Роль клетки в организме человека. Стволовые клетки организма человека

Лечение многочисленных болезней стволовыми клетками по методу В.Д.Рагеля.

Как пишет автор, активное деление стволовых клеток возможна при восстановлении электрического заряда в клетке организма человека.Впервые наименование «Стволовая клетка» ввел в 1908 году русский гематолог из Санкт-Петербурга Александр Александрович Максимов.
Если бы не стволовые клетки, то не было бы жизни, и нас с вами. Стволовые клетки зарождаются — после слияния мужской и женской половых клеток, образуя новую клетку – зиготу, которая несет набор хромосом, обеспечивающий появление жизни.
Стволовые клетки характеризуется как обычные, и как особые. Клетка, как клетка – ядро, цитоплазма. В этом их обыкновение. А вот особенность в том, что они НИ КАКИЕ. Ни нервные, ни печеночные или кожные, ни костные, ни хрящевые… Они неспециализированные. Такие, как бы, самые простые. Но в то же время, случись в организме тревога, болезнь, они это чувствуют! А, почувствовав, бегут на место «трагедии», становятся на то место, где в этом месте что-то вышло из строя – печень заболела, они становятся клетками печени, заменяя больные и старые печеночные клетки, почки простудили – они найдут себе работу и здесь, станут новыми нефронами. И самое главное в том, что механизм этот един для всех органов и систем. Корень успеха работы стволовых клеток – ЕДИНСТВО работы всего организма. Это касается также нервной системы, где официальная медицина утверждает, что неравные клетки НЕ ВОССТАНАВЛИВАЮТСЯ
Утверждения официальной медицины, что нервные клетки не восстанавливаются, опровергаются методом, «Метод Вольдемара Рагеля восстановление Человека» — НЕРВНЫЕ КЛЕТКИ ВОССТАНАВЛИВАЮТСЯ.
Стволовые клетки обнаружены во всех органах и тканях организма: коже, мышцах, жире, кишечнике, нервной ткани, костном мозге и даже сетчатке глаза. Стволовые клетки, по своей природе, являются строительным материалом, поскольку они присутствуют во всех тканях человека, но наибольшая их концентрация наблюдается в Костном мозге, Эмбрионе и Печени.
Все стволовые клетки делятся на эмбриональные и клетки взрослого организма человека.
Активное изучение и внимание к стволовым клеткам началась в девяностые годы, когда американцы открыли эмбриональные стволовые клетки организма человека.
Но, значительно раньше тему о стволовых клетках развили советские ученые, известный советский ученый — Александр Яковлевич Фриденштейн в 60 годы прошлого века продолжил тему стволовых клеток костного мозга, известного русского гистолога Александра Александровича Максимова создавшего понятие о стволовых клетках кроветворной ткани в 1908 году.
Так, что приоритет об открытии стволовых клеток принадлежит не американцам, а русским и Советским ученым.
Эмбриональные стволовые клетки применяются на практике при лечении многих заболеваний, однако ввиду трудоемкости, сложности их получения, а также использование эмбриональных стволовых клеток, противоречит этике, что называется, совесть не велит.
Сейчас к практическому использованию стволовых клеток переходит на применение стволовых клеток взрослого организма человека.

Как действуют стволовые клетки?

В результате слияния двух половых клеток (женской яйцеклетки и мужского сперматозоида) образуется клетка – ЗИГОТА.
Клетка Зигота — делиться на бластомеры, бластомеры продолжают делиться на эмбриобласты. трофобласты, эпибласты, гипобласты… для образования новой жизни.
Поэтому человек может стать собственным донором, по вовлечению собственных стволовых клеток для лечения от различных болезней самого себя, если процессу деления столовых клеток создать условия деления.
Наибольшее количество стволовых клеток находиться в костном мозге, это стромальные стволовые клетки — стромы.

Что такое стромальная стволовая клетка? Стромальная стволовая клетка состоит из неоформленной соединительной ткани, в которой расположены специфические элементы органа, имеющие способность к размножению. Стромальная стволовая клетка — строма, присутствует наряду со стволовой кроветворной клеткой в лимфоидных тканях стволовой клетки.
Стромальные клетки не принимают непосредственного участия в кроветворении, они не являются промежуточной стадией дифференцировки кроветворных клеток в зрелые клетки.
Стромальные стволовые клетки являются заместителями поврежденных клеток организма, обеспечивая восстановление поврежденных участков органов, тканей.
Стромальные клетки, получив сигнал от центральной нервной системы, о каком-либо повреждении, по кровяному руслу устремляются к пораженному органу.
Стромальные стволовые клетки, оказавшиеся на поврежденном месте залечивают любую рану, тем самым превращаются на месте повреждения в необходимые организму клетки: костные, гладкомышечные, печеночные, сердечной мышцы, нервные и другие.
Можно ли помочь больному излечиться от цирроза печени, онкологии, инсульта, паралича…?
Сегодня ученые умеют направлять стромальные клетки «в нужном направлении».

КАК ЭТО ДЕЛАЕТСЯ?

Извлечь стволовые клетки из печени, теоретически возможно, но сложно и дорого. Поэтому основным материалом для получения стволовых клеток является костный мозг взрослого человека.
Пункция спинного или костного мозга, на первый взгляд, простая процедура – у донора, через специальный шприц, извлекают специальную тканевую жидкость, из которой в ходе сложного технического процесса получают стволовые клетки.
В лабораторных условиях особым образом готовят их, наращивают и вводят в больной организм, где при участии специальных сигнальных веществ, они направляются к «больному месту».
Однако, использование взрослых стволовых клеток сопряжено с определенными трудностями. Большинство из них не является полностью универсальными – они могут развиться лишь в клетки той ткани, из которой они происходят. Кроме того, остается до конца не выясненной причина этого вида стволовых клеток, количество циклов деления для развития необходимое количеству искомых клеток.
Взрослые стволовые клетки обладают рядом преимуществ. Работа с ними не связана с этическими ограничениями, как это бывает с эмбриональными стволовыми клетками, поскольку клетки добываются из донорского костного мозга. В некоторых случаях стволовые клетки могут быть получены от самого пациента, что исключает возможность реакции отторжения.
По этим причинам единственный признанный и давно применяемый метод лечения основан на использование именно взрослых стволовых клеток. Речь идет о пересадке костного мозга больным злокачественными новообразованиями крови. Никаких других одобренных к применению у людей лечебных воздействий с использованием стволовых клеток в настоящее время не существует.
Благодаря стволовым клеткам мы растем, развиваемся, восстанавливаемся,
ИЗЛЕЧИВАЕМСЯ ОТ ТЯЖЕЛЫХ НЕДУГОВ.
Своевременное обновление клеточного состава органов является важнейшим условием поддержания здоровья и долголетия каждого человека. Причем, чем организм моложе, тем восстановительные функции мощнее, так как у него больше запаса стволовых клеток.
Стволовые клетки не заражаются вирусами, устойчивы к инфекциям, от природы получили запас прочности на все тяжелые случаи жизни организма и сохраняются на протяжении всей жизни. Они есть в любом возрасте, просто со временем их количество и качество восстанавливать организм заметно снижаются. От этого мы стареем, болеем, умираем.

Используя стволовые клетки методом В.Д.Рагеля через слизистую ротовой полости, практически нет неизлечимых болезней, кроме болезней последних стадий, когда организм исчерпал ресурсы сопротивления недугу, например онкология четвертой стадии или другие болезни доведенные до крайности.

КАКОЕ ОТНОШЕНИЕ ИМЕЕТ МЕТОД В.Д.РАГЕЛЯ к СТВОЛОВЫМ КЛЕТКАМ?

ОКАЗЫВАЕТСЯ, МЕТОД ИМЕЕТ ПРЯМОЕ ОТНОШЕНИЕ К СТВОЛОВЫМ КЛЕТКАМ ОРГАНИЗМА!

Автор метода в течение 50 лет использует слизистую оболочку ротовой полости, об этом сообщается во всех официальных документах, патентах, имеются сведения о методе в 186 странах Мира Международной Конвенции.
Правильность размещения электрода на слизистую рта изучена и подтверждена Израильскими учеными Школы стоматологической медицины Гольдшлегера (Goldschleger School of Dental Medicine) Тель-Авивского университета (Tel Aviv University) под руководством профессора Санду Питару (Sandu Pitaru).
Работа профессора Санду Питару и его коллег, опубликована под названием «Вечная молодость» стволовых клеток слизистой рта: очередная «революция» или реальный шанс в журнале Stem Cells,? lana 26 августа, 2011 — 11:02.
В лаборатории Школы стоматологической медицины Гольдшлегера (Goldschleger School of Dental Medicine) Тель-Авивского университета (Tel Aviv University) профессор Санду Питару (Sandu Pitaru) ему и его коллегам уже удалось перепрограммировать клетки слизистой рта в другие клетки, в клетки кости, хряща, поперечно-полосатой мышцы и т. д., тем самым открывается новое направление в исследовании стволовых клеток и разработка потенциальных новых методов лечения.
Примечание автора:
Поскольку метод согласно Мировой Международной Конвенции опубликован в 186 странах Мира, очевидно Израильские ученые решили изучить слизистую ротовой полости, с применением слизистой в ротовой полости по методу В.Д.Рагеля.
Замете, что информация о возможности использования слизистой оболочки ротовой полости при лечении болезней Израильскими учеными появилось 25 лет позднее публикации о методе В.Д.Рагеля.
Автор метода благодарен за проделанную работу определения значимости стволовых клеток слизистой ротовой полости профессору Санду Питару и его коллег, за подтверждение правильности и эффективности использования слизистой оболочки ротовой полости в методе В.Д.Рагеля для лечения многочисленных болезней.
Чтоб запустить деление стволовых клеток в организме человека необходимо задействовать следующие направления, а именно:
1. Восстановить электрический заряд клетки организма
человека.
2. Обеспечить жидкую среду организма электрически
заряженными электролитными свойствами, на подобие
электролиту автомобильного аккумулятора.
3. Восстановить функции — нервной, сосудистой,
эндокринной, кроветворной, лимфатической и иммунной
систем.
Выполнив вышеуказанные три условия, обеспечивается возможность деления стволовых клеток через слизистую оболочку ротовой полости, которые получив сигнал от нервной системы по кровеносным сосудам направляются к поврежденным местам организма, занимает место поврежденных клеток, превращаясь в клетки вышедшие из строя данного органа или системы.
Печень заболела, они становятся клетками печени, заменяя больные и старые печеночные клетки, почки простудили – они найдут себе работу и здесь, станут новыми нефронами. И самое главное в том, что механизм этот един для всех органов и систем. Корень успеха работы стволовых клеток – ЕДИНСТВО работы всего организма.

