Эукариотические клетки произошли в процессе симбиоза. Гипотезы происхождения эукариотических клеток

Следует отметить три гипотезы происхождения эукариотических клеток:

  • симбиотическая гипотеза , или симбиогенез ,
  • инвагинационная ,
  • химерная .

На сегодняшний день в научном мире основной гипотезой происхождения эукариот признается симбиогенез .

Согласно симбиогенезу такие органеллы эукариотических клеток как , хлоропласты и жгутики произошли путем внедрения одних прокариот в другую, более крупную прокариотическую клетку, сыгравшую роль клетки-хозяина.

В симбиотической гипотезе есть трудности при объяснении происхождения ядра эукариотических клеток и в вопросе, какой же все-таки прокариот выступил хозяином. Данные молекулярного анализа генома и белков эукариот показывают, что, с одной стороны, это был организм близкий к археям (раньше относились к бактериям, потом их выделили в отдельную ветвь). С другой стороны, в эукариотах имеются белки (и ответственные за их синтез гены), характерные для совершенной других групп прокариот.

Согласно инвагинационной гипотезе происхождения эукариотических клеток их органоиды образовались путем впячивания цитоплазматической мембраны с последующим отделением этих структур. Образовывались что-то вроде шариков, окруженных мембраной и содержащих внутри цитоплазму и захваченные сюда соединения и структуры. В зависимости от того, что попало внутрь, сформировались разные органоиды.

У прокариот нет настоящих органелл, их функции как раз и выполняют впячивания мембраны. Поэтому легко представить подобное ее отшнуровывание. Также в пользу инвагинационной гипотезы говорит схожесть цитоплазматической мембраны и двойных мембран органелл.

С точки зрения инвагинагенеза происхождение ядра легко объяснимо, но необъяснимо, почему геном и рибосомы ядерно-цитоплазматического комплекса отличаются от таковых в хлоропластах и митохондриях (вспомним, что в них также есть ДНК и рибосомы). Причем в указанных органеллах система биосинтеза белка (ДНК, РНК, рибосомы) схожа с прокариотами.

Это отличие хорошо объяснимо как раз с точки зрения первой, симбиотической, гипотезы. Согласно ей в анаэробный прокариот так или иначе попал аэробный прокариот. Он не переварился, а стал, наоборот, питаться за счет клетки-хозяина. В свою очередь он использовал кислород для получения энергии, а этот способ окисления намного эффективнее, избыток энергии он отдавал хозяину-прокариоту, который в таком случае также получал выгоду. Возник симбиоз. В последствии внедрившийся прокариот упростился, часть его генома мигрировала в клетку-хозяина, он уже не мог существовать независимо.

Подобным образом симбиогенез объясняет происхождение хлоропластов. Только внедрялись уже прокариоты, способные к фотосинтезу (подобные синезеленым водорослям).

Первые эукариоты без фотосинтезирующих симбионтов дали начало животным, у которых они появились - растениям.

В настоящее время существуют простейшие (одноклеточные эукариотические организмы) у которых нет митохондрий или хлоропластов. Зато вместо них в цитоплазме поселяются прокариоты-симбионты, выполняющие соответствующие функции. Этот факт, а также схожесть системы биосинтеза белка митохондрий и пластид с прокариотами рассматриваются как доказательства симбиогенеза. Доказательством также служит то, что митохондрии и хлоропласты размножаются самостоятельно, они никогда не строятся клеткой с нуля.

В пользу третьей, химерной, гипотезы происхождения эукариотических клеток, говорит большой размер их генома, который превосходит бактериальный в тысячи и более раз, а также разнообразие синтезируемых белков, встречающихся в разных группах прокариот. Понятно, что на протяжении эволюции эукариот их геном усложнялся, он удвоился, в нем появилось множество регулирующих генов. Но все же первоначальное увеличение размера генома могло произойти за счет объединения геномов нескольких прокариот.

Возможно в древности некий прокариот приобрел способность к фагоцитозу и, питаясь таким образом, поглощал в том числе других прокариот, которые не всегда переваривались. Их геном содержал полезные для хозяина гены, и он включал их в свой геном. Возможно некоторые из оказавшихся внутри прокариот становились органеллами, что объединяет химерную гипотезу с симбиогенезом.

Поскольку все перечисленные гипотезы имеют сильные и слабые стороны, а также во многом не исключают положения друг друга, то, на наш взгляд, в происхождении структур эукариотических клеток могло сыграть роль сочетание множества факторов, описываемых разными гипотезами.

Следует также отметить, что согласно симбиотической гипотезе происхождение других мембранных органелл таких как вакуоли, комплекс Гольджи и др. можно рассматривать как дальнейшее упрощение, например, митохондрий.

Также отметим, что сочетание в эукариотах белков из разных прокариот вовсе может не указывать на химеризм первых. Возможно, что определенные ферментативные функции могут выполнять только белки конкретного строения. И эволюция эукариот повторно приходила к этому, независимо от эволюции не являющихся их предками групп прокариот. Скажем, происходила конвергенция на молекулярном уровне.

Появление эукариот – важнейшее событие. Изменило структуру биосферы и открыло принципиально новые возможности для прогрессивной эволюции. Эукариотическая клетка является результатом долгой эволюции мира прокариот, мира, в котором разнообразные микробы приспосабливались друг к другу и искали способы эффективной кооперации.

набросок хронологии (повторение)



Фотосинтезирующий прокариотический комплекс Chlorochromatium aggregatum.

