Начинаем формулы количества теплоты. «Количество теплоты

Как мы уже знаем, внутренняя энергия тела может изменяться как при совершении работы, так и при помощи теплопередачи (не совершая работу). Главное различие между работой и количеством теплоты заключается в том, что работа определяет процесс преобразования внутренней энергии системы, который сопровождается трансформацией энергии из одного вида в другой.

В том случае, если изменение внутренней энергии протекает с помощью теплопередачи , переход энергии из одного тела в другое осуществляется за счет теплопроводности , излучения, либо конвекции .

Энергия, которую тело теряет или получает во время теплопередачи, называется количеством теплоты.

При вычислении количества теплоты, необходимо знать, какие величины влияют на него.

От двух одинаковых горелок будем нагревать два сосуда. В одном сосуде 1 кг воды, в другом – 2 кг. Температура воды в двух сосудах изначально одинакова. Мы можем видеть, что за одно и тоже время вода в одном из сосудов нагревается быстрее, хотя оба сосуда получают равное количество теплоты.

Таким образом, делаем вывод: чем больше масса данного тела, тем большее количество теплоты следует затратить, для того чтобы понизить, или повысить его температуру на такое же количество градусов.

Когда тело остывает, оно отдает соседним предметам тем большее количество теплоты, чем больше его масса.

Мы все знаем, что если нужно нагреть полный чайник воды до температуры 50°C, мы затратим меньше времени на это действие, чем для нагревания чайника с тем же объемом воды, но только до 100 °C. В случае номер один воде будет отдано меньшее количество теплоты, нежели во втором.

Таким образом, количество теплоты, требуемое для нагревания, напрямую зависит от того, на сколько градусов сможет нагреться тело. Можно сделать вывод: количество теплоты напрямую зависит от разности температур тела.

Но возможно ли определить количество теплоты, требуемой не для нагревания воды, а какого-нибудь другого вещества, допустим, масла, свинца или железа.

Наполним один сосуд водой, а другой наполним растительным маслом. Массы воды и масла равные. Оба сосуда будем равномерно подогревать на одинаковых горелках. Начнем опыт при равной начальной температуре растительного масла и воды. Через пять минут, измерив температуры нагревшихся масла и воды, мы заметим, что температура масла намного выше температуры воды, хотя обе жидкости получали одинаковое количество тепла.

Напрашивается очевидный вывод: при нагревании равных масс масла и воды при одинаковой температуре нужно разное количество теплоты.

И мы тут же делаем еще одни вывод: количество теплоты, которое требуется для нагревания тела, напрямую зависит от вещества, из которого состоит само тело (рода вещества).

Таким образом, количество теплоты, нужное для нагревания тела (либо выделяемое при остывании), напрямую зависит от массы данного тела, вариативности его температуры, а также рода вещества.

Количество теплоты обозначают символом Q. Как и другие различные виды энергии, количество теплоты измеряется в джоулях (Дж) либо в килоджоулях (кДж).

1 кДж = 1000 Дж

Однако история показывает, что ученые стали измерять количество теплоты задолго того, как в физике появилось такое понятие как энергия. В то время, была выведена специальная единица для измерения количества теплоты – калория (кал) либо килокалория (ккал). Слово имеет латинские корни, калор – жара.

1 ккал = 1000 кал

Калория – это то количество теплоты, которое нужно для нагревания 1 г воды на 1°C

1 кал = 4,19 Дж ≈ 4,2 Дж

1 ккал = 4190 Дж ≈ 4200 Дж ≈ 4,2 кДж

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Когда мы будем обсуждать способы отоплении дома, варианты снижения утечек тепла, мы должны понимать, что такое тепло, в каких единицах оно измеряется, как передается и как теряется. На этой странице будут приведены основные сведения из курса физики, необходимые для рассмотрения всех перечисленных вопросов.

Теплота — один из способов передачи энергии

Энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой.

В строгом смысле теплота представляет собой один из способов передачи энергии, и физический смысл имеет лишь количество энергии, переданное системе, но слово «тепло-» входит в такие устоявшиеся научные понятия, как поток тепла, теплоёмкость, теплота фазового перехода, теплота химической реакции, теплопроводность и пр. Поэтому там, где такое словоупотребление не вводит в заблуждение, понятия «теплота» и «количество теплоты» синонимичны. Однако этими терминами можно пользоваться только при условии, что им дано точное определение, и ни в коем случае «количество теплоты» нельзя относить к числу первоначальных понятий, не требующих определения. Во избежание ошибок под понятием «теплота» следует понимать именно способ передачи энергии, а количество переданной этим способом энергии обозначают понятием «количество теплоты». Рекомендуется избегать такого термина, как «тепловая энергия».