Проанализировав официальную версию свойств работы стволовых клеток и практическую работу с методом, автор пришел к выводу:
Что для обеспечения деления стволовых клеток по методу В.Д.Рагеля нет необходимости делать пункцию спинного или костного мозга, когда у донора шприцом извлекают тканевую жидкость, из которой получают стволовые клетки.
В лабораторных условиях готовят эти стволовые клетки, для ввода обратно в больной организм, а стволовые клетки, обработанные специальным составом направляются к «больному месту».
Однако, использование взрослых стволовых клеток сопряжено с определенными трудностями. Большинство из них не является полностью универсальными – они могут развиться лишь в клетки той ткани, из которой они были взяты. Кроме того, остается до конца не выясненной причина этого вида стволовых клеток, количество циклов деления для развития в необходимое количество искомых клеток.

Эта процедура дорогая, сложная, не надежная, часто бывают отторжения, т. е. тканевая не совместимость, требующая чрезвычайно высокой стерильности и т. д.

Используя метод В.Д.Рагеля по работе со стволовыми клетками, выше отмеченные недостатки отсутствуют, потому что, нет необходимости, что-то из организма выкачивать, переделывать и снова обратно вкачивать в больной организм человека.

2. Нужно ли заменять тазобедренные суставы искусственными при заболевании коксартроза –
НЕТ НЕОБХОДИМОСТИ.

3. Нужно ли заменять другие, напр. коленные суставы искусственными — НЕТ НЕОБХОДИМОСТИ.

4. Нужно ли делать операции на позвоночник при меж позвонковых грыжах — НЕТ НЕОБХОДИМОСТИ.

5. Нужно ли делать операции при воспалительных процессах печени, лёгких, поджелудочной, щитовидной железах и т. д. — НЕТ НЕОБХОДИМОСТИ.

6. Нужно ли делать трансплантацию костного мозга при онкологических заболеваниях – НЕТ НЕОБХОДИМОСТИ.

7. Надо ли оперировать миому матки женщин –
миома матки восстанавливается полностью до семи недель.

8. Можно ли спасти человека при отёках мозга, лёгкого, отёках других органов – ДА, БЕЗУСЛОВНО, МОЖНО!
Что же происходит, когда организм не может справиться с заболеванием?
а) В организме снижается или вообще отсутствует электрический заряд клетки.
б). Организм снижает функцию жизнеобеспечивающих систем: нервной, сосудистой, кроветворной, эндокринной, лимфатической и иммунной.
Вышеизложенное показывает, что успешно излечивается тяжелые заболевания, в том числе онкология, СПИД — кроме последних стадий.
Продолжить перечень болезней, где можно обойтись без оперативного вмешательства, различного рода вскрытий – НЕТ НЕОБХОДИМОСТИ.

P.S. Метод прошел официальные
клинические испытания в медицинских учреждениях города Ленинграда в 1986-90
годах, проверен, утвержден, рекомендован к применению в медицинской практике.

Эффективность метода подтверждена
свыше 90%, неблагоприятных явлений не обнаружено.

МЕТОДУ НЕ ВЕРЯТ, ПОТОМУ ЧТО МЕТОД ЧРЕЗВЫЧАЙНО ЭФФЕКТИВНЫЙ, БЕЗОПАСНЫЙ, НАДЕЖНЫЙ, ПРОСТОЙ.

Ремиссия составляет 20-25 и более лет.

Виды стволовых клеток

Стволовые клетки человека — недифференцированные клеточные элементы, обладающие свойствами самообновления и дифференцировки. Сам термин «стволовая клетка» ввел петербургский гематолог А. Максимов в 1908 году. Вторым основоположником клеточной терапии был С.Воронцов, работавший в 20-е гг. в Париже. Большой вклад в исследования стволовых клеток в России в 60-70-е гг. сделали гематологи А.Фриденштейн и И.Чертков. Стволовые клетки человека можно классифицировать в соответствии с их дифференцировочным потенциалом.
1) Тотипотентные клетки способны формировать все эмбриональные и экстра-эмбриональные типы клеток. К ним относятся только оплодотворённый ооцит и бластомеры 2 – 8 клеточной стадии.
2) Плюрипотентные клетки способны формировать все типы клеток эмбриона. К ним относятся эмбриональные стволовые клетки, первичные половые клетки и клетки эмбриональных карцином.
3) Другие типы стволовых клеток локализуются в сформировавшихся тканях взрослого организма (adult stem cells) и называются взрослыми, регионарными или тканевыми стволовыми клетками. Они варьируют по способности к дифференцировке от мульти- до унипотентных.
Однако в последние годы чаще используется классификация стволовых клеток по источникам их выделения: эмбриональные, фетальные (выделенные из абортивного материала) и стволовые клетки взрослого организма.

Первое применение стволовых клеток пуповинной крови в качестве альтернативы трансплантациям костного мозга произошло в 1988 году в Париже, когда ребенку с анемией Фанкони была произведена трансплантация стволовых клеток, выделенных из пуповинной крови сестры.
С этого момента по всему миру — сначала в США и в Европе, а затем и в России, начали создаваться банки пуповинной крови и проводиться сотни исследований с применением терапии стволовыми клетками пуповинной крови.

В 2005 году компания «Транс-Технологии» получила лицензию Федеральной службы по надзору в сфере здравоохранения и социального развития на применение новых клеточных технологий в здравоохранении, после чего был открыт первый в Санкт-Петербурге Банк стволовых клеток. За время работы компанией был накоплен огромный опыт как по хранению, так и по трансплантации стволовых клеток.

1. Эмбриональные стволовые клетки (ЭСК)
получают из так называемой внутренней клеточной массы раннего эмбриона на этапе бластоцисты (4-7 день развития). Это «идеальные» стволовые клетки, из которых в дальнейшем развивается весь организм. Все специализированные клетки организма по мере формирования эмбриона дифференцируются из неспециализированных эмбриональных стволовых клеток.
Эмбриональные стволовые клетки обладают рядом положительных и отрицательных характеристик, к которым относятся:
Плюрипотентность — способность стволовой клетки дифференцироваться в несколько типов клеток различных тканей и органов (нервные клетки, красные кровяные тельца, клетки печени, клетки поджелудочной железы, кардиомиоциты, клетки эпидермиса, мышечные клетки и др.).
Низкий уровень иммунореактивности – Эмбриональные стволовые клетки не несут на своих мембранах специфических молекул, которые могут быть опознаны иммунными клетками реципиента как чужеродные. По этой причине эмбриональные стволовые клетки практически никогда не отторгаются после трансплантации и не вызывают так называемой «реакции хозяин против трансплантата.
Онкологические осложнения — трансплантация эмбриональных СК может спровоцировать рост доброкачественных и злокачественных новообразований.

Формирование тератомы после трансплантации эмбриональных стволовых клеток при моделировании экспериментального инсульта.
Erdo F, Buhrle C, Blunk J, Hoehn M, Xia Y, Fleischmann BK, Focking M, Kustermann E, Kolossov E, Hescheler J, Hossmann K-A, and Trapp T.
Host-dependent tumorogenesis of embrionic stem sell transplantation in experimental stroke. Journal of Cerebral Bloob Flow and Methabolism. 2003, 23:780-785.

Этический аспект — Основным источником эмбриональных СК является абортивный материал или материал, оставшийся невостребованным после искусственного оплодотворения.

В случае ЭСК невозможно использовать аутологичный (собственный) материал

1. Фетальный клеточный материал — клетки зародыша на 9-12 неделе развития.

Наиболее веским обоснованием для использования фетального материала является возможность применения материала необходимого генеза. Вместе с тем возникают проблемы этического характера, а также множество вопросов относительно качества материала.

Возможность применения материала необходимого генеза — В 60-90-е гг. прошлого века при лечении психоневрологических заболеваний трансплантировали фетальный клеточный материал, в котором присутствовали стволовые клетки поврежденной ткани.

Этический аспект – Материал, оставшийся в результате прерывания беременности, т.е. аборта.

Качество материала — Использование непроверенного фетального материала может привести к заражению реципиента СПИДом, гепатитами, цитомегаловирусом и др. Проверка материала занимает время и достаточно дорогостоящая, что приводит к увеличению стоимости услуг.