Эукариоты возникли в результате симбиоза нескольких видов прокариот. Прокариоты вообще весьма склонны к симбиозу (см. главу 3 в книге «Рождение сложности»). Вот интересная симбиотическая система, известная под названием Chlorochromatium aggregatum. Живет в глубоких озерах, где есть на глубине бескислородные условия. Центральный компонент – подвижная гетеротрофная бета-протеобактерия. Вокруг нее стопками располагаются от 10 до 60 фотосинтезирующих зеленых серных бактерий. Все компоненты соединены выростами наружной мембраны центральной бактерии. Смысл содружества в том, что подвижная бета-протеобактерия перетаскивает всю компанию в места, благоприятные для жизни привередливых серных бактерий, а серные бактерии занимаются фотосинтезом и обеспечивают пищей и себя, и бета-протеобактерию. Может быть, какие-то древние микробные ассоциации примерно такого типа и были предками эукариот.


Теория симбиогенеза. Мережковский, Маргулис. Митохондрии – потомки альфа-протеобактерий, пластиды – потомки цианобактерий. Труднее понять, кто был предком всего остального, то есть цитоплазмы и ядра. Ядро и цитоплазма эукариот сочетает в себе признаки архей и бактерий, а также имеет множество уникальных особенностей.

О митохондриях. Возможно, именно приобретение митохондрий (а не ядра) было ключевым моментом в становлении эукариот. Большинство генов предков митохондрий было перенесено в ядро, где они попали под контроль ядерных регуляторных систем. Эти ядерные гены митохондриального происхождения кодируют не только белки митохондрий, но и многие белки, работающие в цитоплазме. Это говорит о том, что митохондриальный симбионт сыграл более важную роль в формировании эукариотической клетки, чем предполагалось.

Совместное существование в одной клетке двух разных геномов требовало развития эффективной системы их регуляции. А для того, чтобы эффективно управлять работой большого генома, необходимо изолировать геном от цитоплазмы, в которой протекает обмен веществ и идут тысячи химических реакций. Ядерная оболочка как раз и отделяет геном от бурных химических процессов цитоплазмы. Приобретение симбионтов (митохондрий) могло стать важным стимулом в развитии ядра и генно-регуляторных систем.

То же относится и к половому размножению. Без полового размножения можно жить до тех пор, пока геном у вас достаточно маленький. Организмы с большим геномом, но лишенные полового размножения, обречены на быстрое вымирание, за редчайшими исключениями.


Альфапротеобактерии – к этой группе относились предки митохондрий.

Родоспириллум – удивительный микроорганизм, который может жить и за счет фотосинтеза, в том числе и в анаэробных условиях, и как аэробный гетеротроф, и даже как аэробный хемоавтотроф. Он может, например, расти за счет окисления угарного газа СО, не используя никаких других источников энергии. Вдобавок ко всему этому, он умеет еще и фиксировать атмосферный азот. То есть это в высшей степени универсальный организм.


Иммунная система принимает митохондрии за бактерии. Когда при травме в кровь попадают разрушенные митохондрии, из них высвобождаются характерные молекулы, которые встречаются только у бактерий и у митохондрий (кольцевая ДНК бактериального типа и белки, несущие на одном из своих концов особую модифицированную аминокислоту формилметионин). Это связано с тем, что аппарат синтеза белка в митохондриях остался таким же, как у бактерий. Клетки иммунной системы – нейтрофилы – реагируют на эти митохондриальные вещества точно так же, как на бактериальные, и при помощи тех же рецепторов. Это ярчайшее подтверждение бактериальной природы митохондрий.


Главная функция митохондрий – кислородное дыхание. Скорее всего, стимулом для объединения анаэробного предка ядра и цитоплазмы с «протомитохондрией» была необходимость защититься от токсического действия кислорода.

Откуда взялись у бактерий, и в том числе у альфапротеобактерий, молекулярные системы, необходимые для кислородного дыхания? Похоже, в их основу были положены молекулярные системы фотосинтеза. Электронно-транспортная цепь, сформировавшаяся у бактерий как часть фотосинтетического аппарата, была адаптирована для кислородного дыхания. У некоторых бактерий до сих пор участки электронно-транспортных цепей используются одновременно и в фотосинтезе, и в дыхании. Скорее всего предками митохондрий были аэробные гетеротрофные альфа-протеобактерии, которые, в свою очередь, произошли от фотосинтезирующих альфа-протеобактерий, таких как родоспириллум.


Число общих и уникальных белковых доменов у архей, бактерий и эукариот. Белковый домен – это часть белковой молекулы, имеющая определенную функцию и характерную структуру, то есть последовательность аминокислот. Каждый белок, как правило, содержит один или несколько таких структурно-функциональных блоков, или доменов.

4,5 тысячи белковых доменов, которые есть у эукариот, можно разделить на 4 группы: 1) имеющиеся только у эукариот, 2) общие для всех трех надцарств, 3) общие для эукариот и бактерий, но отсутствующие у архей; 4) общие для эукариот и архей, но отсутствующие у бактерий. Мы рассмотрим две последние группы (они на рисунке выделены цветом), поскольку для этих белков можно с определенной уверенностью говорить об их происхождении: соответственно бактериальном или архейном.


Ключевой момент в том, что эукариотические домены, предположительно унаследованные от бактерий и от архей, имеют существенно разные функции. Домены, унаследованные от архей (их функциональный спектр показан на левом графике), играют ключевую роль в жизни эукариотической клетки. Среди них преобладают домены, связанные с хранением, воспроизведением, организацией и считыванием генетической информации. Большинство "архейных" доменов относится к тем функциональным группам, в пределах которых горизонтальный обмен генами у прокариот происходит реже всего. Видимо, эукариоты получили этот комплекс путем прямого (вертикального) наследования от архей.

