Органеллы являются. Органеллы

Это постоянные, обязательные структурные компоненты клетки (постоянно присутствуют во всех клетках, без них клетка не может существовать). Они имеют определённое строение и специализированы на выполнении определённых функций. Органеллы подразделяются на органеллы общего значения и органеллы специального значения . По строению, они делятся на мембранные (образованы биологическими мембранами) и немебранные (в их состав мембраны не вхо­дят).

Органеллы общего значения имеются во всех клетках и необходимы для обеспечения их жизнедеятельности. К ним относятсяэндоплазматическая сеть, комплекс Гольджи, ли­зосомы, пероксисомы, митохондрии, рибосомы, клеточный центр, компоненты цитоскелета.

Органеллы специального значения имеются лишь в некоторых клетках и обеспечивают выполнение их специализированных функций. К ним относят микроворсинки, мерца­тельные реснички, жгутики, тонофибриллы, миофибриллы, нейрофибриллы.

Органеллы, имеющие мембранное строение

Эндоплазматическая сеть – трёхмерная замкнутая сеть канальцев, трубочек, цистерн диаметром от 20 до 1000 нм, расположенных в гиалоплазме клетки. Они связаны с цитолеммой и перинуклеарным пространством. В эндоплазматической сети происходит синтез сложных органических соединений в клетке и их транспорт в нужные участки клетки, к другим органеллам.

Различаютгранулярную (шероховатую) и агранулярную (гладкую) эндоплазматическую сеть (рис. 2-4).

Рис. 2-4. Эндоплазма-тическая сеть (схема).

I. Агранулярная ЭПС.

1. Пузырьки.

2. Трубочки.

3. Цистерны.

II. Гранулярная ЭПС.

4. Рибосомы.

5. Мембрана.

(По В. Л. Быкову).

Гранулярная эндоплазматическая сеть снаружи мембран содержит рибосомы, на которых происходит биосинтез белка на экспорт (предназначенных для выделения из клетки, либо образования интегральных белков цитолеммы). При этом образующиеся на рибосомах полипептидные цепи белка поступают внутрь эндоплазматической сети, где формируется их вторичная и третичная структура и они транспортируются по её каналам, отшнуровываются в виде мелких пузырьков, которые вливаются в цистерны коммплекса Гольджи.

Агранулярная эндоплазматическая сеть не имеет на своей поверхности рибосом. В ней происходит синтез сложных липидов (холестерина, стероидных гормонов) и углеводов (гликоген), обезвреживание вредных, чужеродных химических веществ, а также многих лекарственных веществ с помощью ферментов семейства цитохрома Р450, депонирование ионов Са. При гомогенизации ткани для биохимического исследования цитоплазматическая сеть разрушается и её фрагменты сливаются в пузырьки, называемые микросомами . В соответствии с вышеуказанными функциями гранулярная эндоплазматическая сеть хорошо развита в клетках, осуществляющих синтез белка на экспорт (например, главные клетки желудка), а гладкая эндоплазматическая сеть – в клетках, синтезирующих углеводы и липиды, а также в клетках, участвующих в детоксификации (разрушении чужеродных веществ, ксенобиотиков).

Комплекс Гольджи (пластинчатый комплекс) – совокупность связанных между собой цистерн, мешочков, вакуолей и пузырьков, образованных биологической мембраной. При этом плоские цистерны образуют стопку из 3-30 элементов, выпуклой стороной обращённой к ядру (цис-поверхность ), вогнутой – к цитолемме (транс-поверхность ); между ними располагаются цистерны медиальной части комплекса Гольджи. При этом в цис-поверхность (незрелая, формирующаяся поверхность) вливаются пузырьки из эндоплазматической сети, а от трансповерхности (зрелой ) отделяются вакуоли со зрелым секретом, предназначенным для экзоцитоза, либо образования первичных лизосом (рис. 2-5).

Р

ис. 2-5. Комплекс Гольджи в нервной клетке (А). Схема его организации и ультраструктуры (Б). А. 1. Ядро нервной клетки. 2. Комплекс Гольджи. Б. 3. Микропузырьки. 4. Цис­терны. 5. Вакуоли. (По Ю. И. Афанасьеву, Н. А. Юриной).

В комплексе Гольджи происходит: 1) образование сложных комплексов между белками, углеводами и липи­дами, синтезированными в эндоплазматической сети, фосфорилирование и сульфатирование белка, его частичное расщепление (процессинг ). Каждый из указанных этапов процессинга веществ внутри комплекса Гольджи осуществляется в топографически определённой его части; 2) накопление и упаковка секрета в мембраны 3) образование лизосом.

Комплекс Гольджи особенно хорошо развит в секреторных клетках.

Эндосомы – мембранные пузырьки с постепенно закисляющимся содержимым. В них происходит частичное переваривание макромолекул с помощью протеаз, предшествующий лизосомальному гидролизу. При этом оставшиеся продукты затем направляются в лизосомы. Эндосомы и лизосомы объеденены в единую систему в связи с наличием в их мембранах АТФ-зависимого протонного насоса, создающего низкие значения рН внутри эндосом и лизосом.

Лизосомы – пузырьки, образованные биологической мембраной и заполненные гидролитическими ферментами. В лизосомах обнаружено более 70 ферментов (протеазы, липазы, нуклеазы и др.), способных расщеплять почти все ор­ганические соединения и биополимеры.

Рис. 2-6. Лизосома.

1. Лизосома.

2. Митохондрия.

3. Начинающийся лизис мембран старой митохондрии.

(По Я. Р. Мацюку).

Благодаря этому лизосомы обеспечивают «внутриклеточное пищеварение» клетки и вместе с пероксисомами и эндосомами образуют «пищеварительный аппарат клетки». Различают первичные, вторичные и третичные лизосомы. Первичные лизосомы – собственно лизосомы, которые только отделились от комлекса Гольджи и имеют размер 200-400 нм. Вторичные лизосомы (фаголизосомы, фагосомы) – это первичные лизосомы, слившиеся с чужеродными частицами, захваченными клеткой в результате фагоцитоза (гетерофа­госомы ), или с компонентами самой клетки (митохондрии или микротрубочки, аутофагосомы ). (Рис 2-6). В фагосомах происходит переваривание веществ захваченных извне, или собственных биополимеров клетки. Третичные лизосомы (остаточные тельца) содержат непереваренные остатки содержимого фагосом (миелиновые фигуры, гранулы липофусцина). Особенно много остаточных телец накапливается в стареющей клетке, или при недостаточности лизосомальных ферментов (лизосомные болезни, болезни накопления).