Невозможно использовать аутологичный материал

ЭМБРИОНАЛЬНЫЕ СТВОЛОВЫЕ КЛЕТКИ ЗАПРЕЩЕНЫ К ИСПОЛЬЗОВАНИЮ МИНИСТЕРСТВОМ ЗДРАВООХРАНЕНИЯ И СОЦИАЛЬНОГО РАЗВИТИЯ РФ.

1. Стволовые клетки взрослого организма:
В течение жизни во взрослом организме постоянно происходит гибель клеток различных тканей, как при естественном обновлении (апоптоз), так и при повреждениях (некроз). Восстановление утраченных клеток происходит за счет камбиальных элементов. В кишечнике, коже, мышцах, красном костном мозге, печени, головном мозге существуют пролиферирующие тканеспецифические популяции клеток.
В последние годы в тканях сформировавшегося организма были выявлены клеточные элементы, способные к дифференцировке не только в тканеспецифических направлениях, но и в клетки иного тканевого происхождения. При этом происходит потеря первичных тканевых маркеров и функций и приобретение маркеров и функций вновь образованного клеточного типа. Это явление получило название трансдифференцировки или пластичности. Подобные клеточные элементы классифицируют как мультипотентные стволовые клетки взрослого организма. Ещё одно их свойство – способность к миграции в другие ткани in vivo.
Открытие стволовых клеток взрослого организма позволяет по-новому подойти к проблеме обновления сформировавшихся тканей, изменить концепцию клеточной и генной терапии различных заболеваний. Изучение свойств стволовых клеток и их влияния на репаративные процессы в организме — одна из наиболее актуальных задач современной клеточной биологии. Особая значимость исследований в данной области связана с применением клеточных технологий для лечения человека.
К настоящему моменту выделены следующие типы стволовых клеток взрослого организма: гемопоэтические, мышечные, нервной ткани, кожи, эндотелия, кишечника, миокарда, гемопоэтические и мезенхимные стволовые клетки.

ГЕМОПОЭТИЧЕСКИЕ СТВОЛОВЫЕ КЛЕТКИ (ГСК)
Гемопоэтические стволовые клетки (ГСК) — популяция мультипотентных стволовых клеток — в настоящее время охарактеризована наиболее полно. ГСК находятся в красном костном мозге взрослого организма. Впервые популяция ГСК была выделена из костного мозга (КМ) мыши около 30 лет назад. Клоногенные свойства этих клеток, доказанные позднее в экспериментах in vivo и in vitro, позволили выделять данные клетки с высоким уровнем чистоты (~85 %-95 %). Фенотипическим «портретом» чистых популяций ГСК считается присутствие на поверхности клетки маркеров CD34, CD133, c-kit (CD117), и отсутствие CD38, и специфических маркеров коммитированных клеток крови: гликофорина A, CD2,CD3, CD4, CD8, CD14, CD15, CD16, CD19, CD20, CD56 и CD66b (Lin-). Долгое время считалось, что ГСК способны дифференцироваться только в клетки крови. Однако исследования по выявлению мультипотентности ГСК, выполненные в последние годы, показали, что при трансплантации в кровоток ГСК могут дифференцироваться также в гепатоциты, клетки эпителия и эндотелий.

На основании экспериментальных работ, выполненных в течение последних лет, ГСК можно считать агентами клеточной терапии только при повреждениях печени и сосудов. Несмотря на разработанные протоколы выделения чистых популяций ГСК из взрослого организма, нет методик их культивирования in vitro(в лабораторных условиях). Существующие методы позволяют лишь сохранить или незначительно обогатить популяцию гемопоэтических стволовых клеток. Уже первые попытки их культивирования показали необходимость присутствия фидерного слоя из клеток стромы костного мозга. Как выяснилось позднее, именно клетки стромы костного мозга являются ключевыми регуляторами популяции ГСК. Стромальные элементы определяют пролиферацию и дифференцировку ГСК в костном мозге. Следует отметить, что стромальные клеточные элементы выделяют факторы, определяющие дифференцировку ГСК и миграцию ГСК в костный мозг.
ГСК способны мигрировать не только в костный мозг, но и из костного мозга в кровоток. Показано, что выход ГСК из костного мозга происходит в ответ на воздействие факторов мобилизации: гранулоцитарно-макрафагального колоние-стимулирующего фактора (ГМ-КСФ), гранулоцитарного колоние-стимулирующего фактора (Г-КСФ). Эти факторы также выделяются клетками стромы. Воздействие ГМ-КСФ и Г-КСФ увеличивает количество ГСК в периферической крови на порядок.
ГСК могут являться инструментом клеточной терапии при некоторых заболеваниях. Современный уровень развития биотехнологии позволяет исследователям использовать аутологичные ГСК, выделяя их из периферической крови в достаточном количестве. Однако механизмы трансдифференцировки ГСК в настоящий момент изучены недостаточно.
До последнего времени костный мозг являлся единственным источником гемопоэтических стволовых клеток. После некоторых медицинских процедур и введения в организм так называемых факторов мобилизации (Г-КСФ и ГМ-КСФ) в периферической крови можно увеличить количество ГСК. Нехватка образцов костного мозга заставила исследователей обратить внимание на альтернативные источники стволовых клеток крови. Несомненно, одним из них является пуповинная/плацентарная кровь. В последние годы исследования применимости пуповинной крови шагнули далеко вперед и многие врачи сошлись во мнении, что трансплантация стволовых клеток пуповинной крови может быть альтернативой пересадки костного мозга при онкогематологических и гематологических заболеваниях.
Итак, ГСК мультипотентны, могут дифференцироваться в клетки различных органов. При работе с ГСК можно использовать аутологичный материал, и как следствие нет риска отторжения при трансплантации реципиента. Они подвергаются криоконсервации, иными словами существует возможность хранения собственных клеток «про запас» с возможностью их использования через длительное время при сохранении всех свойств и возраста клеток на момент забора. Они не дают опухолей in vivo, при введении в организм не вызывают роста новообразований. На сегодняшний день их нельзя культивировать ex vivo, на настоящий момент не выработаны стабильно воспроизводимые методики увеличения количества гемопоэтических клеток в лабораторных условиях.

СТВОЛОВЫЕ КЛЕТКИ НЕРВНОЙ ТКАНИ
Стволовые клетки нервной ткани (НСК) расположены в специфических областях мозга человека и других млекопитающих.
Источником стволовых клеток нервной ткани является головной мозг как сформировавшегося, так и развивающегося организма. В результате проведенных экспериментов по трансплантации НСК клетки с донорской меткой были обнаружены в сердце, печени, центральной нервной системе, кишечнике и легких, что доказывает их мультипотентность.
Несмотря на то, что НСК являются мультипотентными и существует возможность их культивирования in vivo, их применение влечет за собой массу сложностей. Выделение стволовых клеток нервной ткани связано с полным разрушением головного мозга, что делает невозможным применение аутологичного материала, а, как следствие этого, появляются те же проблемы этического и иммунологического характера, что и при использовании фетальных клеток.
Для клеточной терапии НСК наиболее перспективны при использовании их ортодоксального дифференцировочного потенциала (нейроны и глия). К настоящему моменту разработаны коктейли химических индукторов коммитации НСК к дифференцировке в одном направлении (Bithell and Williams 2005). НСК локализованы в субэпендимном клеточном слое 3 и 4 желудочков головного мозга (Romanko et al., 2004). Таким образом, выделение НСК связано с разрушением головного мозга донора (Rietze et al., 2001). Но при этом возможно использование аллогенного материала для клеточной терапии ЦНС в связи с наличием гематоэнцефалического барьера и отсутствием иммунологических реакций на чужеродный материал, введенный в ЦНС реципиента. Эксперименты с применением фетального материала при терапии болезни Паркинсона к настоящему моменту уже проведены как на экспериментальных животных, так и в клинике (Burnstein et al., 2004).

СТВОЛОВЫЕ КЛЕТКИ КОЖИ
Стволовые клетки кожи выделяют из покровных тканей как эмбриона, так и взрослого организма. Клеточную терапию стволовыми клетками кожи связывают прежде всего с восстановлением кожных покровов, например, с восстановлением кожи после обширных ожогов. Сегодня подобные разработки уже применяют в клинике.

СТВОЛОВЫЕ КЛЕТКИ СКЕЛЕТНОЙ МУСКУЛАТУРЫ
Стволовые клетки скелетной мускулатуры выделяют из поперечнополосатой мускулатуры. Эти клетки способны к дифференцировке в клетки нервной, хрящевой, жировой и костной тканей, а также, естественно, в клетки поперечнополосатой мускулатуры. Однако последние исследования показывают, что клетки скелетной мускулатуры являются не чем иным, как отдельной популяцией мезенхимных стволовых клеток (см. ниже).

СТВОЛОВЫЕ КЛЕТКИ МИОКАРДА
В 90-х гг. ХХ века из миокарда новорожденных крыс были выделены клеточные элементы, способные к дифференцировке в кардиомиоциты и эндотелий сосудов. Трансплантация таких клеток в область инфаркта миокарда приводит к развитию в зоне повреждения новых кардиомиоцитов и сосудов, в результате чего восстанавливаются функции органа. Однако методика выделения данных клеточных элементов очень сложна и связана с полным разрушением мышечной ткани сердца.