Среди доменов бактериального происхождения тоже есть белки, связанные с информационными процессами, но их мало. Большинство из них работает только в митохондриях или пластидах. Эукариотические рибосомы цитоплазмы имеют архейное происхождение, рибосомы митохондрий и пластид имеют бактериальное происхождение.

Среди бактериальных доменов эукариот значительно выше доля сигнально-регуляторных белков. От бактерий эукариоты унаследовали многие белки, ответственные за механизмы реагирования клетки на факторы внешней среды. А также – многие белки, связанные с обменом веществ (подробнее см. в главе 3 «Рождения сложности»).

Эукариоты имеют:

· Архейную «сердцевину» (механизмы работы с генетической информацией и синтеза белка)

· Бактериальную «периферию» (обмен веществ и сигнально-регуляторные системы)

· Простейший сценарий: АРХЕЯ проглотила БАКТЕРИЙ (предков митохондрий и пластид) и все свои бактериальные признаки приобрела от них.

· Этот сценарий слишком прост, потому что у эукариот много бактериальных белков, которые не могли быть заимствованы у предков митохондрий или пластид.

У эукариот много «бактериальных» доменов, не характерных ни для цианобактерий (предков пластид), ни для альфапротеобактерий (предков митохондрий). Они были получены от каких-то других бактерий.




Птицы и динозавры. Реконструировать прото-эукариот трудно. Ясно, что та группа древних прокариот, которая дала начало ядру и цитоплазме, обладала рядом уникальных особенностей, которых нет у прокариот, доживших до наших дней. И когда мы пытаемся реконструировать облик этого предка, мы сталкиваемся с тем, что простор для гипотез оказывается слишком большим.

Аналогия. Известно, что птицы произошли от динозавров, причем не от каких-то неизвестных динозавров, а от вполне определенной группы – манирапторых динозавров, которые относятся к тероподам, а тероподы в свою очередь – это одна из групп ящеротазовых динозавров. Найдено много переходных форм между нелетающими динозаврами и птицами.

Но что бы мы могли сказать о предках птиц, если бы ископаемой летописи не было? В лучшем случае мы бы выяснили, что ближайшей родней птиц являются крокодилы. Но смогли бы мы воссоздать облик прямых предков птиц, то есть динозавров? Вряд ли. Но именно в таком положении мы и находимся, когда пытаемся восстановить облик предка ядра и цитоплазмы. Ясно, что это была группа неких прокариотических динозавров, группа вымершая и не оставившая, в отличие от настоящих динозавров, внятных следов в геологической летописи. Современные археи по отношению к эукариотам – это как современные крокодилы по отношению к птицам. Попробуйте восстановить строение динозавров, зная только птиц и крокодилов.


Аргумент в пользу того, что в докембрии жило много всяких микробов, не похожих на нынешние. Протерозойские строматолиты были намного сложнее и разнообразнее современных. Строматолиты – продукт жизнедеятельности микробных сообществ. Не значит ли это, что и протерозойские микробы были разнообразнее современных, и что многие группы протерозойских микробов просто не дожили до наших дней?



Предковое сообщество эукариот и происхождение эукариотической клетки (возможный сценарий)

Гипотетическое «предковое сообщество» - типичный бактериальный мат, только в его верхнем жили предки цианобактерий, еще не перешедшие к оксигенному фотосинтезу. Они занимались аноксигенным фотосинтезом.Донором электронов служила не вода, а сероводород. В качестве побочного продукта выделялись сера и сульфаты.

Во втором слое обитали пурпурные фотосинтезирующие бактерии, в том числе – альфапротеобактерии, предки митохондрий. Пурпурные бактерии используют длинноволновой свет (красный и инфракрасный). Эти волны обладают лучшей проникающей способностью. Пурпурные бактерии и сейчас часто живут под слоем цианобактерий. Пурпурные альфапротеобактерии тоже используют в качестве донора электрона сероводород.

В третьем слое были бактерии-бродильщики, перерабатывающие органику; некоторые из них в качестве отходов выделяли водород. Это создавало базу для сульфатредуцирующих бактерий. Там могли быть и метаногенные археи. Среди обитавших здесь архей были и предки ядра и цитоплазмы.

Начало кризисным событиям положил переход цианобактерий к кислородному фотосинтезу. В качестве донора электрона цианобактерии начали использовать вместо сероводорода обычную воду. Это открывало большие возможности, но имело и негативные последствия. Вместо серы и сульфатов при фотосинтезе стал выделяться кислород – вещество крайне токсичное для всех древних обитателей земли.

Первыми с этим ядом столкнулись его производители – цианобактерии. Они же, вероятно, первыми стали вырабатывать средства защиты от него. Электронно-транспортные цепи, служившие для фотосинтеза, были модифицированы и начали служить для аэробного дыхания. Изначальная цель, видимо, заключалась не в получении энергии, а только в нейтрализации кислорода.

Вскоре и обитателям второго слоя сообщества – пурпурным бактериям – пришлось вырабатывать аналогичные системы защиты. Так же, как и цианобактерии, они сформировали системы аэробного дыхания на основе фотосинтетических систем. Именно у пурпурных альфапротеобактерий развилась наиболее совершенная дыхательная цепь, которая ныне функционирует в митохондриях эукариот.

