Все про клетку кратко. Доклад: Строение и деление клетки

Существуют миллионы разных видов организмов. Из них к неклеточным формам жизни относятся лишь вирусы. Все остальные своей самой маленькой, но главной структурной единицей имеют клетку. Поэтому она - важный показатель индивидуальности существа, принадлежности к тому или иному царству живой природы. Части и органоиды клетки могут объяснить, как живет и растет организм, какие процессы внутри него происходят. Знание строения данной структурной единицы важно для понимания всей живой природы в целом.

Общий план строения клетки

Клетка под микроскопом - зрелище достаточно интересное. Просто удивительно, сколько всего скрыто от человеческого глаза и существует на уровне микромира! С изобретением этого уникального стало возможным стать частью этого уровня, изучить и понять его механизмы жизни, научиться вмешиваться в них и использовать на благо людей.

Так, было выяснено, что не все организмы имеют одинаковые единицы строения. Различия присутствуют практически у каждого представителя царства. Например, основные части отличны от таковых у животных. Свои особенности имеют структуры бактерий и грибов. Однако все же можно выделить общие принципы строения клетки.

  1. Генетический материал в виде молекул ДНК (для эукариотических организмов - растений, грибов, животных - сосредоточен в ядре, прокариоты (бактерии) оформленного ядра не имеют).
  2. Цитоплазматическая мембрана, отграничивающая внутреннее содержание от наружного пространства и воздействия.
  3. Цитоплазма с органоидами и включениями.

Многие органоиды также являются одинаковыми для всех клеток, что еще раз подтверждает единство происхождения всего живого на нашей планете. Структурных частей в каждой единице живого достаточно много. Речь идет, например, о:



Есть и узкоспецифичные органоиды, характерные только для представителей какого-либо отдельного царства живой природы. Например, главная часть клетки растений - не только ядро, но и а также вакуоль. Немаловажны пластиды, однако этих структур нет в животных единицах.

Какие части клетки самые главные?

Ответ на данный вопрос достаточно сложен. Ведь без любой своей структурной части клетка не сможет нормально жить и развиваться. Но все же можно выделить несколько наиболее значимых по выполняемым функциям органоидов и частей.



Перечисленные компоненты - это основа любой клетки, независимо от принадлежности организма к тому или иному виду. Среди органоидов цитоплазмы также можно обозначить, какие части клетки самые главные.

  1. Митохондрии.
  2. Рибосомы.
  3. Лизосомы.
  4. Аппарат (комплекс) Гольджи.

Очевидно, что главными можно назвать большую часть всех структурных звеньев единицы строения организмов.

Ядро и его строение

Исторически сложилось мнение, что главная часть клетки - ядро. Однако не все из них его имеют. Так, ядер нет в:

  • созревших эритроцитах;
  • клетках проводящих ;
  • бактериях.

Существуют и такие виды, в которых, наоборот, несколько ядер. Например:

  • поперчнополосатые мышцы;
  • грибы;
  • водоросли;
  • млечные растительные сосуды.

В целом же общий план строения рассматриваемой структуры един. Есть несколько основных частей, из которых состоит любое ядро.



Биология [Полный справочник для подготовки к ЕГЭ] Лернер Георгий Исаакович

Раздел 2 Клетка как биологическая система

Клетка как биологическая система

2.1. Клеточная теория, ее основные положения, роль в формировании современной естественнонаучной картины мира. Развитие знаний о клетке. Клеточное строение организмов, сходство строения клеток всех организмов – основа единства органического мира, доказательства родства живой природы

Основные термины и понятия, проверяемые в экзаменационной работе: единство органического мира, клетка, клеточная теория, положения клеточной теории.

Мы уже говорили о том, что научная теория представляет собой обобщение научных данных об объекте исследования. Это в полной мере касается клеточной теории, созданной двумя немецкими исследователями М. Шлейденом и Т. Шванном в 1839 г.

В основу клеточной теории легли работы многих исследователей, искавших элементарную структурную единицу живого. Созданию и развитию клеточной теории способствовало возникновение в XVI в. и дальнейшее развитие микроскопии.