МЕЗЕНХИМНЫЕ СТВОЛОВЫЕ КЛЕТКИ (МСК)
Традиционным источником МСК является строма костного мозга. В результате проведенных исследований мезенхимные стволовые клетки были обнаружены также в подкожной жировой ткани, которая в больших количествах остается после пластических операций.
В настоящее время ведется множество научно-исследовательских работ по выделению достаточного количества МСК из костной ткани и пуповинной крови.
Мезенхимные стволовые клетки человека рассматривают как один из основных элементов клеточной терапии. Действительно, МСК плюрипотентны и могут дифференцироваться в клетки костной, жировой, мышечной, хрящевой, нервной и прочих тканей. Неоспоримым достоинством работы с МСК служит то, что существует возможность применения аутологичного материала.

Источники МСК

Костный мозг — Жировая ткань — Костная ткань

Основные типы клеток человека. В много­клеточном организме имеются разнообразные клетки, различающиеся и по структуре, и по функ­циям. Специализированные клетки, связанные един­ством происхождения, образуют однородные объединения - ткани (эпителиальную, соеди­нительную, мышечную и нервную).

Клетки, сохра­няя основные характерные черты каждого типа ткани, могут в широких пределах различаться и внешне, и функционально. Причем характер различий изменяется в процессе индивидуального развития организма. В каждой ткани име­ются клетки, сохраняющие способность к делению.

Часть их потомков после деления начинает дифференцироваться и замещает отмирающие клетки данной ткани. Другая часть клетки остается недифференцированной, способной к последу­ющим делениям (так наз. стволовые клетки).

Эпителиальные клетки

Эпителиальные клетки высти­лают внутренние полости тела и покрывают его снаружи. К этой группе относятся также отдельные железистые клетки (слизистые, секреторные и т. д.), скопления клеток, образу­ющих железы (сальные, потовые, слюнные, слезные, молочные, поджелудочная железа, печень, эндокринные железы и др.), а также половые клетки - сперматозоиды и яйце­клетки.

По форме эпителиальные клетки бывают упло­щенными, кубическими и призматическими (вытянутыми). На наружной поверхности вса­сывающих эпителиальных клеток кишечника может быть множество выростов - микровор­синок, значительно увеличивающих поверх­ность клеток. Эпителиальные клетки с ресничками (мерцательный эпителий) расположены в дыха­тельных путях.

Эпителиальные клетки печени, кроме секретор­ной, выполняют функцию обезвреживания веществ, ядовитых для организма.Эпителиальные клетки наружных покровов организма синтезируют и выделяют белок кератин, который служит строительным материа­лом для образования плотных твердых чешуек, прикрывающих живые клетки. Вместе с жиро­выми выделениями сальных желез эти чешуйки образуют первый бесклеточный защитный слой кожи.

изображения по теме

Клетки соединительной ткани

Клетки соединительной ткани весьма разнообразны по форме и типам функционирования. К ним относят клетки, образующие коллагеновые волокна рыхлой и плотной (хрящевой, костной) соединительной ткани, клетки, ответственные за иммунные свойства организма, и клетки крови.

Клетки соединительной ткани объединяет способность к интенсивному синтезу фибрил­лярного белка коллагена, из которого в межкле­точном пространстве образуются комплексы - фибриллы, волокна, сети, пластинки. К. плот­ной соединительной ткани (кости) «забирают» из крови минеральные соли и выделяют их в межклеточное пространство в виде гидроксиапатита, фторапатита, цитратов или карбона­тов кальция. Т. о., фибриллы коллагена, моле­кулы гликопротеинов и сиаловой кислоты составляют основное межклеточное вещество рыхлой и хрящевой плотной соединительной ткани, а фибриллы коллагена и кристаллы гидроксиапатита - костной ткани.

Очень важным типом клеток соединитель­ной ткани являются ретикулоциты - крупные с многочисленными отростками клеток. Из них при появлении чужеродных частиц в тканях, крови или лимфе формируются иммунные клетки - лимфоциты, а также фагоцитирующие клет­ки - моноциты, макрофаги и гранулоциты.

изображения по теме

Лимфоциты

Лимфоциты - довольно крупные клетки шаро­образной формы диаметром 5-13 мкм. В них синте­зируются определенные антитела (белки имму­ноглобулины), имеющие сродство к «своим» антигенам - чужеродным частицам определен­ной природы. Иммуноглобулины синтезиру­ются и секретируются лимфоцитами по мере необходимости при появлении чужеродных частиц.

изображения по теме

Гранулоциты

Гранулоциты - крупные клетки с большим ядром сложной формы. В их цитоплазме много лизосом, используемых клеткой для внутриклеточ­ного переваривания. Количество гранулоцитов возрастает при попадании в организм микроор­ганизмов. Моноциты - крупные клетки, содержа­щие, как и гранулоциты, много лизосом. Моно­циты могут превращаться в макрофаги т. е. в клетке с выраженной фагоцитарной активностью.

изображения по теме

Ретикулоциты

Ретикулоциты являются также родоначаль­никами многих клеток крови. Из ретикулоцитов - эритробластов в костном мозге образуются эритроциты - клетки крови, переносящие кисло­род. В цитоплазме эритроцитов накапливается белок гемоглобин. Содержащиеся в оболочке эритроцитов вещества - агглютиногены - обусловливают группы крови. Эритроцит - безъядерная клетка, имеет форму двояковогнутого диска диаметром около 8 мкм и толщиной до 2 мкм. Срок его жизни 3-4 мес. «Отработавшие» свой срок эритроциты разрушаются в селезенке, а компоненты гемоглобина утилизируются орга­низмом.

Из ретикулоцитов - мегакариоцитов возникают безъядерные мембранные образова­ния - тромбоциты (кровяные пластинки), несущие в себе факторы свертывания крови. Это овальные частицы размером 3-4 мкм.

изображения по теме

Клетки мышечной ткани

Клетки мышечной ткани спо­собны к сокращению, их разделяют на гладкие и поперечнополосатые. Гладкие мышечные клетки невелики, имеют веретенообразную или чаще разветвленную форму. Гладкие мышечные клетки образуют гладкую мускулатур) кровеносных сосудов, кишечника, дыхатель­ных путей, мочевыводящих протоков, стенок матки и маточных труб и т. д. Сокращаются эти клетки медленно.

Мышечные клетки поперечнополосатых скелетных мышц являются основными струк­турными элементами скелетной мышечной тка­ни. Они представляют собой удлиненные цилиндрические образования, по всей длине которых тянутся пучки тонких сократительных элементов - миофибрилл. Последние состоят из упорядоченно расположенных еще более тонких ниточек - толстых и тонких протофибрилл, периодическое чередование которых вдоль волокна создает микроскопическую картину поперечной исчерченности.

изображения по теме

Нервные клетки

Нервные клетки (нейроны, нейроциты) образуют основу нервной ткани (см. Нервная система). Нервные клетки раз­деляют на афферентные, или чувствительные (репепторные), и эфферентные, или двигатель­ные. Первые способны реагировать на разно­образные физические и химические раздражители из окружающей и внутренней среды орга­низма. Вторые генерируют и передают импульсы к исполнительным клеткам (мышеч­ным, железистым и др.).

Двигательная нервная клетка имеет тело с ядром, многочисленные отростки (дендриты), по которым к клетке посту­пают импульсы, нервное волокно - аксон (один или реже два), достигающий у некоторых нейронов человека длины 1-1,5 м. Аксон окру­жен так называемая шванновскими клетками, спи­рально закрученными вокруг него и образу­ющими миелиновую оболочку. Их функцией является улучшение условий электрической проводимости нервного волокна.

В некоторых местах (перехватах Ранвье) вдоль аксона миелин отсутствует, в них происходит усиление «затухающих» при прохождении вдоль волокна электрических импульсов. Электрический импульс по аксону распространяется от тела К. до разветвленного периферического конца аксона. Такие разветвления обеспечивают связь нейрона с другими клетками (нервными, мышечными, секреторными и др.). Место кон­такта называется синапсом.

изображения по теме

Что известно о человеческом организме? Сколько клеток в организме взрослого человека? Как они растут и развиваются, для чего предназначены? Во всем мире ученые пытаются разгадать эти загадки.

Что такое клетка?

Ученые изучают организмы растений, животных, людей. Клетка - это самая малая часть любого организма. В теле человека их очень много, более 100 триллионов. Точное число неизвестно. Сколько клеток в организме человека умирает ежедневно? Количество зависит от предназначения. Так, например, у кишечного эпителия - 70 миллиардов в сутки, кровяных - 2 миллиарда, а клетки нервной системы не восстанавливаются после отмирания.

Впервые о клетках узнал в 1665 году Он понял, что чем взрослее человек, тем больше этих структурных элементов в его организме. Нельзя точно посчитать, , потому что они отмирают и рождаются ежеминутно.

Строение и функции

Нельзя сказать, сколько примерно клеток в организме человека, но ученые точно знают, что они имеют сложное строение. Большинство состоит из:

  • ядра, его называют сердцем клетки;
  • цитоплазмы;
  • ядрышка;
  • митохондрий;
  • оболочки ядра;
  • эндоплазматического сетчатого образования;
  • рибосом;
  • лизосом;
  • ямок и пор;
  • оболочки клетки, которая обеспечивает целостность, регулирует внутриклеточный баланс.

Функции связаны с синтезом веществ. Железистые клетки вырабатывают гормоны или ферменты. Молочные железы производят молоко, поджелудочная - инсулин. Некоторые ничего не синтезируют, например клетки мышц.