Пероксисомы – пузырьки размером 0,1-1,5 мкм, окруженные биологической мембраной. Они заполнены мелкозернистым матриксом, а в центре расположена кристаллическая структура – сердцевина, состоящая из фибрилл и трубочек, где концентрируются ферменты. Пероксисомы отшнуровываются в виде пузырьков от цистерн эндоплазматической сети. Продолжительность их жизни 5-6 дней. Они содержат более 15 ферментов. В них в присутствии кислорода происходит окисление аминокислот и образование перекиси водорода, которая используется для окисления сложных липидов и вредных для клетки веществ. При этом избыток гидроперекиси в пероксисомах разрушается ферментом каталазой, который является маркёром пероксисом.

Различают мелкие пероксисомы (микропероксисомы ) диаметром 0,05-0,25 мкм, которые встречаются во всех клетках, и крупные пероксисомы (макропероксисомы ), обнаруживаемые в гепатоцитах, макрофагах, клетках проксимальных почечных канальцев.

Существуют так называемые пероксисомные болезни , связанные с дефектом ферментов пероксисом. При них развиваются тяжёлые поражения нервной системы.

Эндосомы, лизосомы и пероксисомы образуют аппарат внутриклеточного переваривания и защиты клетки.

Митохондрии . Эти органеллы получили своё название благодаря своей форме: под световым микроскопом они имеют вид нитей и зёрен размером от 0,5 до 10 мкм. В клетке находится от 500 до 1000 митохондрий. Эти орга­неллы образованы двумя биологическими мембранами. Внутренняя мембрана образует складки – кристы , на поверхности которых расположены оксисомы – ферментные комплексы, в которых происходит синтез АТФ (рис. 2-7).

Митохондрии являются «энергетическими станциями клетки». В них происходит окисление органических соединений в цикле трикарбоновых кислот и тканевое дыхание с образованием углекислого газа и воды; извлекаемая при этом энергия запасается в макроэргических связях АТФ (окислительное фосфорилирование). Поэтому митохондрий особенно много в клетках, которые для своего функционированию нуждаются в большом количестве энергии (например, париетальные клетки желудка, генерирующие ионы водорода и хлора для образования соляной кислоты).

Рис. 2-7. Митохондрия (схема).

1. Внутренняя мембрана.

2. Кристы.

3. Наружная мембрана.

4. Межмембранное пространство.

5. Матрикс.

(По Э. Г. Улумбекову).

Митохондрии заполнены мелкозернистым материалом – матриксом , в котором выявляется собственная ДНК, РНК и рибосомы. Поэтому митохондрии способны к собственному биосинтезу части (10%) своих белков. Продолжительность жизни митохондрий составляет 5-10 дней, после чего они подвергаются автофагии с помощью лизосом.