Вот основные события, которые стали предшественниками создания клеточной теории:

– 1590 г. – создание первого микроскопа (братья Янсен);

– 1665 г. Роберт Гук – первое описание микроскопической структуры пробки ветки бузины (на самом деле это были клеточные стенки, но Гук ввел название «клетка»);

– 1695 г. Публикация Антония Левенгука о микробах и других микроскопических организмах, увиденных им в микроскоп;

– 1833 г. Р. Броун описал ядро растительной клетки;

– 1839 г. М. Шлейден и Т. Шванн открыли ядрышко.

Основные положения современной клеточной теории:

1. Все простые и сложные организмы состоят из клеток, способных к обмену с окружающей средой веществами, энергией, биологической информацией.

2. Клетка – элементарная структурная, функциональная и генетическая единица живого.

3. Клетка – элементарная единица размножения и развития живого.

4. В многоклеточных организмах клетки дифференцированы по строению и функциям. Они объединены в ткани, органы и системы органов.

5. Клетка представляет собой элементарную, открытую живую систему, способную к саморегуляции, самообновлению и воспроизведению.

Клеточная теория развивалась благодаря новым открытиям. В 1880 г. Уолтер Флемминг описал хромосомы и процессы, происходящие в митозе. С 1903 г. стала развиваться генетика. Начиная с 1930 г. стала бурно развиваться электронная микроскопия, что позволило ученым изучать тончайшее строение клеточных структур. XX век стал веком расцвета биологии и таких наук, как цитология, генетика, эмбриология, биохимия, биофизика. Без создания клеточной теории это развитие было бы невозможным.

Итак, клеточная теория утверждает, что все живые организмы состоят из клеток. Клетка – это та минимальная структура живого, которая обладает всеми жизненными свойствами – способностью к обмену веществ, росту, развитию, передаче генетической информации, саморегуляции и самообновлению. Клетки всех организмов обладают сходными чертами строения. Однако клетки отличаются друг от друга по своим размерам, форме и функциям. Яйцо страуса и икринка лягушки состоят из одной клетки. Мышечные клетки обладают сократимостью, а нервные клетки проводят нервные импульсы. Различия в строении клеток во многом зависят от функций, которые они выполняют в организмах. Чем сложнее устроен организм, тем более разнообразны по своему строению и функциям его клетки. Каждый вид клеток имеет определенные размеры и форму. Сходство в строении клеток различных организмов, общность их основных свойств подтверждают общность их происхождения и позволяют сделать вывод о единстве органического мира.

Из книги Сулейман и Роксолана-Хюррем [Мини-энциклопедия самых интересных фактов о Великолепном веке в Османской империи] автора Автор неизвестен

Гарем: Клетка или Дом радости и счастья? Гарем – «Дом радости и счастья» – сложный институт человеческих взаимоотношений, имеющий свою иерархическую систему и традиции, не всегда понятные европейцам. «Гарем» (харам) – слово арабское, обозначает оно все, что запретно, а

Из книги Атлас: анатомия и физиология человека. Полное практическое пособие автора Зигалова Елена Юрьевна

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Краткий справочник необходимых знаний автора Чернявский Андрей Владимирович

Клетка Клетка - элементарная единица живых систем. Клетка может существовать как отдельный организм (бактерии, одноклеточные растения, животные, грибы) или как часть многоклеточного организма. У прокариотических организмов нет ядра и мембранных органелл (их роль

Из книги Все обо всем. Том 3 автора Ликум Аркадий

Что делает клетка? Клетка - это строительный материал, из которого состоит любое живое существо. Все живое состоит из одной и больше клеток. Простейшие растения и животные состоят из одной клетки. В более сложных животных и растительных организмах клетки работают

БСЭ

Из книги Большая Советская Энциклопедия (БИ) автора БСЭ

Из книги Большая Советская Энциклопедия (БИ) автора БСЭ

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Из книги Большая Советская Энциклопедия (КЛ) автора БСЭ

Из книги Я познаю мир. Вирусы и болезни автора Чирков С. Н.