Вне зависимости от того, сколько клеток в организме человека, без него они не выживут. Клетки, как элементы мозаики, составляют единый организм.

Клетки крови

Из чего же состоит жидкость, которая течет по венам людей? Она содержит плазму и клеточные элементы:

  • красные кровяные тельца - эритроциты;
  • тромбоциты;
  • белые кровяные тела - лейкоциты.

Пигментные клетки

Меланоциты в организме человека отвечают за цвет кожи, волос, глаз и некоторых внутренних органов. Такие клетки содержат в цитоплазме пигменты, обуславливающие их действие. Меланоциты выполняют еще и защитную функцию от ультрафиолетовых лучей, отвечают за загар. Клетки по виду древообразные.

Клетки нервной системы

Это одни из тех, что не восстанавливаются после отмирания. Их научное название - нейроны. Их задача - обрабатывать и передавать информацию с помощью производимых ими электрических импульсов. Нейроны делятся на несколько видов:

  • сенсорные (отвечают за реакцию на свет, звук);
  • двигательные;
  • интернейроны.

В состав входит тело аксон. По своему строению они также разделены на несколько групп. Нервная система человека содержит около 10 миллиардов нейронов. Ежегодно около 10 тысяч отмирают и уже не восстанавливаются. Чем старше человек, тем меньше их остается.

Половые клетки

Сколько клеток в организме человека отвечают за размножение? Их два вида, они делятся на мужские - сперматозоиды - и женские - яйцеклетки. Мужская половая клетка по размеру значительно крупнее женской, так как содержит большее количество цитоплазмы. Впервые их открыли в 1677 году, а сами термины появились в начале 19-го века.

Несмотря на то что нельзя точно сказать, сколько клеток в организме человека, ученые изучили практически все их виды. Их участие напрямую связано с существованием всего живого на планете Земля. Ученые пытаются научиться самостоятельно выращивать человеческие клетки в условиях исследовательских лабораторий. Возможно, у них это получится.

28 Апр 2013 Подробности Автор: Авторское право © Арастоум Все права защищены. Просмотров: 4268

Роль клетки в организме человека

Любой организм обладает клеточным строением, а каждая клетка это отдельный организм, имеющий свои внутренние параметры и систему ограничений, правил существования, размножения и совершенствования. Основываясь на общих Правилах, всегда можно в малом увидеть большее, а в большем малое. Однако не всегда малое справляется с тем, что требуется для поддержания в норме всего большого организма. Тогда соседние, малые организмы помогают своему брату своими ресурсами или берут на себя часть его функций, чтобы дать ему возможность восстановиться. На этом взаимодействии проявляются несколько Законов:

А) Нас много, но мы едины, так как множество представляет один большой организм;

Б) Взаимозависимости и взаимопроникновения;

В) Всеобщей Любви. Роль клетки, как первичной самостоятельной системы, имеющей свои энергетические возможности для отражения внешнего воздействия весьма важна.

Её задача - построение тканей и органов одинакового состава, выполняющих конкретные функции. Многие действия, как и бездействие хозяина тела, не всегда способствуют правильному информационному и маническому обмену внутри клетки. Тогда она ему сигнализирует об этом, включая своих подруг. Клетки частей тела, его органов имеют своих лидеров-вождей.

Клетка лидер определяет скорость деления всех клеток, она царь в своём государстве, и вступая в разговор с органами, ты ведёшь его с их царями и чиновниками, то есть клетками, имеющими свои чины. Среди клеток есть главные и младшие, но все они исполняют приказы своего царя. Царь быстро реагирует на речь, звук и мысль о себе.

Произнося хорошие слова в адрес клеток и царей органов, систем органов человек заставляет их работать лучше, а это основа его здоровья.

Любой человек, если не получает поощрения за сделанное им, начинает работать с меньшей радостью и отдачей.

Все нуждаются в похвале и ласке, внимании и любви. Поэтому проявления любви к частям своего тела, в своей ежедневной практике этому очень способствует, но в нём нет важных элементов, касающихся уважения и благодарения за выполненную работу по поддержанию организма в рабочем состоянии и постоянном здоровье.

Этот маленький фрагмент изменит силу воздействия используемых тобой молитв и даст им вторую жизнь. Молитвы длинны, но и песнь о своих достоинствах должна быть длинной, иначе их будет у тебя мало!

Проговаривай в молитвах лучшие достоинства человека, и они будут в тебе. Заменяй в себе и других людях плохие качества характера на хорошие. Это существенно упростит твою задачу по реализации своих планов.

Никогда не нужно резать то, что может излечиваться само.

Нужно помочь любому царю удержаться в лидерах.

Он и только он регулирует своим примером состояние своего царства, обучая другие клетки правильной работе. Поэтому внешние удары микроорганизмов и вирусов направлены в первую очередь на Царей.

Уничтожив Царя или блокировав его, враг лишает орган управителя и распорядителя.

Если Царь к тому же не получает нужного ему внимания и любви, то он слабеет. Вместе с ним слабеет его царство.

Клетки лидеры – это стволовые клетки спинного мозга человека и животного, которые формируют органы путём деления клеток по заданной программе. У не родившегося ребёнка их достаточно много и они по конкурсу занимают свои места. Основой конкурсов является максимум возможности соответствия решаемым задачам и устойчивость к внешним воздействиям.

Много не востребованных клеток лидеров остаётся в плацентарной жидкости. Они голографически связаны между собой и их нельзя вводить в тела других людей. При введении в чужой организм они вносят в него свою программу жизни, а она не всегда соответствует его собственной. Это ведёт к наложению необходимости участия в лишних событиях и выполнению дополнительных кармических обязательств, к которым человек может быть не готов.

Многие известные обществу люди попробовали стать молодыми, а в результате быстро ушли на тот свет. Так же на человека действует ношение чужих волос, одежды, обуви. Волосы несут на себе программу того человека, у которого они отрезаны, а отрезают их весьма редко с добрыми целями и по собственному желанию. Зачастую нищета и болезни приходят в дом тех людей, кто носит чужие волосы и мысли.

Личные вещи всегда несут информацию о своём хозяине, а иногда на них специально записывают свои болезни и кармические обязательства. Магазины сэконд –хенда - это пункты передачи чужих долгов за малую плату. Многие люди болеют и теряют всё только из-за того что позарились на красивую вещь из секонд хэнда.

Обычная стирка вещи информацию полностью не стирает, особенно если она внесена специалистом в этой области знания.

Желаю всем трезвого и разумного отношения к чужим клеткам, органам и вещам!

Клетка — это структурно-функциональная единица живого организма, способная к делению и обмену с окружающей средой. Она осуществляет передачу генетической информации путем самовоспроизведения.
Клетки очень разнообразны по строению, функции, форме, размерам (рис. 1). Последние колеблются от 5 до 200 мкм. Самыми крупными в организме человека являются яйцеклетка и нервная клетка, а самыми маленькими — лимфоциты крови. По форме клетки бывают шаровидные, веретеновидные, плоские, кубические, призматические и др. Некоторые клетки вᴍеϲте с отростками достигают длины до 1,5 м и более (например, нейроны).

Рис. 1. Формы клеток:
1 — нервная; 2 — эпителиальная; 3 — соединителытотканная; 4 — гладкая мышечная; 5— эритроцит; 6— сперматозоид; 7—яйцеклетка

Каждая клетка имеет сложное строение и представляет собой систему биополимеров, содержит ядро, цитоплазму и находящиеся в ней органеллы (рис. 2). От внешней среды клетка отграничивается клеточной оболочкой — плазма-леммой (толщина 9—10 мм), которая осуществляет транспорт необходимых веществ в клетку, и наоборот, взаимодействует с соседними клетками и межклеточным веществом. Внутри клетки находится ядро, в котором происходит синтез белка, оно хранит генетическую информацию в виде ДНК (дезоксирибонуклеиновая кислота). Ядро может иметь округлую или овоидную форму, но в плоских клетках оно несколько сплющенное, а в лейкоцитах палочковидное или бобовидное. В эритроцитах и тромбоцитах оно отсутствует. Сверху ядро покрыто ядерной оболочкой, которая представлена внешней и внутренней мембраной. В ядре находится нуклеошазма, которая представляет собой гелеобразное вещество и содержит хроматин и ядрышко.