В третьем слое сообщества появление свободного кислорода должно было вызвать кризис. Метаногены и многие сульфатредукторы утилизируют молекулярный водород при помощи ферментов-гидрогеназ. Такие микробы не могут жить в аэробных условиях, потому что кислород ингибирует гидрогеназы. Многие бактерии, выделяющие водород, в свою очередь, не растут в среде, где нет микроорганизмов, его утилизирующих. Из бродильщиков в составе сообщества, по-видимому, остались формы, выделяющие в качестве конечных продуктов низкоорганические соединения (пируват, лактат, ацетат и т.п.). Эти бродильщики выработали свои средства защиты от кислорода, менее эвффективные. К числу выживших относились и археи – предки ядра и цитоплазмы.

Может быть, в этот кризисный момент и произошло ключевое событие – ослабление генетической изоляции у предков эукариот и начало активного заимствования чужих генов. Прото-эукариоты инкорпорировали гены разных бродильщиков до тех пор, пока не стали сами микроаэрофильными бродильщиками, сбраживающими углеводы до пирувата и молочной кислоты.

Обитатели третьего слоя – предки эукариот – теперь непосредственно контактировали с новыми обитателями второго слоя – аэробными альфапротеобактериями, которые научились использовать кислород для получения энергии. Метаболизм прото-эукариот и альфапротеобактерий стал взаимодополнительным, что создавало предпосылки для симбиоза. Да и само расположение альфапротеобактерий в сообществе (между верхним, выделяющим кислород, и нижним слоем) предопределяло их роль как «защитников» предков эукариот от избытков кислорода.

Вероятно, прото-эукариоты заглатывали и приобретали в качестве эндосимбионтов многих разных бактерий. Экспериментирование такого рода и сейчас продолжается у одноклеточных эукариот, обладающих огромным разнообразием внутриклеточных симбионтов. Из этих экспериментов союз с аэробными альфапротеобактериями оказался наиболее удачным.

Биология и генетика

Согласно симбиотической гипотезе популярной в настоящее время корпускулярные органеллы эукариотической клетки имеющие собственный геном характеризуются независимым происхождением и ведут начало от прокариотических клетоксимбионтов. Первоначально объем информации и геномах клеткихозяина с одной стороны и симбионтов презумптивных митохондрий центриолей и хлоропластов с другой был повидимому сопоставим. В дальнейшем могла произойти утрата геномами симбионтов части генетических функций с перемещением блоков генов в геном...

Гипотезы происхождения эукариотических клеток.

1.Симбиотическая.

Согласно симбиотической гипотезе, популярной в настоящее время, корпускулярные органеллы эукариотической клетки, имеющие собственный геном, характеризуются независимым происхождением и ведут начало от прокариотических клеток-симбионтов. Предположительно клеткой-хозяином служил анаэробный прокариот, способный лишь к амебоидному движению. Митохондрии и жгутики произошли путем изменений проникших в клетку-хозяина симбионтов — аэробных прокариотов и бактерий, напоминающих современных спирохет. Хлоропласты клеток зеленых растений возникли из симбионтов — прокариотических клеток сине-зеленых водорослей. Особое значение имело приобретение клеткой в процессе эволюции жгутиков с базальными тельцами, близкими к центриолям. Это позволило интенсифицировать двигательную активность и создать механизм митоза.

Трудным является вопрос о происхождении ядра. Первоначально объем информации и геномах клетки-хозяина, с одной стороны, и симбионтов — презумптивных митохондрий, центриолей и хлоропластов, с другой, был, по-видимому, сопоставим. В дальнейшем могла произойти утрата геномами симбионтов части генетических функций с перемещением блоков генов в геном клетки-хозяина. Это сопровождалось ростом объема ядерного генома, централизацией генетической регуляции функций клетки и потерей митохондриями и другими корпускулярными органеллами их автономности. Нельзя, однако, исключить, что ядро также представляет собой производное внутриклеточного симбионта. Происхождение внутриплазматических мембран шероховатой и гладкой цитоплазматической сети, пластинчатого комплекса и везикуло-вакуолярных структур объясняют эволюционными преобразованиями наружной мембраны ядерной оболочки. Симбиотическая гипотеза не объясняет ряд фактов. Так, белок бациллин, из которого состоят реснички и жгутики современных прокариот, отличен от белка тубулина эукариот. У бактерий не обнаружено структур с типичным для жгутиков, ресничек, базальных телец или центриолей эукариотической клетки составом микротрубочек «9 + 2» или «9 + 0».

2.Инвагинационная.

Инвагинационная гипотеза происхождения эукариотической клетки исходит из того, что предковый формой был аэробный прокариот. Он содержал несколько геномов, каждый из которых прикреплялся к клеточной оболочке. Корпускулярные органеллы, имеющие ДНК, а также ядро, возникли в результате впячивания и отшнуровки фрагментов оболочки вместе с геномом с последующей функциональной специализацией в ядро, митохондрии, хлоропласты, усложнением ядерного генома, развитием цитоплазматических мембран. Эта гипотеза удовлетворительно объясняет наличие 2 мембран в оболочке ядра, митохондрий и хпоропластов. Она встречается с трудностями в объяснении различий в деталях процесса биосинтеза белка в корпускулярных органеллах и цитоплазме эукариотической клетки. В митохондриях и хлоропластах этот процесс в точности соответствует таковому в современных прокариотических клетках. Симбиотическая и инвагинационная гипотезы не исчерпывают все точки зрения на происхождение эукариотического типа клеточной организации.

3.Возникновение многоклеточности.

Предком многоклеточных были колониальные формы гетеротрофных простейших.

1 этап: возле каждого жгутика имелся вырост цитоплазмы – воротничок или кармашек, в который загонялись пищевые частички (фагоцитоз).