Теплота — это кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже).

Теплота представляет собой одну из форм энергии, а поэтому должна измеряться в единицах энергии. В международной системе СИ единицей энергии является джоуль (Дж). Допускается также применение внесистемной единицы количества теплоты — калории: международная калория равна 4,1868 Дж.

Теплообмен и теплопередача

Теплопередача — это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда). Существуют три основных вида теплопередачи: теплопроводность, конвекция и лучистый теплообмен.

Теплопроводность

Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью. Теплопроводность стержня оценивается величиной теплового потока , который зависит от коэффициента теплопроводности, площади поперечного сечения, через которое передается теплота и градиента температуры (отношения разности температур на концах стержня к расстоянию между ними). Единицей теплового потока является ватт.

ТЕПЛОПРОВОДНОСТЬ НЕКОТОРЫХ ВЕЩЕСТВ И МАТЕРИАЛОВ
Вещества и материалы Теплопроводность, Вт/(м^2*К)
Металлы
Алюминий ___________________205
Бронза _____________________105
Вольфрам ___________________159
Железо ______________________67
Медь _______________________389
Никель ______________________58
Свинец ______________________35
Цинк _______________________113
Другие материалы
Асбест _______________________0,08
Бетон ________________________0,59
Воздух _______________________0,024
Гагачий пух (неплотный) ______0,008
Дерево (орех) ________________0,209
Опилки _______________________0,059
Резина (губчатая) ____________0,038
Стекло _______________________0,75

Конвекция

Конвекция — это теплообмен за счет перемещения масс воздуха или жидкости. При подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). В простых случаях течения жидкости по трубе или обтекания плоской поверхности коэффициент конвективного теплопереноса можно рассчитать теоретически. Однако найти аналитическое решение задачи о конвекции для турбулентного течения среды пока не удается.

Тепловое излучение

Третий вид теплопередачи — лучистый теплообмен — отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение — это один из видов электромагнитного излучения.

Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения составляет примерно 1,37 Вт/м2.

Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры.

Теплоёмкость

Различные вещества обладают разной способностью накапливать тепло; это зависит от их молекулярной структуры и плотности. Количество теплоты, необходимое для повышения температуры единицы массы вещества на один градус (1 °С или 1 К), называется его удельной теплоемкостью. Теплоемкость измеряется в Дж/(кг К).

Обычно различают теплоемкость при постоянном объёме (C V ) и теплоемкость при постоянном давлении (С P ), если в процессе нагревания поддерживаются постоянными соответственно объём тела или давление. Например, чтобы нагреть на 1 К один грамм воздуха в воздушном шаре, требуется больше теплоты, чем для такого же его нагрева в герметичном сосуде с жесткими стенками, поскольку часть энергии, сообщаемой воздушному шару, расходуется на расширение воздуха, а не на его нагревание. При нагревании при постоянном давлении часть теплоты идёт на производство работы расширения тела, а часть — на увеличение его внутренней энергии, тогда как при нагревании при постоянном объёме вся теплота расходуется на увеличение внутренней энергии; в связи с этим С Р всегда больше, чем C V . У жидкостей и твёрдых тел разница между С Р и C V сравнительно мала.

Тепловые машины

Тепловые машины — это устройства, преобразующие теплоту в полезную работу. Примерами таких машин могут служить компрессоры, турбины, паровые, бензиновые и реактивные двигатели. Одной из наиболее известных тепловых машин является паровая турбина, использующаяся на современных тепловых электростанциях. Упрощенная схема такой электростанции на рисунке 1.

Рис. 1. Упрощенная схема паротурбинной электростанции, работающей на ископаемом топливе.

Рабочую жидкость — воду — превращают в перегретый пар в паровом котле, нагреваемом за счет сжигания ископаемого топлива (угля, нефти или природного газа). Пар высокого давления вращает вал паровой турбины, которая приводит в действие генератор, вырабатывающий электроэнергию. Отработанный пар конденсируется при охлаждении проточной водой, которая поглощает часть теплоты. Далее вода подается в охлаждающую башню (градирню), откуда часть тепла уходит в атмосферу. Конденсат с помощью насоса возвращают в паровой котел, и весь цикл повторяется.