Рис. 2. Схема ультрамикроскопического строения клетки
(по М. Р. Сапину, Г. Л. Билич, 1989):
1 — цитолемма (плазматическая мембрана); 2 — пиноцитозные пузырьки; 3 — центросома (клеточный центр, цитоцентр); 4 — гиалоплазма; 5 — эн-доплазматическая сеть (о — мембраны эндоплазматической сети, б — ри-босомы); 6— ядро; 7— связь перинуклеарного пространства с полостями эндоплазматической сети; 8 — ядерные поры; 9 — ядрышко; 10 — внутриклеточный сетчатый аппарат (комплекс Гольджи); 77-^ секреторные вакуоли; 12— митохондрии; 7J — лизосомы; 74—три последовательные стадии фагоцитоза; 75 — связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети

Ядро окружает цитоплазма, в состав которой входят ги-алоплазма, органеллы и включения.
Гиалоплазма — это основное вещество цитоплазмы, она участвует в обменных процессах клетки, содержит белки, полисахариды, нуклеиновую кислоту и др.
Постоянные части клетки, которые имеют определенную структуру и выполняют биохимические функции, называются органеллами. К ним относятся клеточный центр, митохондрии, комплекс Гольджи, эндоплазматическая (ци-топлазматическая) сеть.
Клеточный центр обычно находится около ядра или комплекса Гольджи, состоит из двух плотных образований — центриолей, которые входят в состав веретена движущейся клетки и образуют реснички и жгутики.
Митохондрии имеют форму зерен, нитей, палочек, формируются из двух мембран — внутренней и внешней. Длина митохондрии колеблется от 1 до 15 мкм, диаметр — от 0,2 до 1,0 мкм. Внутренняя мембрана образует складки (кри-сты), в которых располагаются ферменты. В митохондриях происходят расщепление глюкозы, аминокислот, окислении жирных кислот, образование АТФ (аденозинтрифосфорнай кислота) — основного энергетического материала.
Комплекс Гольджи (внутриклеточный сетчатый аппарат) имеет вид пузырьков, пластинок, трубочек, расположенных вокруг ядра. Его функция состоит в транспорте веществ, химической их обработке и выведении за пределы клетки продуктов ее жизнедеятельности.
Эндоплазматическая (цитоплазматическая) сеть формируется из агранулярной (гладкой) и гранулярной (зернистой) сети. Агранулярная Эндоплазматическая сеть образуется преимущественно мелкими цистернами и трубочками диаметром 50—100 нм, которые участвуют в обмене липи-дов и полисахаридов. Гранулярная Эндоплазматическая сеть состоит из пластинок, трубочек, цистерн, к стенкам которых прилегают мелкие образования — рибосомы, синтезирующие белки.
Цитоплазма также имеет постоянные скопления отдельных веществ, которые называются включениями цитоплазмы и имеют белковую, жировую и пигментную природу.
Клетка как часть многоклеточного организма выполняет основные функции: усвоение поступающих веществ и расщепление их с образованием энергии, необходимой для поддержания жизнедеятельности организма. Клетки обладают также раздражимостью (двигательные реакции) и способны размножаться делением. Деление клеток бывает непрямое (митоз) и редукционное (мейоз).
Митоз — самая распространенная форма клеточного деления. Он состоит из нескольких этапов — профазы, метафазы, анафазы и телофазы. Простое (или прямое) деление клеток — амитоз — встречается редко, в тех случаях, когда клетка делится на равные или неравные части. Мейоз — форма ядерного деления, при котором количество хроᴍоϲом в оплодотворенной клетке уменьшается вдвое и наблюдается перестройка генного аппарата клетки. Период от одного деления клетки к другому называется ее жизненным циклом.

Клетка входит в состав ткани, из которой состоит организм человека и животных.
Ткань — это система клеток и внеклеточных структур, объединенных единством происхождения, строения и функций.
В результате взаимодействия организма с внешней средой, которое сложилось в процессе эволюции, появились четыре вида тканей с определенными функциональными особенностями: эпителиальная, соединительная, мышечная и нервная.
Каждый орган состоит из различных тканей, которые тесно связаны между собой. Например, желудок, кишечник, другие органы состоят из эпителиальной, соединительной, ᴦладкомышечной и нервной тканей.
Соединительная ткань многих органов образует строму, а эпителиальная — паренхиму. Функция пищеварительной системы не может быть выполнена полностью, если нарушена ее мышечная деятельность.
Таким образом, различные ткани, входящие в состав того или иного органа, обеспечивают выполнение ᴦлавной функции данного органа.

Эпителиальная ткань

Эпителиальная ткань (эпителий) покрывает всю наружную поверхность тела человека и животных, выстилает слизистые оболочки полых внутренних органов (желудок, кишечник, мочевыводящие пути, плевру, перикард, брюшину) и входит в состав желез внутренней секреции. Выделяют покровный (поверхностный) и секреторный (железистый) эпителий. Эпителиальная ткань участвует в обмене веществ между организмом и внешней средой, выполняет защитную функцию (эпителий кожи), функции секреции, всасывания (эпителий кишечника), выделения (эпителий почек), газообмена (эпителий легких), имеет большую регенеративную способность.
В зависиᴍоϲти от количества клеточных слоев и формы отдельных клеток различают эпителий многослойный — оро-говевающий и неороговевающий, переходный и однослой-ный — простой столбчатый, простой кубический (плоский), простой сквамозный (мезотелий) (рис. 3).
В плоском эпителии клетки тонкие, уплотненные, содержат ᴍало цитоплазмы, дисковидное ядро находится в центре, край его неровный. Плоский эпителий выстилает альвеолы легких, стенки капилляров, сосудов, полостей сердца, где благодаря своей тонкости осуществляет диффузию различных веществ, снижает трение текущих жидкостей.
Кубический эпителий выстилает протоки многих желез, а также образует канальцы почек, выполняет секреторную функцию.
Цилиндрический эпителий состоит из высоких и узких клеток. Он выстилает желудок, кишечник, желчный пузырь, почечные канальцы, а также входит в состав щитовидной железы.


Рис. 3. Различные виды эпителия:
А — однослойный плоский; Б — однослойный кубический; В — цилиндрический; Г—однослойный реснитчатый; Д—многорадный; Е —многослойный ороговевающий

Клетки реснитчатого эпителия обычно имеют форму цилиндра, с множеством на свободных поверхностях ресничек; выстилает яйцеводы, желудочки головного мозга, спинномозговой канал и дыхательные пути, где обеспечивает транспорт различных веществ.
Многорядный эпителий выстилает мочевыводящие пути, трахею, дыхательные пути и входит в состав слизистой оболочки обонятельных полостей.
Многослойный эпителий состоит из нескольких слоев клеток. Он выстилает наружную поверхность кожи, слизистую оболочку пищевода, внутреннюю поверхность щек, влагалище.
Переходный эпителий находится в тех органах, которые подвергаются сильному растяжению (мочевой пузырь, мочеточник, почечная лоханка). Толщина переходного эпителия препятствует попаданию мочи в окружающие ткани.
Железистый эпителий составляет основную массу тех желез, у которых эпителиальные клетки участвуют в образовании и выделении необходимых организму веществ.
Существуют два типа секреторных клеток — экзокрин-ные и эндокринные. Экзокринные клетки выделяют секрет на свободную поверхность эпителия и через протоки в полость (желудка, кишечника, дыхательных путей и др.). Эндокринными называют железы, секрет (гормон) которых выделяется непосредственно в кровь или лимфу (гипофиз, щитовидная, вилочковая железы, надпочечники).
По строению экзокринные железы могут быть трубчатыми, альвеолярными, трубчато-альвеолярными.