Клетка В изящной словесности принято описывать не только внешность героя, его мысли и планы, но и обстановку, в которой происходит действие. Не будем пренебрегать этим приемом, тем более что клеточный интерьер для вируса является не декорацией, а жизненно важным условием

Из книги Твое тело говорит «Люби себя!» автора Бурбо Лиз

ГРУДНАЯ КЛЕТКА (БОЛЬ) Физическая блокировкаГрудная клетка - часть тела между плечами и животом, в которой находятся сердце и легкие. Приведенное ниже описание относится только к БОЛИ в груди.Эмоциональная блокировкаВ метафизике грудь представляет семью. Боль в груди

Из книги Политология: хрестоматия автора Исаев Борис Акимович

Раздел IV Политическая система Системный подход получил широкое распространение в политической науке в 60-е гг. XX в. Использование его методологии стало основой создания и разработки теорий политической системы. Родоначальником системного подхода в политической науке

Из книги Русско-английский кинологический словарь по экстерьеру автора Климовская Татьяна Алексеевна

ГРУДНАЯ КЛЕТКА, ГРУДЬ грудная клетка, грудь - chest, brisket, toraxгрудина - sternumгрудная клетка (анат.) - rib cageключица - clavicleглубина груди - depth of chestобъем груди - chest capacityТИПЫ ГРУДНОЙ КЛЕТКИглубокая грудь - deep in chestмелкая грудь - shallow in chestовальная грудь - oval, egg-shaped chestплоская грудь

автора Климов Алексей Григорьевич

cellula, ae f – клетка Примерное произношение: цЕллула.Z: Возле КЛЕТКИ в зоопарке Посетительница шла: «Я бы льва поЦЕЛовала, Но мешает ЦЕЛЛУЛА». Кормить и целовать хищников категорически

Из книги Медицинские запоминалки автора Климов Алексей Григорьевич

thorax, acis m – грудная клетка Примерное произношение: тОракс.Z: Женская исТОРия Началась из ТОРАКСА. Есть выражение «ab ovo» – от начала (дословно «от яйца»: римляне начинали обед с яиц). Но о первой женщине правильнее было бы сказать «a costa seu a thorace» так как ее существование

Клетка………………………………………………………………1

Строение клеток……………………………………………………2

Цитология…………………………………………………………..3

Микроскоп и клетка………………………………………………..4

Схема строения клетки…………………………………………….6

Деление клетки……………………………………………………10

Схема митотического деления клетки…………………………...12

Клетка

Клетка - элементарная часть организма, способная к самостоятельному существованию, самовоспроизводству и развитию. Клетка - основа строения и жизнедеятельности всех живых организмов и растений. Клетки могут существовать как самостоятельные организмы, так и в составе многоклеточных организмов (клетки ткани). Термин «Клетка» предложен английским микроскопистом Р. Гуком (1665). Клетка - предмет изучения особого раздела биологии - цитологии. Более систематическое изучение клеток началось в девятнадцатом веке. Одним из крупнейших научных теорий того времени была Клеточная теория, утверждавшая единство строения всей живой природы. Изучение любой жизни на клеточном уровне лежит в основе современных биологических исследований.

В строении и функциях каждой клетки обнаруживаются признаки, общие для всех клеток, что отражает единство их происхождения из первичных органических веществ. Частные особенности различных клеток - результат их специализации в процессе эволюции. Так, все клетки одинаково регулируют обмен веществ, удваивают и используют свой наследственный материал, получают и утилизируют энергию. В то же время разные одноклеточные организмы (амёбы, туфельки, инфузории и т.д.) довольно сильно различаются размерами, формой, поведением. Не менее резко различаются клетки многоклеточных организмов. Так, у человека имеются лимфоидные клетки - небольшие (диаметром около 10 мкм) округлые клетки, участвующие в иммунологических реакциях, и нервные клетки, часть которых имеет отростки длиной более метра; эти клетки осуществляют основные регуляторные функции в организме.

Первым цитологическим методом исследования была микроскопия живых клеток. Современные варианты прижизненной световой микроскопии - фазово-контрастная, люминесцентная, интерференционная и др. - позволяют изучать форму клеток и общее строение некоторых её структур, движение клеток и их деление. Детали строения клетки обнаруживаются лишь после специального контрастирования, что достигается окраской убитой клетки. Новый этап изучения структуры клетки - электронная микроскопия, имеющая значительно большее разрешение структуры клетки по сравнению со световой микроскопией. Химический состав клеток изучается цито - и гистохимическими методами, позволяющими выяснить локализацию и концентрацию вещества в клеточных структурах, интенсивность синтеза веществ и их перемещение в клетках. Цитофизиологические методы позволяют изучать функции клеток.

Строение клеток

Клетки всех организмов имеют единый план строения, в котором четко проявляется общность всех процессов жизнедеятельности. Каждая клетка включает в свой состав две неразрывно связанные части: цитоплазму и ядро. Как цитоплазма, так и ядро характеризуются сложностью и строгой упорядоченностью строения и, в свою очередь, в состав их входит множество разнообразных структурных единиц, выполняющих совершенно определенные функции.