Другим примером тепловой машины может служить бытовой холодильник, схема которого представлена на рис. 2.

В холодильниках и бытовых кондиционерах энергия для его обеспечения подводится извне. Компрессор повышает температуру и давление рабочего вещества холодильника — фреона, аммиака или углекислого газа. Перегретый газ подается в конденсатор, где охлаждается и конденсируется, отдавая тепло окружающей среде. Жидкость, выходящая из патрубков конденсатора, проходит через дросселирующий клапан в испаритель, и часть ее испаряется, что сопровождается резким понижением температуры. Испаритель отбирает у камеры холодильника тепло, которое нагревает рабочую жидкость в патрубках; эта жидкость подается компрессором в конденсатор, и цикл снова повторяется.

В фокусе внимания нашей статьи - количество теплоты. Мы рассмотрим понятие внутренней энергии, которая трансформируется при изменении этой величины. А также покажем некоторые примеры применения расчетов в человеческой деятельности.

Теплота

С любым словом родного языка у каждого человека есть свои ассоциации. Они определяются личным опытом и иррациональными чувствами. Что обычно представляется при слове «теплота»? Мягкое одеяло, работающая батарея центрального отопления зимой, первый солнечный свет весной, кот. Или взгляд матери, утешительное слово друга, вовремя проявленное внимание.

Физики подразумевают под этим совершенно конкретный термин. И очень важный, особенно в некоторых разделах этой сложной, но увлекательной науки.

Термодинамика

Рассматривать количество теплоты в отрыве от простейших процессов, на которые опирается закон сохранения энергии, не стоит - ничего не будет понятно. Поэтому для начала напомним их читателям.

Термодинамика рассматривает любую вещь или объект как соединение очень большого количества элементарных частей - атомов, ионов, молекул. Ее уравнения описывают любое изменение коллективного состояния системы как целого и как части целого при изменении макропараметров. Под последними понимаются температура (обозначается как Т), давление (Р), концентрация компонентов (как правило, С).

Внутренняя энергия

Внутренняя энергия - довольно сложный термин, в смысле которого стоит разобраться прежде, чем говорить о количестве теплоты. Он обозначает ту энергию, которая изменяется при увеличении или уменьшении значения макропараметров объекта и не зависит от системы отсчета. Является частью общей энергии. Совпадает с ней в условиях, когда центр масс исследуемой вещи покоится (то есть отсутствует кинетическая составляющая).

Когда человек чувствует, что некоторый объект (скажем, велосипед) нагрелся или охладился, это показывает, что все молекулы и атомы, составляющие данную систему, испытали изменение внутренней энергии. Однако неизменность температуры не означает сохранение этого показателя.

Работа и теплота

Внутренняя энергия любой термодинамической системы может преобразоваться двумя способами:

  • посредством совершения над ней работы;
  • при теплообмене с окружающей средой.

Формула этого процесса выглядит так:

dU=Q-А, где U - внутренняя энергия, Q - теплота, А - работа.

Пусть читатель не обольщается простотой выражения. Перестановка показывает, что Q=dU+А, однако введение энтропии (S) приводит формулу к виду dQ=dSxT.

Так как в данном случае уравнение принимает вид дифференциального, то и первое выражение требует того же. Далее, в зависимости от сил, действующих в исследуемом объекте, и параметра, который вычисляется, выводится необходимое соотношение.

Возьмем в качестве примера термодинамической системы металлический шарик. Если на него надавить, подбросить вверх, уронить в глубокий колодец, то это значит совершить над ним работу. Чисто внешне все эти безобидные действия шарику никакого вреда не причинят, но внутренняя энергия его изменится, хоть и очень ненамного.

Второй способ - это теплообмен. Теперь подходим к главной цели данной статьи: описанию того, что такое количество теплоты. Это такое изменение внутренней энергии термодинамической системы, которое происходит при теплообмене (смотрите формулу выше). Оно измеряется в джоулях или калориях. Очевидно, что если шарик подержать над зажигалкой, на солнце, или просто в теплой руке, то он нагреется. А дальше можно по изменению температуры найти количество теплоты, которое ему было при этом сообщено.

Почему газ - лучший пример изменения внутренней энергии, и почему из-за этого школьники не любят физику

Выше мы описывали изменения термодинамических параметров металлического шарика. Они без специальных приборов не очень заметны, и читателю остается поверить на слово о происходящих с объектом процессах. Другое дело, если система - газ. Надавите на него - это будет видно, нагрейте - поднимется давление, опустите под землю - и это можно с легкостью зафиксировать. Поэтому в учебниках чаще всего в качестве наглядной термодинамической системы берут именно газ.