Органеллы – постоянные структурные элементы цитоплазмы клетки, имеющие специфическое строение и выполняющие определенные функции.
5. Классификация органелл:
общие органеллы , присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки. Они в свою очередь делятся на:
· мембранные органеллы: митохондрии, эндоплазматическая сеть, пластинчатый комплекс, лизосомы, пероксисомы;
· немембранные органеллы: рибосомы, клеточный центр, микротрубочки, микрофибриллы, микрофиламенты.
Специальные органеллы , имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток. Специальные органеллы делятся на:
· цитоплазматические – миофибриллы, нейрофибриллы, тонофибриллы;
· органеллы клеточной поверхности – реснички, жгутики.
Общая характеристика мембранных органелл
· Все разновидности мембранных органелл имеют общий принцип строения:
· они представляют собой замкнутые и изолированные участки в гиалоплазме (компарменты), имеющие свою внутреннюю среду;
· стенка их состоит из билипидной мембраны и белков, подобно плазмолемме.
· Однако билипидные мембраны органелл имеют и некоторые особенности:
· толщина билипидных мембран органелл меньше (7 нм), чем в плазмолемме (10 нм);
· мембраны отличаются по количеству и качеству белков, встроенных в мембраны.
Однако тот факт, что мембраны имеют общий принцип строения позволяет мембранам органелл и плазмолеммы взаимодействовать друг с другом встраиваться, сливаться, разъединяться, отшнуровываться. Этим достигается рециркуляция м ембран. Общий принцип строения мембран объясняется тем, что все они образуются в эндоплазматической сети, а их структурная и функциональная специализация происходит в основном в пластинчатом комплексе .
6. Строение и функции общих органелл
Митохондрии наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью. Существует даже точка зрения, что митохондрии в историческом развитии вначале представляли собой самостоятельные организмы, а затем внедрились в цитоплазму клеток, где и ведут сапрофитное существование. Об этом свидетельствует, в частности, тот факт, что в митохондриях имеется самостоятельный генетический аппарат (митохондральная ДНК) и синтетический аппарат (митохондриальные рибосомы). Однако сейчас уже достоверно установлено, что часть митохондриальных белков синтезируется в клетке.
Строение митохондрий
Форма митохондрий может быть овальной, округлой, вытянутой и даже разветвленной, но преобладает овально-вытянутая. Стенка митохондрий образована двумя билипидными мембранами, разделенные пространством в 10–20 нм. При этом внешняя мембрана охватывает по периферии в виде мешка всю митохондрию и отграничивает ее от гиалоплазмы. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутрь митохондрии складкикристы. В некоторых клетках (клетки коркового вещества надпочечника) внутренняя мембрана образует не складки, а везикулы или трубочки – трубчато-везикулярные кристы . Внутренняя среда митохондрии (митохондральный матрикс) имеет тонкозернистое строение и содержит гранулы (митохондриальные ДНК и рибосомы).
Функции митохондрий образование энергии в виде АТФ. Источником образования энергии в митохондрии (ее «топливом») является пировиноградная кислота (пируват) , которая образуется из углеводов, белков и липидов в гиалоплазме. Окисление пирувата происходит в митохондриальном матриксе в цикле трикарбоновых кислот, а на кристах митохондрий осуществляется перенос электронов, фосфорелирование АДФ и образование АТФ. Образующаяся в митохондриях и, частично, в гиалоплазме АТФ является единственной формой энергии, используемой клеткой для выполнения различных процессов.
Эндоплазматическая сеть в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка этих образований состоит из билипидной мембраны и включенных в нее некоторых белков и отграничивает внутреннюю среду эндоплазматической сети от гиалоплазмы. Различают две разновидности эндоплазматической сети:
· зернистая (гранулярная или шероховатая);
· незернистая или гладкая.
На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Следует помнить, что названные две разновидности являются не самостоятельными формами эндоплазматической сети, так как можно проследить переход зернистой эндоплазматической сети в гладкую и наоборот.
Функции зернистой эндоплазматической сети:
· синтез белков, предназначенных для выведения из клетки («на экспорт»);
· отделение (сегрегация) синтезированного продукта от гиалоплазмы;
· конденсация и модификация синтезированного белка;
· транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;
· синтез билипидных мембран.
Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.
Функции гладкой эндоплазматической сети:
· участие в синтезе гликогена;
· синтез липидов;
· дезинтоксикационная функциянейтрализация токсических веществ, посредством соединения их с другими веществами.
Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы – диктиосомы . Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом, в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена. В диктиосоме различают два полюса:
· цис-полюс – направлен основанием к ядру;
· транс-полюс – направлен в сторону цитолеммы.
Установлено, что к цис-полюсу подходят транспортные вакуоли, несущие в пластинчатый комплекс продукты, синтезированные в зернистой эндоплазматической сети. От транс-полюса отшнуровываются пузырьки, несущие секрет к плазмолемме для его выведения из клетки. Однако часть мелких пузырьков, заполненных белками-ферментами, остается в цитоплазме и носит название лизосом.
Функции пластинчатого комплекса:
· транспортная – выводит из клетки синтезированные в ней продукты;
· конденсация и модификация веществ, синтезированных в зернистой эндоплазматической сети;
· образование лизосом (совместно с зернистой эндоплазматической сетью);
· участие в обмене углеводов;
· синтез молекул, образующих гликокаликс цитолеммы;
· синтез, накопление и выведение муцина (слизи);
· модификация мембран, синтезированных в эндоплазматической сети и превращение их в мембраны плазмолеммы.
Среди многочисленных функций пластинчатого комплекса на первое место ставят транспортную функцию. Именно поэтому его нередко называют транспортным аппаратом клетки.
Лизосомы наиболее мелкие органеллы цитоплазмы (0,2–0,4 мкм) и поэтому открытые (де Дюв, 1949 г.) только с использованием электронного микроскопа. Представляют собой тельца, ограниченные липидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (50 гидролаз), способных расщеплять любые полимерные соединения (белки, липиды, углеводы и их комплексы) на мономерные фрагменты. Маркерным ферментом лизосом является кислая фосфатаза.
Функция лизосом обеспечение внутриклеточного пищеварения, то есть расщепления как экзогенных, так и эндогенных веществ.
Классификация лизосом:
· первичные лизосомыэлектронноплотные тельца;
· вторичные лизосомыфаголизосомы, в том числе аутофаголизосомы;
· третичные лизосомы или остаточные тельца.
Истинными лизосомами являются мелкие электронноплотные тельца, образующиеся в пластинчатом комплексе.
Пищеварительная функция лизосом начинается только после слияния лизосомы с фагосомой, то есть фагоцитированным веществом, окруженным билипидной мембраной. При этом образуется единый пузырекфаголизосома, в которой смешивается фагоцитированный материал и ферменты лизосомы. После этого начинается расщепление (гидролиз) биополимерных соединений фагоцитированного материала на мономерные молекулы (аминокислоты, моносахара и так далее). Эти молекулы свободно проникают через мембрану фаголизосомы в гиалоплазму и затем утилизируются клеткой, то есть используются или для образования энергии или на построение биополимерных структур. Но не всегда фагоцитированные вещества расщепляются полностью.