Оболочка. Она осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).

Оболочка - таможня клетки. Она зорко следит за тем, чтобы в клетку не проникли ненужные в данный момент вещества; наоборот, вещества, в которых клетка нуждается, могут рассчитывать на ее максимальное содействие.

Оболочка ядра двойная; состоит из внутренней и наружной ядерных мембран. Между этими мембранами располагается перинуклеарное пространство. Наружная ядерная мембрана обычно связана с каналами эндоплазматической сети.

Оболочка ядра содержит многочисленные поры. Они образуются смыканием наружной и внутренней мембран и имеют различный диаметр. В некоторых ядрах, например ядрах яйцеклеток, пор очень много и они с правильными интервалами расположены на поверхности ядра. Количество пор в ядерной оболочке варьирует в различных типах клеток. Поры расположены на равном расстоянии друг от друга. Так как диаметр поры может изменяться, и в ряде случаев ее стенки обладают довольно сложной структурой, создается впечатление, что поры сокращаются, или замыкаются, или, наоборот, расширяются. Благодаря порам кариоплазма входит в непосредственный контакт с цитоплазмой. Через поры легко проходят довольно крупные молекулы нуклеозидов, нуклеотидов, аминокислот и белков, и таким образом осуществляется активный обмен между цитоплазмой и ядром.

Цитология

Наука, изучающая строение и отправление клеток, называется цитологией.

За последнее десятилетие она достигла больших успехов, что в значительной мере связано с разработкой новых методов исследования клетки.

Основным «орудием» цитологии служит микроскоп, позволяющий изучать строение клетки при увеличении в 2400-2500 раз. Клетки изучают в живом виде, а также после специальной обработки. Последняя сводится к двум основным этапам.

Сначала клетки фиксируют, т. е. убивают их быстродействующими ядовитыми для клеток веществами, не разрушающими их структуры. Вторым этапом является окраска препарата. Она основана на том, что разные части клетки с разной степенью интенсивности воспринимают некоторые красители. Благодаря этому удается отчетливо выявить различные структурные компоненты клетки, которые без окраски благодаря сходному коэффициенту преломления не видны. Очень часто применяют метод изготовления срезов. Для этого ткани или отдельные клетки после специальной обработки заключают в твердую среду (парафин, целлоидин), после чего при помощи особого прибора - микротома, снабженного острой бритвой, раскладывают на тонкие срезы толщиной от 3 микрон (микрон = 0,001 мм).

1. Не все организмы имеют клеточное строение.

Клеточная организация явилась результатом длительной эволюции, которой предшествовали неклеточные (доклеточные) формы жизни. Фиксированные и окрашенные препараты перед изучением заключают в среду с высоким коэффициентом преломления (глицерин, канадский бальзам и др.). Благодаря этому они становятся прозрачными, что облегчает исследование препарата.

В современной цитологии разработан ряд новых методов и приемов, применение которых чрезвычайно углубило знания о строении и физиологии клетки.

Очень большое значение для изучения клетки имеет применение биохимических и цитохимических методов. В настоящее время мы можем не только изучать строение клетки, но и определять ее химический состав и изменения его в процессе жизнедеятельности клетки. Многие из этих методов основаны на применении цветных реакций, позволяющих различать определенные химические вещества или группы веществ. Изучение распределения разных по своему химическому составу веществ в клетке путем цветных реакций представляет собой цитохимический метод. Он имеет большое значение для исследования обмена веществ и других сторон физиологии клетки.

Микроскоп и клетка

В современной цитологии широко применяют ультрафиолетовую микроскопию. Ультрафиолетовые лучи невидимы для человеческого глаза, но воспринимаются фотографической пластинкой. Некоторые играющие особо важную роль в жизни клетки органические вещества (нуклеиновые кислоты) избирательно поглощают ультрафиолетовые лучи. Поэтому по снимкам, изготовленным в ультрафиолетовых лучах, можно судить о распределении нуклеиновых веществ в клетке.

Разработан ряд тонких методов, позволяющих изучать проникновение разных веществ в клетку из окружающей среды.

Для этого, в частности, применяют прижизненные (витальные) красители. Это такие красящие вещества (например, нейтральный красный), которые проникают в клетку, не убивая ее. Наблюдая за живой витально окрашенной клеткой, можно судить о путях проникновения и накопления веществ в клетке.