2 этап: специализация клеток – фагоциты (фагоцитарно-пищеварительная ф-ция) и киноциты (ф-ция – движение; остались на периферии). Внутр. слой – фагоцитобласта + нар. – киноцитобласта = фагоцителла или паренхимелла (Мечников).

3 этап: на одном полюсе образуется рот. отверстие => дала начало губкам, кишечнополостным и др.

По Геккелю: шар.колония морея путем наполнения жидкости образуется пузырькообразный организм(бластея) инвагинация двуслойное существо(гастрея); (Геккель считал, что первым было полостное пищеварение).

4.Особенности многоклеточных.

Многоклеточные животные образуют самую многочисленную группу живых организмов планеты, насчитывающую более 1,5 млн. видов. Ведя свое происхождение от простейших, они претерпели в процессе эволюции существенные преобразования, связанные с усложнением организации.

Одной из важнейших черт организации многоклеточных является морфологическое и функциональное различие клеток их тела. В ходе эволюции сходные клетки в теле многоклеточных животных специализировались на выполнении определенных функций, что привело к формированию тканей.

Разные ткани объединились в органы, а органы — в системы органов. Для осуществления взаимосвязи между ними и координации их работы образовались регуляторные системы — нервная и эндокринная. Благодаря нервной и гуморальной регуляции деятельности всех систем, многоклеточный организм функционирует как целостная биологическая система.

Процветание группы многоклеточных животных связано с усложнением анатомического строения и физиологических функций. Так, увеличение размеров тела привело к развитию пищеварительного канала, что позволило им питаться крупным пищевым материалом, поставляющим большое количество энергии для осуществления всех процессов жизнедеятельности. Развившиеся мышечная и скелетная системы обеспечили передвижение организмов, поддержание определенной формы тела, защиту и опору для органов. Способность к активному передвижению позволила животным осуществлять поиск пищи, находить укрытия и расселяться.

С увеличением размеров тела животных возникла необходимость в появлении внутритранспортных циркуляторных систем, доставляющих удаленным от поверхности тела тканям" и органам средства жизнеобеспечения — питательные вещества, кислород, а также удаляющих конечные продукты обмена веществ.

Такой циркуляторной транспортной системой стала жидкая ткань — кровь.

Интенсификация дыхательной активности шла параллельно с прогрессивным развитием нервной системы и органов чувств. Произошло перемещение центральных отделов нервной системы в передний конец тела животного, в результате чего обособился головной отдел. Такое строение передней части тела животного позволило ему получать информацию об изменениях в окружающей среде и адекватно реагировать на них.

Многоклеточные животные чрезвычайно разнообразны по строению, особенностям жизнедеятельности, различны по размерам, массе тела и т. д.

Урок соответствует программе и учебнику И.Н. Пономаревой, которые предусматривают изучение цитологии в 11-м классе. Занятие проводится в форме научной дискуссии и рассчитано на 90 мин.

Цели урока : ознакомление с важнейшими гипотезами о происхождении эукариотической клетки и многоклеточных организмов; развитие способности аргументированно излагать и отстаивать свою точку зрения; воспитание культуры ведения публичной дискуссии.

Оборудование : таблицы с изображением строения клетки и ее отдельных органоидов, схема возникновения эукариотической клетки, рисунки с изображением трихоплакса и различных форм водорослей.

ХОД УРОКА

Учитель. По мере развития науки о клетке – цитологии и появления новых результатов исследований этой элементарной биологической системы между учеными возникали горячие споры, переходившие в серьезные научные дискуссии. На протяжении всей истории цитологии как науки практически любая новая гипотеза приобретала как своих сторонников, так и противников.
Научная дискуссия – это публичное обсуждение какого-либо вопроса или проблемы. Сегодня на уроке мы проведем дискуссию, в ходе которой обсудим две важнейшие проблемы цитологии: проблему происхождения первых эукариот и проблему происхождения первых многоклеточных организмов.
Вы знаете, что класс был предварительно разбит на группы, которые будут представлять и отстаивать различные точки зрения на эти две обсуждаемые нами проблемы. Напомню названия этих групп.

1. Сторонники аутогенной гипотезы происхождения эукариотической клетки и ее органоидов.
2. Сторонники симбиогенной гипотезы происхождения эукариотической клетки и ее органоидов.
3. Сторонники гипотезы колониального происхождения первых одноклеточных организмов.
4. Сторонники гипотезы происхождения многоклеточных от инфузорий путем целлюляризации их клеток.

Представители каждой группы в кратком выступлении изложат суть той или иной точки зрения на каждую из обсуждаемых проблем, а затем ответят на вопросы, замечания, возражения как своих научных «противников», так и всех присутствующих в классе.
Проблема происхождения мембранных органоидов и ядра эукариотической клетки относится к наиболее актуальным дискуссионным темам современной цитологии. Для решении этой проблемы в науке предложено несколько различных гипотез. Познакомимся с двумя важнейшими из них.

Аутогенная гипотеза происхождения эукариотической клетки

Выступление представителей первой группы учащихся

Первые эукариоты появились на Земле 1,1–1,4 млрд лет назад (в протерозойскую эру). Это было следующим важнейшим рубежом в докембрийской эволюции после возникновения фотосинтеза.
Аутогенная, или сукцессионная, гипотеза утверждает, что сложная эукариотическая клетка развилась прямо из прокариотической: в результате впячивания плазматической мембраны с последующей ее перестройкой для выполнения тех или иных функций возникли важнейшие органоиды. А такие сложные органоиды, как митохондрии и пластиды, ведут свое начало от имеющихся у прокариот внутриплазматических мембранных структур трубчатого строения.