Дальнейшая судьба оставшихся веществ может быть различной. Некоторые из них могут быть выведены из клетки посредством экзоцитоза , по механизму обратному фагоцитозу . Некоторые вещества (прежде всего липидной природы) не расщепляются лизосомальными гидролазами, а накапливаются и уплотняются в фаголизосоме. Такие образования называются третичными лизосомами или остаточными тельцами. В процессе фагоцитоза и экзоцитоза осуществляется регуляция мембран в клетке: в процессе фагоцитоза часть плазмолеммы отшнуровывается и образует оболочку фагосомы, в процессе экзоцитоза эта оболочка снова встраивается в плазмолемму. Установлено, что некоторые клетки в течение часа полностью обновляют плазмолемму.
Кроме рассмотренного механизма внутриклеточного расщепления фагоцитированных экзогенных веществ, таким же способом разрушаются эндогенные биополимеры – поврежденные или устаревшие собственные структурные элементы цитоплазмы. Вначале такие органеллы или целые участки цитоплазмы окружаются билипидной мембраной и образуется вакуоль аутофаголизосома , в которой осуществляется гидролитическое расщепление биополимерных веществ, как и в фаголизосоме.
Следует отметить, что все клетки содержат в цитоплазме лизосомы, но в различном количестве. Имеются специализированные клетки (макрофаги) , в цитоплазме которых содержится очень много первичных и вторичных лизосом. Такие клетки выполняют защитные функции в тканях и называются клетками-чистильщиками, так как они специализированы на поглощение большого числа экзогенных частиц (бактерий, вирусов), а также распавшихся собственных тканей.
Пероксисомы – микротельца цитоплазмы (0,1–1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.
7. Строение и функции немембранных органелл
Рибосомы аппараты синтеза белка и полипептидных молекул. По локализации подразделяются на:
· свободныенаходятся гиалоплазме;
· несвободные или прикрепленныесвязаны с мембранами эндоплазматической сети.
Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка рибонуклеопротеида , которые образуются в ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной или информационной РНК объединяются в цепочки рибосом – полисомы . Свободные и прикрепленные рибосомы, помимо отличия в их локализации, отличаются определенной функциональной специфичностью: свободные рибосомы синтезируют белки для внутренних нужд клетки (белки-ферменты, структурные белки), прикрепленныесинтезируют белки «на экспорт».
Клеточный центр – цитоцентр, центросома, центриоли. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов:
· диплосомы;
· центросферы.
Диплосома состоит из двух центриолей – материнской и дочерней, расположенных под прямым углов друг к другу. Каждая центриоль состоит из микротрубочек, образующих структуру в виде полого цилиндра (диаметром 0,2 мкм, длиной 0,3–0,5 мкм). Микротрубочки с помощью «ручек» объединяются в триплеты (по три трубочки), образуя 9 триплетов.
Центросфера бесструктурный участок гиалоплазмы вокруг диплосомы, от которого радиально отходят микротрубочки (лучистая сфера).
Функции цитоцентра:
· образование веретена деления в профазе митоза;
· положение центриолей в некоторых эпителиальных клетках предопределяется их полярную дифференцированность;
· участие в формировании микротрубочек клеточного каркаса;
· в реснитчатых эпителиальных клетках центриоли являются базальными тельцами ресничек.
Микротрубочки полые цилиндры (внешний диаметр – 24 нм, внутренний – 15 нм), являются самостоятельными органеллами, образуя цитоскелет , или же входят в состав других органелл (центриолей, ресничек, жгутиков). Стенка микротрубочки состоит из глобулярного белка тубулина , который состоит из отдельных округлых образований – глобул , диаметром 5 нм. Такие глобулы могут находиться в гиалоплазме в свободном состоянии или же, под влиянием определенных факторов, соединяться между собой и формировать микротрубочки, а затем снова распадаться. Так формируются, а затем распадаются микротрубочки веретена деления в разные фазы митоза. Однако, в составе центриолей, ресничек и жгутиков микротрубочки являются устойчивыми образованиями. Большая часть микротрубочек участвует в формировании внутриклеточного каркаса , который поддерживает форму клетки, обуславливает определенное положение органелл в цитоплазме, а также предопределяет направление внутриклеточных перемещений. Белки тубулины не обладают способностью к сокращению, а следовательно и микротрубочки не сокращаются. Однако в составе ресничек и жгутиков происходит взаимодействие между микротрубочками и их скольжением относительно друг друга, что и обеспечивает движение ресничек и жгутиков.
Микрофибриллы или промежуточные филаменты, представляют собой тонкие (10 нм) неветвящиеся нити, локализующиеся преимущественно в кортикальном (подмембранном) слое цитоплазмы. Они состоят из белка, но разного в разных клетках (в эпителиальных клетках кератина , в фибробластах виментина , в мышечных клетках десмина и другие). Функциональная роль микрофибрилл состоит в участии, наряду с микротрубочками, в формировании клеточного каркаса, выполняя опорную функцию. В некоторых клетках (эпидермоциты кожи) микрофибриллы объединяются в пучки и образуют тонофибриллы, которые рассматриваются как специальные органеллы, выполняющие опорную роль.
Микрофиламенты еще более тонкие нитчатые структуры (5–7 нм), состоящие из сократительных белков (актина, миозина, тропомиозина), неодинаковых в разных клетках. Локализуются преимущественно в кортикальном слое цитоплазмы. В совокупности микрофиламенты составляют сократительный аппарат клетки , обеспечивающий различные виды движений:
· перемещение органелл,
· ток гиалоплазмы,
· изменение клеточной поверхности,
· образование псевдоподий и перемещение клетки.
Скопление микрофиламентов в мышечных волокнах образует специальные органеллы – миофибриллы .
8. Включения – непостоянные структурные компоненты цитоплазмы.
Классификация включений:
· трофические;
· секреторные;
· экскреторные;
· пигментные.
В процессе жизнедеятельности в некоторых клетках накапливаются случайные включения:
· медикаментозные,
· частички угля,
· кремния и так далее.
Трофические включения – лецитин в яйцеклетках, гликоген, липиды, имеются почти во всех клетках. Секреторные включения – секреторные гранулы в секретирующих клетках (зимогенные гранулы в ацинозных клетках поджелудочной железы, секреторные гранулы в эндокринных железах и другие). Экскреторные включения – вещества, подлежащие удалению из организма (например, гранулы мочевой кислоты в эпителии почечных канальцев). Пигментные включения – меланин, гемоглобин, липофусцин, билирубин и другие. Эти включения имеют определенный цвет и придают окраску всей клетке (меланин – черный или коричневый, гемоглобин – желто-красный и так далее). Необходимо отметить, что пигментные включения характерны только для определенных типов клеток (меланин содержится в меланоцитах, гемоглобин – в эритроцитах). Однако, липофусцин может накапливаться во многих типах клеток обычно при их старении. Его наличие в клетках свидетельствует о их старении и функциональной неполноценности.