Но, увы, в современном образовании реальным опытам уделяется не так много внимания. Ученый, который пишет методическое пособие, отлично понимает, о чем идет речь. Ему кажется, что на примере молекул газа все термодинамические параметры будут нужным образом продемонстрированы. Но ученику, который только открывает для себя этот мир, скучно слушать про идеальную колбу с теоретическим поршнем. Если бы в школе существовали настоящие исследовательские лаборатории и на работу в них выделялись часы, все было бы по-другому. Пока, к сожалению, опыты только на бумаге. И, скорее всего, именно это становится причиной того, что люди считают данный раздел физики чем-то чисто теоретическим, далеким от жизни и ненужным.

Поэтому мы решили в качестве примера привести уже упоминаемый выше велосипед. Человек давит на педали - совершает над ними работу. Помимо сообщения всему механизму крутящего момента (благодаря которому велосипед и перемещается в пространстве), изменяется внутренняя энергия материалов, из которых сделаны рычаги. Велосипедист нажимает на ручки, чтобы повернуть, - и опять совершает работу.

Внутренняя энергия внешнего покрытия (пластика или металла) увеличивается. Человек выезжает на полянку под яркое солнце - велосипед нагревается, изменяется его количество теплоты. Останавливается отдохнуть в тени старого дуба, и система охлаждается, теряя калории или джоули. Увеличивает скорость - растет обмен энергией. Однако расчет количества теплоты во всех этих случаях покажет очень маленькую, незаметную величину. Поэтому и кажется, что проявлений термодинамической физики в реальной жизни нет.

Применение расчетов по изменению количества теплоты

Вероятно, читатель скажет, что все это весьма познавательно, но зачем же нас так мучают в школе этими формулами. А сейчас мы приведем примеры, в каких областях человеческой деятельности они нужны непосредственно и как это касается любого в его повседневности.

Для начала посмотрите вокруг себя и посчитайте: сколько предметов из металла вас окружают? Наверняка больше десяти. Но прежде чем стать скрепкой, вагоном, кольцом или флешкой, любой металл проходит выплавку. Каждый комбинат, на котором перерабатывают, допустим, железную руду, должен понимать, сколько требуется топлива, чтобы оптимизировать расходы. А рассчитывая это, необходимо знать теплоемкость металлосодержащего сырья и количество теплоты, которое ему необходимо сообщить, чтобы произошли все технологические процессы. Так как выделяемая единицей топлива энергия рассчитывается в джоулях или калориях, то формулы нужны непосредственно.

Или другой пример: в большинстве супермаркетов есть отдел с замороженными товарами - рыбой, мясом, фруктами. Там, где сырье из мяса животных или морепродуктов превращается в полуфабрикат, должны знать, сколько электричества употребят холодильные и морозильные установки на тонну или единицу готового продукта. Для этого следует рассчитать, какое количество теплоты теряет килограмм клубники или кальмаров при охлаждении на один градус Цельсия. А в итоге это покажет, сколько электричества потратит морозильник определенной мощности.

Самолеты, пароходы, поезда

Выше мы показали примеры относительно неподвижных, статичных предметов, которым сообщают или у которых, наоборот, отнимают определенное количество теплоты. Для объектов, в процессе работы движущихся в условиях постоянно меняющейся температуры, расчеты количества теплоты важны по другой причине.

Есть такое понятие, как "усталость металла". Включает оно в себя также и предельно допустимые нагрузки при определенной скорости изменения температуры. Представьте, самолет взлетает из влажных тропиков в замороженные верхние слои атмосферы. Инженерам приходится много работать, чтобы он не развалился из-за трещин в металле, которые появляются при перепаде температуры. Они ищут такой состав сплава, который способен выдержать реальные нагрузки и будет иметь большой запас прочности. А чтобы не искать вслепую, надеясь случайно наткнуться на нужную композицию, приходится делать много расчетов, в том числе и включающих изменения количества теплоты.

В данном уроке мы научимся рассчитывать количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении. Для этого мы обобщим те знания, которые были получены на предыдущих уроках.

Кроме того, мы научимся с помощью формулы для количества теплоты выражать остальные величины из этой формулы и рассчитывать их, зная другие величины. Также будет рассмотрен пример задачи с решением на вычисление количества теплоты.