Вопросы

1. Чем подтверждается подобная точка зрения? Есть ли переходные формы, т.е. прокариотические клетки с «зачатками» органоидов эукариот?

Ответ. Среди ныне живущих организмов подобных реликтовых форм нет. Но вспомним о наличии в клетках бактерий мезосом, т.е. мембранных структур трубчатой и везикулярной (шаровидной) формы, образующихся путем впячиваний плазматической мембраны внутрь цитоплазмы. Предполагается, что мезосомы участвуют в образовании клеточных перегородок, репликации ДНК и других процессах. Вполне возможно, что именно на основе мезосом постепенно возник и дифференцировался мембранный комплекс, давший начало различным органоидам эукариотической клетки.

2. Известно, что биохимический состав ряда органоидов, в частности митохондрий и хлоропластов, сильно отличается от состава плазматической мембраны цитоплазмы. Разве это не указывает на их происхождение не от исходной клеточной мембраны – плазмалеммы?

Ответ. Действительно, белковый состав митохондрий и хлоропластов своеобразен. Но это своеобразие могло быть вторично приобретенным, могло стать результатом приспособленности к выполнению этими органоидами определенных функций.

Учитель. Выслушаем доводы сторонников симбиогенного происхождения эукариот и определим, какая гипотеза более популярна в классе.

Симбиогенная гипотеза происхождения эукариотической клетки

Выступление представителей второй группы учащихся

Симбиогенная гипотеза (теперь часто ее называют теорией) исходит из того, что эукариоты представляют собой результат симбиоза между различными прокариотами.
Еще в начале XX в. русские ботаники А.С. Фаминцын, Б.М. Козо-Полянский и К.С. Мережковский выдвинули гипотезу о том, что клетка зеленых растений (эукариот) получила пластиды в результате симбиоза бесхлорофилльной клетки с клетками синезеленых водорослей. Эта гипотеза симбиогенного происхождения клетки эукариот опередила свое время, была забыта и вновь привлекла к себе внимание в середине XX в.
Названную гипотезу разработала Линн Саган-Маргулис (1983 г.). Согласно этой гипотезе, первичная клетка крупной прокариотической бактерии, вступив в симбиоз с клетками синезеленых водорослей, приобрела пластиды. Симбиоз с гетеротрофными прокариотическими клетками привел к их преобразованию в митохондрии. Некоторые клетки, будучи гетеротрофами, захватывали других, более мелких бактерий, которых они по неизвестным причинам не переваривали. Захваченные мелкие клетки прокариот были способны поглощать кислород. Это свойство было выгодным фактом для клетки, поглотившей бактерию, так как давало ей гораздо больше энергии, аккумулированной в молекулах АТФ.

Вопросы

1. Какие же доказательства приводятся в пользу симбиогенного происхождения пластид и митохондрий?

Ответ. Доказательства этой точки зрения следующие.
1. Митохондрии и хлоропласты окружены двойной мембраной.
2. Эти органоиды размножаются путем деления, а не отпочковываются от каких-нибудь других мембранных органоидов.
3. Митохондрии и хлоропласты имеют свой генетический материал, в котором закодированы только их собственные белки.
4. ДНК этих органоидов имеет кольцевую структуру, как у прокариот, а не линейную, как у эукариот.
5. Митохондрии и хлоропласты имеют свой собственный аппарат для синтеза РНК и белков, и их рибосомы больше похожи на прокариотические, чем на эукариотические.
6. Некоторые белки этих органоидов похожи по своей первичной структуре на аналогичные белки бактерий и не похожи на соответствующие белки цитоплазмы.

2. Известно, что не все белки митохондрий и хлоропластов синтезируются по их собственной ДНК, часть белков этих органоидов закодирована в ДНК ядра. Как вы можете объяснить этот факт?

Ответ. Действительно, в собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. По-видимому, в ходе эволюции происходило «перетекание» части генетического материала из геномов митохондрий и хлоропластов в ядерный геном. Геном хлоропластов более объемный, чем геном митохондрий, а геном митохондрий низших эукариот (например, дрожжей) более объемный, чем у млекопитающих, что косвенно подтверждает высказанное предположение.

3. Мы знаем, что помимо митохондрий и хлоропластов небольшое количество ДНК в клетке эукариот содержится также в центриолях и основании жгутиков. Они также возникли симбиогенно?

Ответ. Да. Симбиоз со спирохетоподобными бактериями мог привести к появлению жгутиков, с одной стороны, и к трансформации части этих спирохетоподобных клеток в центриоли – с другой. Современная концепция симбиогенеза утверждает, что клетка эукариот сформировалась в результате нескольких последовательных актов симбиогенеза.

4. Как возникли остальные органоиды эукариотической клетки (комплекс Гольджи, ЭПС, лизосомы)?

Ответ. Допускается, что эндоплазматическая сеть, лизосомы и аппарат Гольджи могли возникнуть путем впячивания плазматической мембраны.

5. Как, согласно симбиогенной гипотезе, могло возникнуть ядро, окруженное двойной мембраной?

Ответ. Допускается, что и ядро развилось вследствие обособления ДНК из цитоплазмы путем впячивания плазматической мембраны и обволакивания ядерного вещества.

6. Из ваших ответов на последние два вопроса следует, что появление эукариотической клетки – результат не только наследственного симбиоза нескольких прокариот. Что вы на это скажите?

Ответ. Да, это так. Сторонники симбиогенной гипотезы допускают, что некоторые структуры эукариотической клетки возникли в результате ее саморазвития и усложнения.