Особенно большую роль в развитии цитологии, а также в изучении тонкого строения простейших сыграла электронная микроскопия.

Электронный микроскоп основан на ином принципе, чем световой оптический микроскоп. Объект изучают в пучке быстро летящих электронов. Длина волны электронных лучей во много тысяч раз меньше длины волны световых лучей. Это позволяет получить значительно большую разрешающую способность, т. е. гораздо большее увеличение, чем в световом микроскопе. Пучок электронов проходит сквозь изучаемый объект и затем падает на флуоресцирующий экран, на котором и проецируется изображение объекта. Чтобы объект был проницаемым для электронного пучка, он должен быть очень тонким. Обычные микротомные срезы толщиной в 3-5 мк для этого совершенно непригодны. Они полностью поглотят пучок электронов. Были созданы особые приборы - ультрамикротомы, которые позволяют получать срезы ничтожной толщины, порядка 100-300 ангстрем (ангстрем - единица длины, равная одной десятитысячной микрона). Различия в поглощении электронов разными частями клетки настолько малы, что без специальной обработки на экране электронного микроскопа они не могут быть обнаружены. Поэтому изучаемые объекты предварительно обрабатываются веществами, непроницаемыми или труднопроницаемыми для электронов. Таким веществом является четырехокись осмия (Os04). Она в различной степени поглощается разными частями клетки, которые благодаря этому по-разному задерживают электроны.

Применяя электронный микроскоп, можно получить увеличения порядка 100000.

Электронная микроскопия открывает новые перспективы в изучении организации клетки.

Схема строения клетки

На рис. 15 и рис. 16 сопоставлена схема строения клетки, как она представлялась в двадцатых годах этого столетия и как она представляется в настоящее время.

Снаружи клетка отграничена от окружающей среды тонкой клеточной мембраной, которая играет важную роль в регуляции поступления веществ в цитоплазму. Основное вещество цитоплазмы имеет сложный химический состав.

Основу его составляют белки, которые находятся в состоянии коллоидного раствора. Белки - это сложные органические вещества, обладающие крупными молекулами (молекулярный вес их очень высок, измеряется десятками тысяч по отношению к атому водорода) и большой химической подвижностью. Кроме белков, в цитоплазме присутствуют и многие другие органические соединения (углеводы, жиры), среди которых особенно большое значение в жизни клетки играют сложные органические вещества - нуклеиновые кислоты. Из неорганических составных частей цитоплазмы следует прежде всего назвать воду, которая по весу составляет значительно больше половины всех веществ, входящих в состав клетки. Вода важна как растворитель, так как реакции обмена веществ протекают в жидкой среде. Кроме того, в клетке присутствуют ионы солей (Са2+, К+, Na+, Fe2+, Fe3+ и др.).

В основном веществе цитоплазмы располагаются органоиды - постоянно присутствующие структуры, выполняющие определенные функции в жизни клетки. Среди них важную роль в обмене веществ играют митохондрии. В световом микроскопе они видны в форме небольших палочек, нитей, иногда гранул.

Электронный микроскоп показал, что структура митохондрий очень сложна. Каждая митохондрия имеет оболочку, состоящую из трех слоев, и внутреннюю полость.

От оболочки в эту полость, заполненную жидким содержимым, вдаются многочисленные перегородки, не доходящие до противоположной стенки, называемые к р иста м и. Цитофизиологические исследования показали, что митохондрии являются органоидами, с которыми связаны дыхательные процессы клетки (окислительные). Во внутренней полости, на оболочке и кристах локализуются дыхательные ферменты (органические катализаторы), обеспечивающие сложные химические превращения, из которых слагается процесс дыхания.

В цитоплазме, кроме митохондрий, имеется сложная система мембран, образующая в совокупности эндоплазматическую сеть (рис. 16).

Как показали электронномикроскопические исследования, мембраны эндоплазматической сети двойные. Со стороны, обращенной к основному веществу цитоплазмы, на каждой мембране расположены многочисленные гранулы (называемые «тельцами Паллада» по имени открывшего их ученого). В состав этих гранул входят нуклеиновые кислоты (а именно рибонуклеиновая кислота), благодаря чему их называют также рибосомами. На эндоплазматической сети при участии рибосом осуществляется один из основных процессов жизнедеятельности клетки - синтез белков.