ЛЕКЦИЯ 3. Цитология. Ядро. Репродукция клеток

1 Структурные элементы интерфазного ядра
2. Жизненный цикл клетки
3. Репродукция клеток
4. Реакция клеток на внешнюю среду
В организме человека содержатся только эукариотические (ядерные) типы клеток. Безъядерные структуры (эритроциты, тромбоциты, роговые чешуйки) являются вторичными (постклеточными) образованиями, так как они образуются из ядерных клеток в результате их специфической дифференцировки. В подавляющем большинстве клеток содержится одно ядро, но встречаются двуядерные и даже многоядерные клетки. Форма ядра в большинстве клеток круглая (сферическая) или овальная. В некоторых клетках ядра имеют вытянутую или палочковидную форму. В зернистых лейкоцитах ядро подразделяется на сегменты (сегментоядерные лейкоциты). Локализуется ядро обычно в центре клетки, но в клетках эпителиальных тканей ядра нередко сдвинуты к базальному полюсу.
1. Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе . В период деления клетки (в период митоза или мейоза ) одни структурные элементы исчезают, другие существенно преобразуются.
Классификация структурных элементов интерфазного ядра:
· хроматин;
· ядрышко;
· кариоплазма;
· кариолемма.
Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл, толщиной 20–25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:
· эухроматин – рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;
· гетерохроматин – компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.
При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл и хромосомы снова преобразуются в хроматин. Следовательно, хроматин и хромосомы представляют собой различные фазы одного и того же вещества.
По химическому строению хроматин состоит из:
· дезоксирибонуклеиновой кислоты (ДНК) 40 %;
· белков около 60 %;
· рибонуклеиновой кислоты (РНК) 1 %.
Ядерные белки представлены формами:
· щелочными или гистоновыми белками80-85 %;
· кислыми белками15-20 %.
Гистоновые белки связаны с ДНК и образуют полимерные цепи дезоксирибонуклеопротеида (ДНП), которые и представляют собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии. На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК различных РНК, с помощью которых осуществляется затем синтез белковых молекул. Процессы транскрипции в ядре осуществляются только на свободных хромосомных фибриллах, то есть в эухроматине. В конденсированном хроматине эти процессы не осуществляются и потому гетерохроматин является неактивным хроматином. Соотношение эухроматина и гетерохроматина в ядре является показателем активности синтетических процессов в данной клетке. На хроматиновых фибриллах в S-периоде интерфазы осуществляется также процессы редупликации ДНК. Эти процессы происходят как в эухроматине, так и в гетерохроматине, но в гетерохроматине они протекают значительно позже.
Ядрышко – сферическое образование (1–5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе в определенных участках некоторых хромосом – ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом. Микроскопически в ядрышке различают:
· фибриллярный компонент – локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП);
· гранулярный компонент – локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом.
В профазе митоза , когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединиц рибосом прекращаются и ядрышко исчезает. По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом и появляется ядрышко.
Кариоплазма (нуклеоплазма) или ядерный сок состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, но при электронной микроскопии в ней определяются гранулы (15 нм), состоящие из рибонуклеопротеидов. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ. Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина. При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.
Кариолемма (нуклеолемма) – ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.
Кариолемма состоит из двух билипидных мембран – внешней и внутренней ядерной мембраны , разделенных перинуклеарным пространством, шириной от 25 до 100 нм. В кариолемме имеются поры, диаметром 80–90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым. Просвет поры закрыт особым структурным образованием – комплексом поры , который состоит из фибриллярного и гранулярного компонента. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в три ряда. От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры пор стабильны для данного типа клеток, но число пор может изменяться в процессе дифференцировки клетки. В ядрах сперматозоидов ядерные поры отсутствуют. На наружной ядерной мембране могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в канальцы эндоплазматической сети.
Функции ядер соматических клеток:
· хранение генетической информации, закодированной в молекулах ДНК;
· репарация (восстановление) молекул ДНК после их повреждения с помощью специальныхрепаративных ферментов;
· редупликация (удвоение) ДНК в синтетическом периоде интерфазы;
· передача генетической информации дочерним клеткам во время митоза;
· реализация генетической информации, закодированной в ДНК, для синтеза белка и небелковых молекул: образование аппарата белкового синтезаинформационной, рибосомальной и транспортной РНК.
Функции ядер половых клеток:
· хранение генетической информации;
· передача генетической информации при слиянии женских и мужских половых клеток.
2. Клеточный, или жизненный, цикл клетки – это время существования клетки от деления до следующего деления, или от деления до смерти. Для разных типов клеток клеточный цикл различен.
В организме млекопитающих и человека различают следующие три группы клеток, локализующиеся в разных тканях и органах:
· часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки эпидермиса и другие);
· редко делящиеся клетки (клетки печени – гепатоциты);
· неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и другие).
Жизненный цикл у этих клеточных типов различен.

Органеллы

Органеллы – постоянные структурные элементы цитоплазмы клетки, имеющие специфическое строение и выполняющие определенные функции.

Классификация органелл:

1) общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки;

2) специальные органеллы, имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток.

В свою очередь, общие органеллы подразделяются на мембранные и немембранные.

Специальные органеллы подразделяются на:

1) цитоплазматические (миофибриллы, нейрофибриллы, тонофибриллы);

2) органеллы клеточной поверхности (реснички, жгутики).

К мембранным органеллам относятся:

1) митохондрии;

2) эндоплазматическая сеть;

3) пластинчатый комплекс;

4) лизосомы;

5) пероксисомы.

К немембранным органеллам относятся:

1) рибосомы;

2) клеточный центр;

3) микротрубочки;

4) микрофибриллы;

5) микрофиламенты.

Принцип строения мембранных органелл

Мембранные органеллы представляют собой замкнутые и изолированные участки (компартменты) в гиалоплазме, имеющие свою внутреннюю структуру. Стенка их состоит из билипидной мембраны и белков подобно плазмолемме. Однако билипидные мембраны органелл имеют особенности: толщина билипидных мембран органелл меньше, чем плазмолеммы (7 нм против 10 нм), мембранные отличаются по количеству и по содержанию белков, встроенных в них.

Однако, несмотря на различия, мембраны органелл имеют одинаковый принцип строения, поэтому они обладают способностью взаимодействовать друг с другом, встраиваться, сливаться, разъединяться, отшнуровываться.

Общий принцип строения мембран органелл можно объяснить тем, что все они образуются в эндоплазматической сети, а затем происходит их функциональная перестройка в комплексе Гольджи.

Митохондрии

Митохондрии – наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью.

Существует мнение, что в прошлом митохондрии были самостоятельными живыми организмами, после чего внедрились в цитоплазму клеток, где ведут сапрофитное существование. Доказательством этого может являться наличие у митохондрий генетического аппарата (митохондриальной ДНК) и синтетического аппарата (митохондриальных рибосом).

Форма митохондрий может быть овальной, округлой, вытянутой и даже разветвленной, но преобладает овально-вытянутая. Стенка митохондрий образована двумя билипидными мембранами, разделенными пространством в 10 – 20 нм. При этом внешняя мембрана охватывает по периферии всю митохондрию в виде мешка и отграничивает ее от гиалоплазмы. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутри митохондрии складки – кристы. Внутренняя среда митохондрии (митохондриальный матрикс) имеет тонкозернистое строение и содержит гранулы (митохондриальные ДНК и рибосомы).

Функция митохондрий – образование энергии в виде АТФ.

Источником образования энергии в митохондриях является пировиноградная кислота (пируват), которая образуется из белков, жиров и углеводов в гиалоплазме. Окисление пирувата происходит в митохондриальном матриксе, а на кристах митохондрий осуществляется перенос электронов, фосфорилирование АДФ и образование АТФ. Образующаяся в митохондриях АТФ является единственной формой энергии, которая используется клеткой для выполнения различных процессов.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС) в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка состоит из билипидной мембраны.

Различают две разновидности ЭПС:

1) зернистую (гранулярную, или шероховатую);

2) незернистую (или гладкую). На наружной поверхности мембран зернистой ЭПС содержатся прикрепленные рибосомы.

Функции зернистой ЭПС:

1) синтез белков, предназначенных для выведения из клетки (на экспорт);

2) отделение (сегрегация) синтезированного продукта от гиалоплазмы;

3) конденсация и модификация синтезированного белка;

4) транспорт синтезированных продуктов в цистерны пластинчатого комплекса;

5) синтез компонентов билипидных мембран.

Функции гладкой ЭПС:

1) участие в синтезе гликогена;

2) синтез липидов;

3) дезинтоксикационная функция (нейтрализация токсических веществ посредством соединения их с другими веществами).