7. Вы привели биохимические, генетические, электронно-микроскопические данные последних лет в пользу симбиогенетического происхождения клетки эукариот. Но существуют ли эволюционные реликты, так называемые живые ископаемые, указывающие на связи между прокариотами и эукариотами?

Ответ. Такие связи наблюдаются среди растительных и животных организмов. Например, свободноживущая амеба Pelomyxa palustris (пеломикса болотная) не имеет митохондрий, но содержит в себе симбиотические бактерии, которые обеспечивают ей дыхание.

Учитель. Мне кажется, что вопросов представителям второй группы было задано достаточно. Сторонники какой гипотезы высказали, на ваш взгляд, более убедительные аргументы и какая гипотеза находит большее признание в науке?
Действительно, симбиогенная гипотеза находит большое количество сторонников. Но следует помнить, что высказанные в пользу симбиогенной гипотезы соображения не имеют экспериментального подтверждения, поэтому ее нельзя считать теорией. На мой взгляд, важно помнить также, что симбиоз сыграл выдающуюся, но не единственную роль в возникновении эукариотической клетки. Важное значение в становлении эукариот имели и процессы саморазвития прокариотических клеток.
Перейдем к следующей проблеме – проблеме происхождения многоклеточных организмов.

Гипотезы колониального происхождения первых многоклеточных

Учитель. Успехи развития цитологии и молекулярной биологии доказали структурное и биохимическое родство одноклеточных и многоклеточных организмов. Все это подтвердило гипотезу о происхождении многоклеточных животных от одноклеточных форм. Основные научные споры касаются вопросов о том, от каких простейших произошли многоклеточные животные и как выглядели первые многоклеточные? Существует много гипотез о происхождении многоклеточных животных от простейших. Рассмотрим некоторые из них.

Выступление представителей третьей группы учащихся

Было справедливо замечено, что существует множество гипотез о происхождении многоклеточных животных от простейших. Наиболее аргументированной среди них, на наш взгляд, следует считать колониальную гипотезу.
Первую колониальную гипотезу происхождения многоклеточных предложил Эрнст Геккель. Он разработал свою «теорию гастреи», по которой общий предок всех многоклеточных животных похож на свободноплавающую личинку кишечнополостных – кораллов с двумя слоями клеток.
Русский биолог Илья Ильич Мечников предложил другую гипотезу: многоклеточные животные возникли из колониальных жгутиковых простейших, способных к фагоцитозу, т.е. захватыванию пищи клетками с внутриклеточным перевариванием. В этой теории предполагается, что поверхностные клетки, захватившие пищу, погружаются в глубину тела колонии для переваривания, освобождая место голодным клеткам. В результате получается организм, в котором клетки внутреннего слоя переваривают пищу, а наружный слой, состоящий из голодных клеток, ее захватывает. Он же осуществляет функции рецепции, движения и защиты. Предполагаемый организм Мечников назвал фагоцетеллой (организм, состоящий из клеток, занятых фагоцитозом).
Наконец, третью гипотезу выдвинул немецкий зоолог О.Бючли. Согласно ей, исходный многоклеточный организм состоял из двух слоев клеток, причем, нижней стороной он ползал по грунту, а верхняя сторона имела защитную и чувствительную функции. Встретив пищу крупных размеров, такой организм обвивал ее и переваривал нижним слоем. Бючли назвал этот предполагаемый организм плакулой (животное в форме обволакивающей лепешки).

Вопросы

1. Какой же из трех названных гипотез вы отдаете предпочтение? Какая из них является наиболее признанной в науке?

Ответ. Отдать предпочтение какой-либо гипотезе трудно, так как отсутствуют палеонтологические данные о первых шагах эволюции многоклеточных животных. Ученые пытаются найти подтверждение гипотезам колониального происхождения многоклеточных животных, сравнивая гипотетические организмы с ныне живущими примитивными формами многоклеточных.

Самое примитивное известное ныне многоклеточное животное – трихоплакс (рис. 1). Оно было описано Артемием Васильевичем Ивановым (1973 г.). Трихоплакса нашли на европейском побережье Атлантического океана. Это животное имеет вид тонкой пластинки из двух слоев клеток со жгутиками. В полости его тела присутствуют отдельные пищеварительные клетки. Между двумя слоями клеток расположены клетки, похожие на амеб.
Исследовав трихоплакса, А.В. Иванов пришел к выводу, что он очень похож на гипотетическую фагоцетеллу И.И. Мечникова и представляет собой, по сути, ее живую модель. С другой стороны, трихоплакс похож также и на плакулу. Таким образом, открытие трихоплакса, похожего на личинку кишечнополостных, сближает гипотезы Геккеля (1866 г.), Мечникова (1877 г.) и Бючли (1884 г.).

2. Долгое время происхождение примитивных многоклеточных животных связывали с зелеными колониальными жгутиковыми типа эвдорины, вольвокса, пандорины. Разве их теперь не рассматривают в качестве форм, переходных к многоклеточности?

Ответ. Действительно, происхождение многоклеточных животных более не связывают с зелеными колониальными жгутиковыми. Эта точка зрения основывается на том, что их индивидуальное развитие и размножение близко к водорослям, а не к примитивным многоклеточным животным.

3. Каким же примитивным многоклеточным животным дал начало гипотетический колониальный организм? Были это губки, кишечнополостные или представители какого-то другого типа животных?

Ответ. Предполагается, что от фагоцетеллоподобных предков произошло сразу несколько типов многоклеточных животных с разным уровнем организации: губки, кишечнополостные и примитивные трехслойные животные, близкие к бескишечным планариям, относящимся к плоским червям. Губки и кишечнополостные представляют собой тупиковые ветви эволюции. Узкая специализация этих типов, приспособленность к неподвижному или пассивному образу жизни закрыла им возможности дальнейшего прогрессивного развития.