Данный урок посвящен вычислению количества теплоты при нагревании тела или выделяемого им при охлаждении.

Умение вычислять необходимое количество теплоты является очень важным. Это может понадобиться, к примеру, при вычислении количества теплоты, которое необходимо сообщить воде для обогрева помещения.

Рис. 1. Количество теплоты, которое необходимо сообщить воде для обогрева помещения

Или для вычисления количества теплоты, которое выделяется при сжигании топлива в различных двигателях:

Рис. 2. Количество теплоты, которое выделяется при сжигании топлива в двигателе

Также эти знания нужны, например, чтобы определить количество теплоты, которое выделяется Солнцем и попадает на Землю:

Рис. 3. Количество теплоты, выделяемое Солнцем и попадающее на Землю

Для вычисления количества теплоты необходимо знать три вещи (рис. 4):

  • массу тела (которую, обычно, можно измерить с помощью весов);
  • разность температур, на которую необходимо нагреть тело или охладить его (обычно измеряется с помощью термометра);
  • удельную теплоемкость тела (которую можно определить по таблице).

Рис. 4. Что необходимо знать для определения

Формула, по которой вычисляется количество теплоты, выглядит так:

В этой формуле фигурируют следующие величины:

Количество теплоты, измеряется в джоулях (Дж);

Удельная теплоемкость вещества, измеряется в ;

- разность температур, измеряется в градусах Цельсия ().

Рассмотрим задачу на вычисление количества теплоты.

Задача

В медном стакане массой грамм находится вода объемом литра при температуре . Какое количество теплоты необходимо передать стакану с водой, чтобы его температура стала равна ?

Рис. 5. Иллюстрация условия задачи

Сначала запишем краткое условие (Дано ) и переведем все величины в систему интернационал (СИ).

Дано:

СИ

Найти:

Решение:

Сначала определи, какие еще величины потребуются нам для решения данной задачи. По таблице удельной теплоемкости (табл. 1) находим (удельная теплоемкость меди, так как по условию стакан медный), (удельная теплоемкость воды, так как по условию в стакане находится вода). Кроме того, мы знаем, что для вычисления количества теплоты нам понадобится масса воды. По условию нам дан лишь объем. Поэтому из таблицы возьмем плотность воды: (табл. 2).

Табл. 1. Удельная теплоемкость некоторых веществ,

Табл. 2. Плотности некоторых жидкостей

Теперь у нас есть все необходимое для решения данной задачи.

Заметим, что итоговое количество теплоты будет состоять из суммы количества теплоты, необходимого для нагревания медного стакана и количества теплоты, необходимого для нагревания воды в нем:

Рассчитаем сначала количество теплоты, необходимое для нагревания медного стакана:

Прежде чем вычислить количество теплоты, необходимое для нагревания воды, рассчитаем массу воды по формуле, хорошо знакомой нам из 7 класса:

Теперь можем вычислить:

Тогда можем вычислить:

Напомним, что означает: килоджоули. Приставка «кило» означает , то есть .

Ответ: .

Для удобства решения задач на нахождение количества теплоты (так называемые прямые задачи) и связанных с этим понятием величин можно пользоваться следующей таблицей.

Искомая величина

Обозначение

Единицы измерения

Основная формула

Формула для величины

Количество теплоты

(или теплопередаче).

Удельная теплоемкость вещества.

Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на 1 градус .

Теплоемкость тела обозначается заглавной латинской буквой С .

От чего зависит теплоемкость тела? Прежде всего, от его массы . Ясно, что для нагрева, напри-мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов .

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 , а в другой — растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрое. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе-ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1°С температуру воды массой 1 кг , требуется количество теплоты, равное 4200 Дж , а для нагревания на 1 °С такой же массы подсолнечного масла необхо-димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 ºС, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг ·°С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг · ºС), а удельная теплоемкость льда 2100 Дж/(кг · °С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг - °С), а в жидком — 1080 Дж/(кг - °С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

Q = cm (t 2 - t 1 ) ,

где Q — количество теплоты, c — удельная теплоемкость, m — масса тела , t 1 — начальная темпе-ратура, t 2 — конечная температура.

При нагревании тела t 2 > t 1 и, следовательно, Q > 0 . При охлаждении тела t 2и < t 1 и, следовательно, Q < 0 .

В случае, если известна теплоемкость всего тела С , Q определяется по формуле:

Q = C (t 2 - t 1 ) .