Пластинчатый комплекс Гольджи (называют транспортным аппаратом клетки)

Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы – диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена. В диктиосоме различают два полюса: цисполюс (направленный основанием к ядру) и трансполюс (направленный в сторону цитолеммы). Установлено, что к цисполюсу подходят транспортные вакуоли, несущие в комплекс Гольджи продукты, синтезированные в ЭПС. От трансполюса отшнуровываются пузырьки, несущие секрет к плазмолемме для его высвобождения из клетки. Часть мелких пузырьков, заполненных белками-ферментами, остается в цитоплазме и носит название лизосом.

Функция пластинчатого комплекса:

1) транспортная (выводит из клетки синтезированные в ней продукты);

2) конденсация и модификация веществ, синтезированных в зернистой ЭПС;

3) образование лизосом (совместно с зернистой ЭПС);

4) участие в обмене углеводов;

5) синтез молекул, образующих гликокаликс цитолеммы;

6) синтез, накопление, выведение муцинов (слизи);

7) модификация мембран, синтезированных в ЭПС и превращение их в мембраны плазмолеммы.

Лизосомы– наиболее мелкие органеллы цитоплазмы, представляют собой тельца, ограниченные билипидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (более тридцати видов гидролаз), способных расщеплять любые полимерные соединения (белки, жиры, углеводы), их комплексы на мономерные фрагменты.

Функция лизосом – обеспечение внутриклеточного пищеварения, т. е. расщепление как экзогенных, так и эндогенных биополимерных веществ.

Классификация лизосом:

1) первичные лизосомы – электронно-плотные тельца;

2) вторичные лизосомы – фаголизосомы, в том числе аутофаголизосомы;

3) третичные лизосомы или остаточные тельца.

Пероксисомы

Пероксисомы – микротельца цитоплазмы (0,1 – 1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.

Рибосомы

Рибосомы – аппараты синтеза белка и полипептидных молекул.

По локализации подразделяются на:

1) свободные, (находятся в гиалоплазме);

2) несвободные (или прикрепленные), – которые связаны с мембранами ЭПС.

Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка – рибонуклеопротеида. Образуются субъединицы в ядрышке, а сборка в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной (информационной) РНК объединяются в цепочки рибосом – полисомы. Свободные и прикрепленные рибосомы, помимо отличия в их локализация, характеризуются определенной функциональной специфичностью: свободные рибосомы синтезируют белки.

Клеточный центр

Клеточный центр – цитоцентр, центросома. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов:

1) диплосомы;

2) центросферы.

Диплосома состоит из двух центриолей (материнской и дочерней), расположенных под прямым углом друг к другу. Каждая центриоль состоит из микротрубочек, образующих полый цилиндр, диаметром 0,2 мкм, длиной 0,3 – 0,5 мкм. Микротрубочки объединяются в триплеты (по три трубочки), образуя всего девять триплетов. Центросфера – бесструктурный участок гиалоплазмы вокруг диплосомы, от которого радиарно отходят микротрубочки (по типу лучистой сферы).

Функции цитоцентра:

1) образование веретена деления в профазе митоза;

2) участие в формировании микротрубочек клеточного каркаса;

3) выполнение роли базисных телец ресничек в реснитчатых эпителиальных клетках центриоли.

Положение центриолей в некоторых эпителиальных клетках определяет их полярную дифференцированность.

Микротрубочки

Микротрубочки – полые цилиндры (внешний диаметр – 24 мм, внутренний – 15 им), являются самостоятельными органеллами, образуя цитоскелет. Они также могут входить в состав других органелл – центриолей, ресничек, жгутиков. Стенка микротрубочек состоит из глобулярного белка тубулина, который образован отдельными округлыми образованиями глобулы диаметром 5 нм. Глобулы могут находиться в гиалоплазме в свободном состоянии или соединяться между собой, в результате чего формируются микротрубочки. Они могут затем вновь распадаться на глобулы. Таким образом формируются и затем распадаются микротрубочки веретена деления в разные фазы митоза. Однако в составе центриолей, ресничек и жгутиков микротрубочки являются устойчивыми образованиями. Большая часть микротрубочек участвует в формировании внутриклеточного каркаса, который поддерживает форму клетки, обусловливая определенное положение органелл в цитоплазме, а также предопределяет направление внутриклеточных перемещений. Белки-тубулины не обладают способностью к сокращению, следовательно, и микротрубочки не сокращаются. В составе ресничек и жгутиков происходит взаимодействие микротрубочек между собой, их скольжение друг относительно друга, что обеспечивает движение этих органелл.

Микрофибриллы

Микрофибриллы (промежуточные филаменты) представляют собой тонкие неветвящиеся нити.

В основном микрофибриллы локализуются в кортикальном, (подмембранном) слое цитоплазмы. Они состоят из белка, который в различных по классу клетках имеет определенную структуру (в эпителиальных клетках – это белок кератин, в мышечных клетках – десмин).

Функциональная роль микрофибрилл – участвовать наряду с микротрубочками в формировании клеточного каркаса, выполняя опорную функцию.

Микротрубочки могут объединяться в пучки и образовывать тонофибриллы, которые рассматриваются как самостоятельные органеллы и выполняют опорную функцию.

Микрофиламенты

Микрофиламенты – еще более тонкие нитчатые структуры (5 – 7 нм), состоящие из сократительных белков (актина, миозина, тропомиозина).

Микрофиламенты локализуются в основном в кортикальном слое цитоплазмы.

В совокупности микрофиламенты составляют сократительный аппарат клетки, обеспечивающий различные виды движений: перемещение органелл, ток гиалоплазмы, изменение клеточной поверхности, образование псевдоподии и перемещение клетки.

Скопление микрофиламентов в мышечных волокнах образует специальные органеллы мышечной ткани – миофибриллы.

Включения

Включения – непостоянные структурные компоненты цитоплазмы. Классификация включений:

1) трофические;

2) секреторные;

3) экскреторные;

4) пигментные.

8) Вакуолярная система клетки. Лизосомы и пероксисомы, их структура и фукции.

Вакуолярная система - совокупность одномембранных органелл цитоплазмы. По строению выделяют следующие компоненты вакуолярной системы, различающиеся и по своим функциям: гранулярный эндоплазматический ретикулум, аппарат Гольджи, лизосомы, гладкий эндоплазматический ретикулум, пероксисомы. Одномембранные органеллы клетки, составляющие вакуолярную систему, обеспечивают синтез и транспорт внутриклеточных биополимеров и продуктов секреции, выводимых из клетки; поглощение путем фагоцитоза, в том числе в реакциях иммунного ответа; биосинтез липидов, в том числе компонентов мембран, стероидных гормонов и др.; дезактивацию ядов путем окисления до безвредных продуктов; разрушение активных форм кислорода и другое.