Соединительная ткань

По свойствам соединительная ткань объединяет значительную группу тканей: собственно соединительные ткани (рыхлая волокнистая, плотная волокнистая — неоформленная и оформленная); ткани, которые имеют особые свойства (жировая, ретикулярная); скелетные твердые (костная и хрящевая) и жидкие (кровь, лимфа). Соединительная ткань выполняет опорную, защитную (механическую), формообразовательную, пластическую и трофическую функции. Эта ткань состоит из множества клеток и межклеточного вещества, в котором находятся разнообразные волокна (коллагеновые, эластические, ретикулярные).
Рыхлая волокнистая соедᴎнительная ткань содержит клеточные элементы (фибробласты, макрофаги, плазматические и тучные клетки и др.). В зависиᴍоϲти от строения и функции органа волокна по-разному ориентированы в основном веществе. Эта ткань располагается преимущественно по ходу кровеносных сосудов.
Плотная волокнистая соедᴎнительная ткань бывает оформленной и неоформленной. В оформленной плотной соедᴎнительной ткани волокна располагаются параллельно и собраны в пучок, участвуют в образовании связок, сухожилий, перепонок и фасций. Для неоформленной плотной соедᴎнительной ткани характерны переплетение волокон и небольшое количество клеточных элементов.
Жировая ткань образуется под кожей, особенно под брюшᴎной и сальником, не имеет собственного основного вещества. В каждой клетке в центре располагается жировая капля, а ядро и цитоплазма — по периферии. Жировая ткань служит энергетическим депо, защищает внутренние органы от ударов, сохраняет тепло в организме.
К скелетным тканям относятся хрящ и кость. Хрящевая ткань состоит из хрящевых клеток (хондроцитов), которые располагаются по две-три клетки, и основного вещества, находящегося в состоянии геля. Различают гиалᴎновые, фиброзные и эластические хрящи. Из гиалᴎнового хряща состоят хрящи суставов, ребер, он входит в щитовидный и перстневидный хрящи гортани, дыхательные пути. Волокнистый хрящ входит в межпозвоночные и внутрисуставные диски, в мениски, покрывает суставные поверхности височно-нижнечелюстного и грудᴎно-ключичного суставов. Из эластического хряща построены надгортанник, черпало-видные, рожковидные и клᴎновидные хрящи, ушная раковᴎна, хрящевая часть слуховой трубы и наружного слухового прохода.
Кровь и лимфа, а также межтканевая жидкость являются внутренней средой организма. Кровь несет тканям питательные вещества и кислород, удаляет продукты обмена и углекислый газ, вырабатывает антитела, переносит гормоны, которые регулируют деятельность различных систем организма. Несмотря на то, что кровь циркулирует по кровеносным сосудам и отделена от других тканей сосудистой стенкой, форменные элементы, а также вещества плазмы крови могут переходить в соедᴎнительную ткань, которая окружает кровеносные сосуды. Благодаря этому кровь обеспечивает постоянство состава внутренней среды организма.
В зависиᴍоϲти от характера транспортируемых веществ различают следующие основные функции крови: дыхательную, выделительную, питательную, гомеостатическую, регуляторную, защитную и терморегуляторную.
Благодаря дыхательной функции кровь переносит кислород от легких к органам и тканям и углекислый газ от периферических тканей в легкие. Выделительная функция осуществляет транспорт продуктов обмена (мочевой кислоты, билирубᴎна и др.) к органам выделения (почки, кишечник, кожа и др.) с целью последующего их удаления как веществ, вредных для организма. Питательная функция основана на перемещении питательных веществ (глюкозы, амᴎнокислот и др.), образовавшихся в результате пищеварения, к органам и тканям. Гомеостатическая функция — это равномерное распределение крови между органами и тканями, поддержание постоянного осмотического давления и рН с помощью белков плазмы крови и др. Регуляторная функция — это перенос выработанных железами внутренней секреции гормонов в определенные органы-мишени для передачи ᴎнформации внутри организма. Защитная функция заключается в обезвреживании клетками крови микроорганизмов и их токсᴎнов, формировании антител, удалении продуктов распада тканей, остановке кровотечения в результате образования тромба. Терморегуляторная функция осуществляется путем переноса тепла наружу из глубоколежащих органов к сосудам кожи, а также путем равномерного распределения тепла в организме в результате высокой теплоемкости и теплопроводности крови.
У человека масса крови составляет 6—8 % массы тела и в норме приблизительно равна 4,5—5,0 л. В состоянии покоя циркулирует всего 40—50 % всей крови, остальная часть находится в депо (печень, селезенка, кожа). В ᴍалом круге кровообращения содержится 20—25 % объема крови, в большом круге — 75—85 % крови. В артериальной системе циркулирует 15—20 % крови, в венозной — 70—75 %, в капиллярах — 5—7 %.
Кровь состоит из клеточных (форменных) элементов (45 %) и жидкой части — плазмы (65 %). После выделения форменных элементов в плазме содержатся растворенные в воде соли, белки, углеводы, биологически активные соедᴎнения, а также углекислый газ и кислород. В плазме находится около 90 % воды, 7—8 % белка, 1,1 % других органических веществ и 0,9 % неорганических компонентов. Она обеспечивает постоянство объема внутри сосудистой жидкости и кислотно-щелочное равновесие (КЩР), а также участвует в переносе активных веществ и продуктов метаболизма. Белки плазмы делятся на две основные группы:
альбумᴎны и глобулᴎны. К первой группе относится около 60 % белков плазмы. Глобулᴎны представлены фракциями: альфа1-, альфа2-, бета2- и гамма-глобулᴎнами. В глобулᴎновую фракцию входит также фибрᴎноген. Белки плазмы участвуют в таких процессах, как образование тканевой жидкости, лимфы, мочи и всасывание воды. Питательная функция плазмы связана с наличием в ней липи-дов, содержание которых зависит от особенностей питания.
Сыворотка крови не содержит фибрᴎноген, этим она отличается от плазмы и не свертывается. Сыворотку готовят из плазмы крови путем удаления из нее фибрᴎна. Кровь помещают в цилᴎндрический сосуд, через определенное время она свертывается и превращается в сгусток, из которого извлекают светло-желтую жидкость — сыворотку крови.
Кровь представляет собой коллоидно-полимерный раствор, растворителем в котором является вода, а растворимыми веществами — соли, низкомолекулярные органические соедᴎнения, белки и их комплексы.
Осмотическое давление крови — это сила движения растворителя через полупроницаемую мембрану из менее концентрированного раствора в более концентрированный. Осмотическое давление крови находится на относительно постоянном для обмена веществ уровне и равно 7,3 атм (5600 мм рт. ст., или 745 кПа). Оно зависит от содержания ионов и солей, которые находятся в диссоциированном состоянии, а также от количества растворенных в организме жидкостей. Концентрация солей в крови составляет 0,9 %, от их содержания ᴦлавным образом и зависит осмотическое давление крови.
Осмотическое давление определяется концентрацией различных веществ, растворенных в жидкостях организма, на необходимом физиологическом уровне.
Таким образом, при помощи осмотического давления вода распределяется равномерно между клетками и тканями. Растворы, у которых уровень осмотического давления выше, чем в содержимом клеток (гипертонические растворы), вызывают сморщивание клеток в результате перехода воды из клетки в раствор. Растворы с более низким уровнем осмотического давления, чем в содержимом клеток (гипотонические растворы), увеличивают объем клеток в результате перехода воды из раствора в клетку. Растворы, осмотическое давление которых равно осмотическому давлению содержимого клеток и которые не вызывают изменения клеток, называют изотоническими.
Регуляция осмотического давления осуществляется ней-рогуморальным путем. Кроме того, в стенках кровеносных сосудов, тканях, гипоталамусе находятся специальные ос-морецепторы, которые реагируют на изменения осмотического давления. Раздражение их приводит к изменению деятельности выделительных органов (почки, потовые железы).
В крови поддерживается постоянство рН реакции. Реакция среды определяется концентрацией водородных ионов, выражающихся водородным показателем рН, который имеет большое значение, поскольку абсолютное большинство биохимических реакций может протекать в норме только при определенных показателях рН. Кровь человека имеет слабощелочную реакцию: значение рН венозной крови 7,36; артериальной — 7,4. Жизнь возможна в довольно узких пределах сдвига рН — от 7,0 до 7,8. Несмотря на беспрерывное поступление в кровь кислых и щелочных продуктов обмена, рН крови сохраняется на относительно постоянном уровне. Это постоянство поддерживается физико-химическими, биохимическими и физиологическими механизмами.
Известно несколько буферных систем крови (карбонатная, белков плазмы, фосфатная и гемоглобина), которые связывают гидроксильные (ОН") и водородные (ЬГ) ионы и, следовательно, удерживают реакцию крови на постоянном уровне. При этом из организма выделяется избыток образованных кислых и щелочных продуктов обмена почками с мочой, а легкими выделяется углекислый газ.
К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты.
Эритроциты — красные кровяные тельца двояковогнутой формы. У них нет ядра. Средний диаметр эритроцитов 7—8 мкм, он приблизительно равен внутреннему диаметру кровеносного капилляра. Форма эритроцита повышает возможность газообмена, способствует диффузии газов с поверхности на весь объем клетки. Эритроциты отличаются большой эластичностью. Они легко проходят по капиллярам, имеющим вдвое меньший диаметр, чем сама клетка. Общая поверхность площади всех эритроцитов взрослого человека составляет около 3800 м2, т. е; в 1500 раз превышает поверхность тела.
В крови мужчин содержится около 5�1012/л эритроцитов, в крови женщин — 4,5 . Ю^/л. При усиленной физической нагрузке количество эритроцитов в крови может увеличиться до 6�1012/л. Это связано с поступлением в круг кровообращения депонированной крови.
Главная особенность эритроцитов — наличие в них гемоглобина, который связывает кислород (превратившись в оксигемоглобин) и отдает его периферическим тканям. Гемоглобин, отдавший кислород, называется восстановленным или редуцированным, он имеет цвет венозной крови. Отдав кислород, кровь постепенно вбирает в себя конечный продукт обмена веществ — СО2 (углекислый газ). Реакция присоединения гемоглобина к СО2 проходит сложнее, чем связывание с кислородом. Это объясняется ролью СО2 в образовании в организме кислотно-щелочного равновесия. Гемоглобин, связывающий углекислый газ, называется карбогемоглобином. Под влиянием находящегося в эритроцитах фермента карбоангидразы угольная кислота расщепляется на СО2 и Н2О. Углекислый газ выделяется легкими и изменения реакции крови не происходит. Особенно легко гемоглобин присоединяется к угарному газу (СО) вследствие его высокого химического сродства (в 300 раз выше, чем к О2) к гемоглобину. Блокированный угарным газом гемоглобин уже не может служить переносчиком кислорода и называется карбоксигемоглобином. В результате этого в организме возникает кислородное голодание, сопровождающееся рвотой, головной болью, потерей сознания.
Гемоглобин состоит из белка глобина и простетической группы гема, которые присоединяются к четырем полипептидным цепям глобина и придают крови красный цвет. В норме в крови содержится около 140 г/л гемоглобина: у мужчин — 135—155 г/л, у женщин — 120—140 г/л.
Уменьшение количества гемоглобина эритроцитов в крови называется анемией. Она наблюдается при кровотечении, интоксикации, дефиците витамина В12, фолиевой кислоты и др.
Продолжительность жизни эритроцитов около 3—4 месяцев. Процесс разрушения эритроцитов, при котором гемоглобин выходит из них в плазму, называется гемолизом.
При нахождении крови в вертикально расположенной пробирке наблюдается оседание эритроцитов вниз. Это происходит потому, что удельная плотноϲть эритроцитов выше плотноϲти плазмы (1,096 и 1,027).
Скорость оседания эритроцитов (СОЭ) выражается в миллиметрах высоты столба плазмы над эритроцитами за единицу времени (обычно за 1 ч). Эта реакция характеризует некоторые физико-химические свойства крови. СОЭ у мужчин в норме составляет 5—7 мм/ч, у женщин — 8— 12 мм/ч. Механизм оседания эритроцитов зависит от многих факторов, например от количества эритроцитов, их морфологических особенностей, величины заряда, способности к агломерации, белкового состава плазмы и др. Повышенная СОЭ характерна для беременных — до 30 мм/ч, больных с инфекционными и воспалительными процессами, а также со злокачественными образованиями — до 50 мм/ч и более.
Лейкоциты — белые кровяные тельца. По размерам они больше эритроцитов, имеют ядро. Продолжительность жизни лейкоцитов — несколько дней. Количество лейкоцитов в крови человека в норме составляет 4—9�109/л и колеблется в течение суток. Меньше всего их утром натощак.
Увеличение количества лейкоцитов в крови называется лейкоцитозом, а уменьшение — лейкопенией. Различают физиологический и реактивный лейкоцитоз. Первый чаще наблюдается после приема пищи, во время беременности, при мышечных нагрузках, боли, эмоциональных стрессах и др. Второй вид характерен для воспалительных процессов и инфекционных заболеваний. Лейкопения отмечается при некоторых инфекционных заболеваниях, воздействии ионизирующего излучения, приеме лекарственных препаратов и др.
Лейкоциты всех видов обладают подвижностью амеб и при наличии соответствующих химических раздражителей проходят через эндотелий капилляров (диапедез) и устремляются к раздражителю: микробам, инородным телам или комплексам антиген — антитело.
По наличию в цитоплазме зернистости лейкоциты делятся на зернистые (гранулоциты) и незернистые (агранулоциты).
Клетки, гранулы которых окрашиваются кислыми красками (эозин и др.), называют эозинофилами; основными красками (метиленовый синий и др.) — базофилами; нейтральными красками — нейтрофилами. Первые окрашиваются в розовый цвет, вторые — в синий, третьи — в розово-фиолетовый.
Гранулоциты составляют 72 % общего-количества лейкоцитов, из них 70 % нейтрофилов, 1,5 % эозинофилов и 0,5 % базофилов. Нейтрофилы способны проникать в межклеточные пространства к инфицированным участкам тела, поглощать и переваривать болезнетворные бактерии. Количество эозинофилов увеличивается при аллергических реакциях, бронхиальной астме, сенной лихорадке, они обладают антигистаминным действием. Базофилы вырабатывают гепарин и гистамин.
Агранулоциты — это лейкоциты, которые состоят из ядра овальной формы и незернистой цитоплазмы. К ним относятся моноциты и лимфоциты. Моноциты имеют ядро бобовидной формы, образуются в костном мозге. Они активно проникают в очаги воспаления и поглощают (фагоцитируют) бактерии. Лимфоциты образуются в вилочковой железе (тимусе), из стволовых лимфоидных клеток костного мозга и селезенки. Лимфоциты вырабатывают антитела и принимают участие в клеточных иммунных реакциях. Существуют Т- и В-лимфоциты. Т-лимфоциты при помощи ферментов самостоятельно разрушают микроорганизмы, вирусы, клетки трансплантируемой ткани и получили название киллеров — клеток-убийц. В-лимфоциты при встрече с инородным веществом при помощи специфических антител нейтрализуют и связывают эти вещества, подготавливая их к фагоцитозу. Состояние, при котором количество лимфоцитов превышает обычный уровень их содержания, называется лимфоцитозом, а снижение — лимфопенией.
Лимфоциты являются ᴦлавным звеном иммунной системы, они участвуют в процессах клеточного роста, регенерации тканей, управлении генетическим аппаратом других клеток.
Соотношение различных видов лейкоцитов в крови называется лейкоцитарной формулой (табл. 1).
Таблица 1
Лейкоцитарная формула