4. Вы все время говорите о происхождении первых многоклеточных животных, но ведь многоклеточность характерна не только для представителей царства животных. Как могли возникнуть многоклеточные грибы, растения?

Ответ. Современная наука считает, что у растений нет резкой грани между одноклеточностью и многоклеточностью. Многоклеточность неоднократно возникала независимо друг от друга в разных отделах растений. Так, у золотистых, разножгутиковых, пирофитовых, зеленых водорослей наблюдаются виды с нитчатым, колониально-многоклеточным и сифоновым строением (тело состоит из одной многоядерной гигантской клетки). Наличие подобных форм свидетельствует, на наш взгляд, о попытках прорыва на следующий уровень организации – многоклеточность, где разные клетки выполняют различные функции (рис. 2).

Рис. 2. Различные формы водорослей (1 – одноклеточные;
2 – колониальные; 3 – многоядерные; 4 – нитчатые)

Сведения, которыми располагает современная наука о развитии многоклеточных форм в докембрии, скудны. Особенно это относится к грибам. Причина – в плохой сохранности остатков этих организмов. Как и у ряда растений у грибов наблюдается переход от неклеточного строения (сифонального, как, например, у плесневого гриба мукора) к многоклеточности. Таким образом, по нашему мнению, на определенном этапе развития грибов (около 1,3 млрд лет назад) у некоторых из них сифональный мицелий превратился в многоклеточное образование.

Учитель. Подведем итог всему сказанному. Многоклеточные организмы, по данным современной науки, раньше появились среди растений и грибов. У животных первые многоклеточные формы возникли около 700 млн лет назад. Начало многоклеточным животным дали древние гетеротрофные колониальные жгутиковые организмы.

Гипотеза неколониального происхождения первых многоклеточных

Выступление представителей четвертой группы учащихся

Представители предыдущей группы настаивают на том, что отдаленными предками многоклеточных животных были колонии простейших. Это хотя и распространенная, но не единственная точка зрения.
Мы представляем гипотезу, предполагающую, что в процессе эволюции одиночные простейшие целиком превращались в многоклеточные существа. Эта идея была выдвинута известным сербским зоологом И.Хаджи. По его мнению, многоклеточные животные произошли от многоядерных инфузорий.
Инфузории обладают довольно сложным строением. Их цитоплазма представлена двумя слоями – периферической и центральной, в которой осуществляется внутриклеточное пищеварение. Инфузории имеют клеточный рот, глотку, сократительные вакуоли с приводящими канальцами. Все эти различно дифференцированные части одноклеточного организма – органоиды – Хаджи считает прообразом органов многоклеточного животного. Так, он считает, что кожные покровы многоклеточных существ произошли от наружного слоя цитоплазмы (эктоплазмы), а их кишечник – из внутреннего слоя цитоплазмы (энтоплазмы).
Переход от одноклеточного состояния к многоклеточному мог совершиться в теле инфузории сразу путем образования клеточных границ вокруг отдельных ядер и прилегающих к ним участков цитоплазмы. Этот предполагаемый процесс получил название «целлюляризация» (от латинского слова cellula – клетка), а сама гипотеза именуется теорией целлюляризации.

Вопросы

1. Имеет ли гипотеза И.Хаджи какую-либо опору в эмбриологии низших многоклеточных, как, например, гипотеза И.И. Мечникова?

Ответ. К сожалению, подобных данных сравнительной эмбриологии нет. Никто и никогда не наблюдал процесс целлюляризации инфузорий в природе.

2. Не кажется ли вам, что гипотеза Хаджи не выдерживает критики, прежде всего потому, что порочен сам принцип, лежащий в ее основе. Гипотеза целлюляризации, на наш взгляд, противоречит основным положениям клеточной теории, а именно: она приравнивает части отдельной клетки к тканям и органам многоклеточных организмов. Что вы можете сказать по этому поводу?

Ответ. Мы бы не были столь категоричны в суждениях. Гипотеза Хаджи не приравнивает органоиды инфузорий к тканям и органам многоклеточных. Она лишь считает возможным образование подобных органов на основе органоидов инфузорий.

3. На чем же еще основывается гипотеза Хаджи, помимо того, что инфузории имеют сложное строение и их структуры могли стать органами многоклеточных животных?

Ответ. Косвенным подтверждением гипотезы является некоторое сходство между инфузориями и турбелляриями – примитивными плоскими червями: близкие размеры, одинаковая форма тела, расположение целого ряда структур и т.п. (рис. 3 и 4).

Учитель. Мы выслушали доводы в пользу колониального и неколониального происхождения первых многоклеточных животных, познакомились с взглядами на происхождение многоклеточных растений и грибов. Какая, на ваш взгляд, гипотеза – колониального или неколониального происхождения многоклеточных животных – более аргументирована и доказана?
Безусловно, гипотеза колониального происхождения первых многоклеточных животных. Именно эта гипотеза находит самое широкое признание в научном мире. Но следует помнить, что вторая гипотеза постоянно развивается, видоизменяется.

Подведение итогов урока

1. Выставление оценок за урок.

2. Задание на дом:

– изучить параграф «Дискуссионные проблемы цитологии»;
ф– познакомиться дома с одной из проблем цитологии, обсуждавшихся в XVIII в., которая велась между разными сторонниками преформизма; подготовить систему аргументов в пользу разных точек зрения.