Общая схема функционирования вакуолярной системы 1. Гранулярный эндоплазматический ретикулум: котрансляционный синтез растворимых внутривакуолярных белков (секреторные белки, гидролазы лизосом и др.); котрансляционный синтез нерастворимых белков, входящих в состав всех мембран вакуолярной системы; первичная модификация растворимых и нерастворимых (мембранных) белков, их соединение с олигосахаридами - первичное гликозилирование синтезированных белков, образование гликопротеидов; синтез мембранных липидов и их встраивание в мембрану -
«сборка мембран».

2. Отделение вакуолей, содержащих новообразованные продукты, и их переход вцис- зону аппарата Гольджи (ЭПР-АГ-комплекс).

3. Цис -зона аппарата Гольджи: вторичная модификация гликопротеидов; синтез полисахаридов (гемицеллюлоза растений) и гексозаминогликанов.

4. Промежуточная зона аппарата Гольджи: дополнительные модификации гликопротеидов, трансгликозилирование.

5. Транс- Гольджи сеть: сортировка секреторных и лизосомных белков; отделение вакуолей.

6. Экзоцитоз (секреция).

7. Экзоцитоз постоянный.

8. Отделение первичных лизосом с гидролазами.

9. Эндоцитоз.

10. Вторичная лизосома.

11. Рециклизация рецепторов гидролаз.

12. Рециклизация рецепторов плазматической мембраны.

13. Гладкий эндоплазматический ретикулум: синтез и конденсация липидов, депонирование ионов Са 2+ , синтез и ресорбция гликогена и др.

14. Транспорт в зону аппарата Гольджи.

15. Транспорт от аппарата Гольджи в эндоплазматический ретикулум.

Конец работы -

Эта тема принадлежит разделу:

Гистология

Гистология от греч histos ткань logos учение наука о строении развитии и жизнедеятельности тканей живых организмов... Становление гистологии тесно связано с развитием микроскопической техники и... В истории учения о тканях и микроскопическом строении органов выделяют два периода домикроскопический и...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Уровни организации живой материи в целостном организме. Их морфофункциональные особенности и коррелятивные связи.
1. Молекулярный. Любая живая система проявляется на уровне взаимодействия биологических макромолекул: нуклеиновых кислот, полисахаридов, а также других важных органических веществ. 2. Клет

Методы исследования
В современной гистологии, цитологии и эмбриологии применяются разнообразные методы исследования, позволяющие всесторонне изучать процессы развития, строения и функции клеток, тканей и органов.

Рибосомы-строение, химический состав, функции. Свободные рибосомы, полирибосомы, их связь с другими структурными компонентами клетки.
Строение рибосомы. Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, мал

Включения(все про них,хар-ки)
Включения - непостоянные структурные компоненты цитоплазмы. Классификация включений: трофические: лецитин в яйцеклетках; гликоген; липиды, имеются почти

Ядро(все про него)
Ядро-компонент клетки,который содержит генетт.материал. Функции ядра: хранение,реализация, передача генет.информации Ядро состоит из: Кариолеммы-ядерной оболочки

Способы репродукции клеток.Митоз.его смысл биологический.Эндорепродукция
Различают два основных способа размножения клеток: митоз (кариокенез) – непрямое деление клеток, которое присуще в основном соматическим клеткам;Биологический смысл митоза-из одной диплоидной м

Жизненный цикл клетки, его этапы.
Положения клеточной теории Шлейдена-Шванна Все животные и растения состоят из клеток. Растут и развиваются растения и животные путём возникновения новых клет


1. Ткань – исторически (филогенетически) сложившаяся система клеток и неклеточных структур, обладающая общностью строения, а иногда и происхождения, и специализированная на выполнение определенных

Покровный эпителий
Покровные эпителии В соответствии с морфологической классификацией различают несколько основных типов покровного эпителия,как многослойного, так и однослойного. При этом для многослойных э

Эритроциты
Эритроциты у человека и млекопитающих представляют собой безъядерные клетки, утратившие в процессе фило- и онтогенеза ядро и большинство органелл. Эритроциты являются высокодифференцированными пост

Кровь,как ее ткань,ее форменные элементы.Кровяные пластинки(тромбоциты),их количество.размеры.строение.функции.продолжительность жизни.
Кровь - жидкая соединительная ткань, циркулирующая в кровеносной системе тела животного. У всех позвоночных кровь имеет красный цвет (от ярко- до тёмно-красного), которым она обязана гемоглобину, с

Мышца как орган. Микроскопическое строение мыщц. Мион. Связь мышц сухожилием.
Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его часте


Сердечная мыш. ткань (поперечнополосатая мышечная ткань целомического типа) встречается в мышечной оболочке сердца (миокарде) и устьях связанных с ним крупных сосудов. Её кл-ки (сердечные миоцит

Мозжечок. Строениеи функциональная характеристика. Нейронный состав коры мозжечка и глиоцыты. Межнейронные связи.
Мозжечок. Представляет собой центральный орган равновесия и координации движений. Он связан со стволом мозга афферентными и эфферентными проводящими пучками, образующими в совокупности три пары нож

Капилляры. Строение. Органоспецифичность капилляров. Понятие о гистогематическом барьере. Венулы, их функциональное значение и строение.
Микроциркуляторное русло - система мелких сосудов, включающая артериолы, гемокапилляры, венулы, а также артериоловенулярные анастомозы. Этот функциональный комплекс кровеносных сосудов, окруженный

Вены. Особенности строения вен различного типа. Органные особенности вен.
Вены - осуществляют отток крови от органов, участвуют в обменной и депонирующей функциях. Различают поверхностные и глубокие вены. Вены широко анастомозируют, образуя в органах сплетения.

Эмбриогенез органа зрения
Глазное яблоко формируется из нескольких источников. Сетчатка является производным нейроэктодермы и представляет собой парное выпячивание стенки diencephalon в виде однослойного пузырька на ножке.

