся отрезка длины 6 должны содержаться в интервале (5; a ).

. Показательные уравнения, неравенства и системы.

Задача № 3. В области определения функции взяли все целые положительные числа и сложили их. Найти все значения, при которых такая сумма будет больше 5, но меньше 10.

1) Графиком дробно-линейной функции является гипербола. По условию x > 0. При неограниченном возрастании х дробь монотонно убывает и приближается к нулю, а значения функции z возрастают и приближаются к 5. Кроме того, z(0) = 1.

2) По определению степени область определения D(y) состоит из решений неравенства . При a = 1 получаем неравенство, у которого решений нет. Поэтому функция у нигде не определена.

3) При 0 < a < 1 показательная функция с основанием а убывает и неравенство равносильно неравенству . Так как x > 0 , то z (x ) > z (0) = 1 . Значит, каждое положительное значение х является решением неравенства . Поэтому для таких а указанную в условии сумму нельзя найти.

4) При a > 1 показательная функция с основанием а возрастает и неравенство равносильно неравенству . Если a ≥ 5, то любое положительное число является его решением, и указанную в условии сумму нельзя найти. Если 1 < a < 5, то множество положительных решений – это интервал (0;x 0) , где a = z (x 0) .

5) Целые числа расположены в этом интервале подряд, начиная с 1. Вычислим суммы последовательно идущих натуральных чисел, начиная с 1: 1; 1+2 = 3; 1+2+3 = 6; 1+2+3+4 = 10;… Поэтому указанная сумма будет больше 5 и меньше 10, только если число 3 лежит в интервале (0;x 0), а число 4 не лежит в этом интервале. Значит, 3 < x 0 ≤ 4 . Так как возрастает на , то z (3) < z (x 0) ≤ z (4) .

Решение иррациональных уравнений и неравенств, а также уравнений, неравенств и систем, содержащих модули рассмотрены в Приложении 1.

Задачи с параметрами являются сложными потому, что не существует единого алгоритма их решения. Спецификой подобных задач является то, что наряду с неизвестными величинами в них фигурируют параметры, численные значения которых не указаны конкретно, но считаются известными и заданными на некотором числовом множестве. При этом значения параметров существенно влияют на логический и технический ход решения задачи и форму ответа.

По статистике многие из выпускников не приступают к решению задач с параметрами на ЕГЭ. По данным ФИПИ всего 10% выпускников приступают к решению таких задач, и процент их верного решения невысок: 2–3%, поэтому приобретение навыков решения трудных, нестандартных заданий, в том числе задач с параметрами, учащимися школ по-прежнему остается актуальным.