Часть цитоплазматических мембран лишена рибосом и образует особую систему, называемую аппаратом Гольджи.

Это образование обнаружено в клетках уже довольно давно, ибо его удается выявить особыми методами при исследовании в световом микроскопе. Однако тонкая структура аппарата Гольджи стала известна лишь в результате электронномикроскопических исследований. Функциональное значение этого органоида сводится к тому, что в области аппарата концентрируются различные синтезируемые в клетке вещества, например зерна секрета в железистых клетках и т. п. Мембраны аппарата Гольджи находятся в связи с эндоплазматической сетью. Возможно, что на мембранах аппарата Гольджи протекает ряд синтетических процессов.

Эндоплазматическая сеть связана с наружной оболочкой ядра. Эта связь играет, по-видимому, существенную роль во взаимодействии ядра и цитоплазмы. Эндоплазматическая сеть имеет также связь с наружной мембраной клетки и местами непосредственно переходит в нее.

При помощи электронного микроскопа в клетках был обнаружен еще один тип органоидов - лизосомы (рис. 16).

По размерам и форме они напоминают митохондрии, но легко отличаются от них по отсутствию тонкой внутренней структуры, столь характерной и типичной для митохондрий. По представлениям большинства современных цитологов, в лизосомах содержатся переваривающие ферменты, связанные с расщеплением крупных молекул органических веществ, поступающих в клетку. Это как бы резервуары ферментов, постепенно используемых в процессе жизнедеятельности клетки.

В цитоплазме животных клеток обычно по соседству с ядром располагается центросома. Этот органоид имеет постоянную структуру. Он слагается из девяти ультрамикроскопических палочковидных образований, заключенных в особо дифференцированную уплотненную цитоплазму. Центросома - органоид, связанный с делением клетки.

Рис. 16. Схема строения клетки, по современным данным, с учетом электронномикроскопических исследований:

1 - цитоплазма; 2 - аппарат Гольджи, з- центросома; 4 - митохондрии; 5 - эндоплазматическая сеть; 6 - ядро; 7 - ядрышко; 8 - лизосомы.

К роме перечисленных цитоплазматических органоидов клетки, в ней могут присутствовать различные специальные структуры и включения, связанные с обменом веществ и выполнением различных специальных, свойственных данной клетке функций. В животных клетках обычно присутствует гликоген, или животный крахмал. Это резервное вещество, потребляемое в процессе обмена веществ как основной материал для окислительных процессов. Часто имеются жировые включения в форме мелких капель.

В специализированных клетках, таких, как мышечные клетки, имеются особые сократимые волоконца, связанные с сократительной функцией этих клеток. Ряд специальных органоидов и включений имеется в растительных клетках. В зеленых частях растений всегда присутствуют хлоропласты - белковые тела, содержащие зеленый пигмент хлорофилл, при участии которого осуществляется фотосинтез - процесс воздушного питания растения. В качестве резервного вещества здесь обычно находятся крахмальные зерна, отсутствующие у животных. В отличие от животных, растительные клетки обладают, кроме наружной мембраны, прочными о б о57 лочками из клетчатк и, что обусловливает особую прочность растительных тканей.

Деление клетки

В основе способности клеток к самовоспроизведению лежат уникальное свойство ДНК самокопироваться и строго равноценное деление репродуцированных хромосом в процессе Митоза. В результате деления образуются две клетки, идентичные исходной по генетическим свойствам и с обновленным составом ядра и цитоплазмы. Процессы самовоспроизведения хромосом, их деления, образования двух ядер и деления цитоплазмы разделены во времени, составляя в совокупности Митотический цикл клетки. В случае, если после деления клетка начинает готовиться к следующему делению, митотический цикл совпадает с жизненным циклом клетки. Однако во многих случаях после деления (а иногда и перед ним) клетки выходят из митотического цикла, дифференцируются и выполняют в организме ту или иную специальную функцию. Состав таких клеток может обновляться за счёт делений малодифференцированных клеток. В некоторых тканях и дифференцированные клетки способны повторно входить в митотический цикл. В нервной ткани дифференцированные клетки не делятся; многие из них живут так же долго, как организм в целом, то есть у человека - несколько десятков лет. При этом ядра нервных клеток не утрачивают способности к делению: будучи пересажены в цитоплазму раковых клеток, ядра нейронов синтезируют ДНК и делятся. Опыты с клетками-гибридами показывают влияние цитоплазмы на проявление ядерных функций. Неполноценная подготовка к делению предотвращает митоз или искажает его течение. Так, в некоторых случаях не происходит деления цитоплазмы и образуется двуядерная клетка. Многократное деление ядер в неделящейся клетке приводит к появлению многоядерных клеток или сложных надклеточных структур (симпластов), например в поперечнополосатых мышцах. Иногда репродукция клетки ограничивается воспроизведением хромосом, и образуется полиплоидная клетка, имеющая удвоенный (сравнительно с исходной клеткой) набор хромосом. Полиплоидизация приводит к усилению синтетической активности, увеличению размеров и массы клетки.