Вкусовая сенсорная система. Орган вкуса
Орган вкуса (organum gustus) - периферическая часть вкусового анализатора представлен рецепторными эпителиальными клетками во вкусовых почках (caliculi gustatoriae). Они воспринимают вкусовые раздр

Эмбриогенез органа слуха
Внутреннее ухо. Первым из структур внутреннего уха развивается перепончатый лабиринт. Исходным материалом для него является эктодерма, лежащая на уровне заднего мозгового пузыря. Впячиваясь в подле

ЭНДОКРИННАЯ СИСТЕМА
Гуморальная регуляция, гормоны, классификация эндокринных желез При изучении эпителиальных тканей организма в классификации, наряду с покровным эпителием, выделялся железистый эпителий, в

Гипоталамус
Гипоталамус - высший нервный центр регуляции эндокринных функций. Этот участок промежуточного мозга является также центром симпатического и парасимпатического отделов вегетативной нервной системы.

Половые гормоны
Половые гормоны - это гормоны, вырабатываемые мужскими и женскими половыми железами и корой надпочечников. Все половые гормоны по химическому строению являются стероидами. К половым гормонам от

Развитие щитовидной железы.
Зачаток щитовидной железы появляется на 4-й неделе эмбриогенеза в виде выпячивания вентральной стенки глоточной кишки между 1-й и 2-й парами жаберных карманов. Выпячивание это превращается в эпител

Околощитовидные железы.
Источники развития. Околощитовидные железы - производные 3-й и IV-й пар жаберных карманов, эпителиальная выстилка которых имеет прехордальный генез. На 5-6-й неделе эмбриогенеза образуются

Надпочечники.
Надпочечники представляют собой парные железы, состоящие из коркового и мозгового вещества. Каждая из этих частей является самостоятельной железой внутренней секреции, вырабатывающей свои гормоны -

Эпифиз.
Эпифиз (верхний мозговой придаток, пинеальная, или шишковидная, железа) расположен между передними буграми четверохолмия. Это нейроэндокринный орган, регулирующий физиологические ритмы, так как сек

А. Ротовая полость
Слизистая оболочка ротовой полости состоит из многослойного плоского эпителия кожного типа, развивающегося из прехордальной пластинки, и собственной соединительнотканной пластинки. Степень развития

Большие слюнные железы
Помимо множества мелких слюнных желез, расположенных в слизистой оболочке щек, и желез языка, в полости рта находятся большие слюнные железы (околоушные, поднижнечелюстные и подъязычные), являющиес

Пищевод
Источником развития эпителия пищевода является материал прехордальной пластинки. Остальные ткани стенки пищевода за некоторым исключением развиваются из мезенхимы. Выстилка пищевода сначала предста

Желудок
Средний, или гастроэнтеральный, отдел пищеварительной трубки включает желудок, тонкую и толстую кишки, печень и желчный пузырь, поджелудочную железу. В этом отделе происходят переваривание пищи под

Тонкая кишка
В тонкой кишке различают три переходящих друг в друга отдела: двенадцатиперстную, тощую и подвздошную кишки. В тонкой кишке происходят дальнейшее переваривание пищи, предварительно обработанной в р

Толстая кишка
В толстой кишке происходят интенсивное всасывание воды, переваривание клетчатки с участием бактериальной флоры, выработка витамина К и комплекса витаминов В, выделение ряда веществ, например, солей

Железы пищеварительной системы. Поджелудочная железа
Поджелудочная железа состоит из экзокринной и эндокринной частей. Экзокринная часть выполняет внешнесекреторную функцию, связанную с выработкой панкреатического сока. Он содержит пищеварительные фе

Печень. Желчный пузырь.
Печень - самая крупная железа человека - ее масса составляет около 1,5 кг. Она выполняет многообразные функции и является жизненно важным органом. Чрезвычайно важными для поддержания жизнеспособнос

Гемопоэз.
Дифференциация - это стойкое структурно-функциональное преобразование клеток в различные специализированные клетки. Дифференцировка клеток биохимически связана с синтезом специфических белков, а ци

Красный костный мозг
Красный костный мозг Красный костный мозг - центральный гемопоэтический орган. В нем находится основная часть стволовых кроветворных клеток и происходит развитие клеток миелоидного и лимфо

Тимус. Развитие тимуса. Строение тимуса.
Тимус - центральный орган лимфоидного кроветворения и иммунной защиты организма. В тимусе происходит антигеннезависимая дифференцировка костномозговых предшественников Т-лимфоцитов в иммунокомпетен

СЕЛЕЗЕНКА
СТРОМА плотная строма: капсула и септы (септы в селезенке называются трабекулами) образованы плотной волокнистой соединительной тканью, где имеется много эластических волокон, встречаются

ЛИМФАТИЧЕСКИЕ УЗЛЫ
СТРОМА плотная строма: капсула и септы образованы РВСТ мягкая строма: ретикулярная ткань; в корковом веществе - в лимфоидных фолликулах имеется особая разновидность клеток ретикул

I типа - плоские, или респираторные
Покрывают бо́льшую часть (95-97 %) поверхности альвеол, являются компонентом аэрогематического барьера, через них осуществляется газообмен. Имеют неправильную форму и истончённую цитоплазму (м

Сурфактантная система легких
Вверху справа - кровеносный капилляр, содержащий эритроцит. Назальная мембрана капилляра слилась с мембраной лежащего вверху плоского эпителия, образуя в отмеченных участках. Сурфактантная система

Железы кожи
Потовые железы участвуют в терморегуляции, а также в экскреции продуктов обмена, солей, лекарственных веществ, тяжелых металлов (усиливается при почечной недостаточности). Потовые

Особенности кровоснабжения почек
Каждая почка имеет достаточно своеобразную сосудистую сеть. В ворота Почки входит так называемая почечная артерия (a. renalis). Почечная артерия разветвляется на несколько так называемых сегментарн

Мочеточники - парный орган мочевой системы человека.
Характеристики Правый и левый мочеточники Представляют собой протоки длиной от 27 до 30 см, диаметром от 5 до 7 мм Прощупать через живот невозможно Внешняя стенк

Яичники
Анатомически яичник представлен в виде овоидного тела длиной 2,5 – 5,5см, шириной 1,5 -3,0см. Масса обоих яичников у новорожденных в среднем составляет 0,33г, у взрослых – 10,7г. Функция:

Яичник взрослой женщины
С поверхности орган окружен белочной оболочкой (tunica albuginea), образованнойплотной волокнистой соединительной тканью, покрытой мезотелием брюшины. Свободная поверхность мезотелия снабжен

Менструальная фаза.
В этой фазе происходит отторжение (десквамация) функционального слоя эндометрия матки, которое сопровождается кровотечением. В момент окончания менструации эндометрий представлен то