Лейкоциты,
10%

Эозинофи-
лы, %

Базо
филы,
%
Нейтрофилы, %
Лимфоциты, %

Моноциты,
%

Юные


палоч-
коядерные
сег-
менто-
ядер-
ные
4,0-9,0 1-4 0-0,5 0-1 2-5 55-68 25-30 6-8

Количество отдельных видов лейкоцитов при ряде заболеваний увеличивается. Например, при коклюше, брюшном тифе повышается уровень лимфоцитов, при малярии — моноцитов, а при пневмонии и других инфекционных заболеваниях — нейтрофилов. Количество эозинофилов увеличивается при аллергических заболеваниях (бронхиальная астма, скарлатина и др.). Характерные изменения лейкоцитарной формулы дают возможность поставить точный диагноз.
Тромбоциты (кровяные пластинки) — бесцветные сферические безъядерные тельца диаметром 2—5 мкм. Они образуются в крупных клетках костного мозга — мегакариоцитах. Продолжительность жизни тромбоцитов от 5 до 11 дней. Они играют важную роль в свертывании крови. Значительная их часть сохраняется в селезенке, печени, легких и по мере необходиᴍоϲти поступает в кровь. При мышечной работе, принятии пищи, беременности количество тромбоцитов в крови увеличивается. В норме содержание тромбоцитов составляет около 250�109/л.
Группы крови — иммуногенетические и индивидуальные признаки крови, которые объединяют людей по сходству определенных антигенов — агглютиногенов — в эритроцитах и находящиᴍϲя в плазме крови антител — агглютининов.
По наличию или отсутствию в мембранах донорских эритроцитов специфических мукополисахаридов — агглютиногенов А и В и в плазме крови реципиента агглютининов а и р определяется группа крови (табл. 2).
Таблица 2
Зависимость группы крови от наличия в ней агглютиногенов
эритроцитов и агглютининов плазмы

Группы крови Агглютиногены в эритроцитах Агглютинины в сыворотке
0(1) a, b
А (II) А b
В (III) В a
AB(IV) А, В

В связи с этим различают четыре группы крови: 0 (I), А (II), В (III) и АВ (IV). При совмещении сходных агглютиногенов эритроцитов с агглютининами плазмы происходит реакция агглютинации (склеивания) эритроцитов, которая лежит в основе групповой несовᴍеϲтиᴍоϲти крови. Этим положением необходимо руководствоваться при переливании крови.
Учение о группах крови значительно усложнилось в связи с открытием новых агглютиногенов. Например, группа А имеет ряд подгрупп, кроме того, найдены и новые агглютиногены — М, N, S, Р и др. Эти факторы иной раз являются причиной осложнений при повторных переливаниях крови.
Люди с первой группой крови считаются универсальными донорами. Однако выяснилось, что эта универсальность не абсолютна. Это связано с тем, что у людей с первой группой крови в значительной степени выявлены иммунные анти-А- и анти-В-агглютинины. Переливание такой крови может привести к тяжелым осложнениям и, возможно, к летальному исходу. Эти данные послужили основанием к переливанию только одногруппной крови (рис. 4).
Переливание несовᴍеϲтимой крови ведет к развитию гемотрансфузионного шока (тромбозу, а затем гемолизу эритроцитов, поражению почек и др.).


Рис. 4. Совᴍеϲтимость групп крови:
черта — совᴍеϲтима; квадрат — несовᴍеϲтима

Кроме основных агглютиногенов А и В, в эритроцитах могут быть и другие, в частноϲти так называемый резус-фактор (Rh-фактор), который впервые был найден в крови обезьяны макака-резус. По наличию или отсутствию резус-фактора выделяют резус-положительные (около 85 % людей) и резус-отрицательные (около 15 % людей) организмы. В лечебной практике резус-фактор имеет большое значение. Так, у резус-отрицательных людей переливание крови или повторные беременности вызывают образование резус-антител. При переливании резус-положительной крови людям с резус-антителами происходят тяжелые гемолити-ческие реакции, сопровождающиеся разрушением перелитых эритроцитов.
В основе развития резус-конфликтной беременности лежит попадание в организм через плаценту резус-отрицательной женщины резус-положительных эритроцитов плода и образование специфических антител (рис. 5).
В таких случаях первый ребенок, унаследовавший резус-положительную принадлежность, рождается нормальным. А при второй беременности антитела матери, проникшие в кровь плода, вызывают разрушение эритроцитов, накоп- ление билирубина в крови новорожденного и появление гемолитической желтухи с поражением внутренних органов ребенка.



Рис. 5. Развитие резус-конфликта и его предотвращение:
I — резус-конфликт; II — предотвращение резус-конфликта

Свертывание крови является защитной реакцией, которая предупреждает потерю крови и попадание в организм болезнетворных микробов. Это составляет многостадийный процесс. В нем принимает участие 12 факторов, которые находятся в плазме крови, а также вещества, высвобождающиеся из поврежденных тканей и тромбоцитов. В свертывании крови выделяют три стадии. В первой стадии кровь, вытекающая из раны, смешивается с веществами поврежденных тканей, разрушенных тромбоцитов и соприкасается с воздухом. Затем освобожденный предшественник тромбопластина под влиянием факторов плазмы ионов кальция (Са2+) превращается в активный тромбопластин. Во второй стадии при участии тромбопластина, факторов плазмы, ионов кальция неактивный белок плазмы протромбин превращается в тромбин. В третьей стадии тромбин (протео-литический фермент) расщепляет молекулу белка плазмы фибриногена.на мелкие части и создает сеть нитей фибрина (нерастворимый белок), который выпадает в осадок. В сетях из фибрина задерживаются форменные элементы крови и образуют сгусток, который препятствует потере крови и проникновению в рану микроорганизмов. После удаления фибрина из плазмы остается жидкость — сыворотка.
Кровь является лечебным средством. В практической медицине широко применяется переливание крови и ее препаратов. Для обеспечения кровью широко распространено донорство. Людей, которые сдают кровь в лечебных целях, называют донорами. У активных доноров разовая доза сдачи крови составляет 250—450 мл. Как правило, при этом происходит снижение количества гемоглобина и эритроцитов пропорционально количеству взятой крови. Скорость возвращения к норме крови донора зависит от многих причин,