Одним из основных биологических процессов, обеспечивающих преемственность форм жизни и лежащих в основе всех форм размножения, является процесс деления клетки. Этот процесс, известный под названием кариокинеза, или митоза, с удивительным постоянством, лишь с некоторыми вариациями в деталях, осуществляется в клетках всех растений и животных, в том числе и простейших. При митозе происходит равномерное распределение хромосом, претерпевающих удвоение между дочерними клетками. От любого участка каждой хромосомы дочерние клетки получают половину. Не вдаваясь в детальное описание митоза, отметим лишь его основные моменты (рис.).

В первой стадии митоза, называемой профазой, в ядре становятся отчетливо видимыми хромосомы в форме нитей.

Рис. Схема митотического деления клетки:

1 - неделящееся ядро;

2-6 - последовательные этапы изменения ядра в профазе;

7-9 - метафаза;

10 - анафаза;

11-13 - телофаза. разной длины.

В неделящемся ядре, как мы видели, хромосомы имеют вид тонких, неправильно расположенных нитей, переплетающихся друг с другом. В профазе происходит их укорачивание и утолщение. Вместе с тем каждая хромосома оказывается двойной. По длине ее проходит щель, разделяющая хромосому на две рядом лежащие и совершенно подобные друг другу половины.

На следующей стадии митоза - метафазе - оболочка ядра разрушается, ядрышки растворяются и хромосомы оказываются лежащими в цитоплазме. Все хромосомы располагаются при этом в один ряд, образуя так называемую экваториальную пластинку. Существенные изменения претерпевает центросома. Она делится на две части, которые расходятся, и между ними образуются нити, формирующие а х р о м атиновое веретено. Экваториальная пластинка хромосом располагается по экватору этого веретена.

На стадии анафазы происходит процесс расхождения к противоположным полюсам дочерних хромосом, образовавшихся, как мы видели, в результате продольного расщепления материнских хромосом. Расходящиеся в анафазе хромосомы скользят по нитям ахроматинового веретена и в конце концов собираются двумя группами в области центросом.

Во время последней стадии митоза - телофазы - происходит восстановление структуры неделящегося ядра. Вокруг каждой группы хромосом образуется ядерная оболочка. Хромосомы вытягиваются и утончаются, превращаясь в длинные, беспорядочно расположенные тонкие нити. Выделяется ядерный сок, в котором появляется ядрышко.

Одновременно со стадиями анафазы и телофазы происходит разделение на две половины цитоплазмы клетки, которое осуществляется обычно путем простой перетяжки.

Как видно из нашего краткого описания, процесс митоза сводится в первую очередь к правильному распределению хромосом между дочерними ядрами. Хромосомы состоят из пучков нитевидных молекул ДНК, расположенных по продольной оси хромосомы. Видимому началу митоза предшествует, как это теперь установлено точными количественными измерениями, удвоение ДНК, молекулярный механизм которого мы уже рассмотрели выше.

Таким образом, митоз и расщепление хромосом во время него является лишь видимым выражением процессов удвоения (ауторепродукции) молекул ДНК, осуществляемого на уровне молекул. ДНК определяет через посредство РНК белковый синтез. Качественные особенности белков «закодированы» в структуре ДНК. Поэтому очевидно, что точное разделение хромосом в митозе, базирующееся на редупликации (ауторепродукции) молекул ДНК, лежит в основе «наследственной информации» в ряде следующих друг за другом поколений клеток и организмов.

Число хромосом, так же как их форма, размеры и т. п., является характерным признаком каждого вида организмов. У человека, например, имеется 46 хромосом, у окуня - 28, у мягких пшениц - 42 и т. п.