В прямоугольном параллелепипеде все диагональные сечения равны. Определения параллелепипеда

Параллелепипедом называется призма, основаниями которой служат параллелограммы. При этом все грани будут параллелограммами .
Каждый параллелепипед можно рассматривать как призму тремя различными способами, так как за основания можно принять каждые две противоположные грани (на черт. 5 грани ABCD и A"B"C"D", или АВА"В" и CDC"D", или ВСВ"С" и ADA"D").
Рассматриваемое тело имеет двенадцать рёбер, по четыре равных и параллельных между собой.
Теорема 3 . Диагонали параллелепипеда пересекаются в одной точке, совпадающей с серединой каждой из них.
Параллелепипед ABCDA"B"C"D" (черт. 5) имеет четыре диагонали AC", BD", CA", DB". Мы должны доказать, что середины двух каких-либо из них, например АС и BD", совпадают. Это следует из того, что фигура ABC"D", имеющая равные и параллельные стороны АВ и C"D", есть параллелограмм.
Определение 7 . Прямым параллелепипедом называется параллелепипед, являющийся одновременно и прямой призмой, т. е. параллелепипед, боковые рёбра которого перпендикулярны к плоскости основания.
Определение 8 . Прямоугольным параллелепипедом называется прямой параллелепипед, основанием которого служит прямоугольник. При этом все его грани будут прямоугольниками.
Прямоугольный параллелепипед представляет собой прямую призму, какую бы из его граней мы ни приняли за основание, так как каждое его ребро перпендикулярно к рёбрам, выходящим с ним из одной вершины, и будет, следовательно, перпендикулярно и к плоскостям граней, определяемых этими рёбрами. В противоположность этому прямой, но не прямоугольный, параллелепипед можно рассматривать как прямую призму только одним способом.
Определение 9 . Длины трёх рёбер прямоугольного параллелепипеда, из которых никакие два не параллельны между собой (например трёх рёбер, выходящих из одной вершины), называются его измерениями. Два |прямоугольных параллелепипеда, имеющих соответственно равные изме- рения, очевидно, равны между собой.
Определение 10 .Кубом называется прямоугольный параллелепипед, все три измерения которого равны между собой, так что все его грани - квадраты. Два куба, рёбра которых равны между собой, равны.
Определение 11 . Наклонный параллелепипед, у которого все рёбра равны между собой и углы всех граней равны или пополнительны, называется ромбоэдром.
Все грани ромбоэдра - равные ромбы. (Форму ромбоэдра имеют некоторые кристаллы, имеющие большое значение, например кристаллы исландского шпата.) В ромбоэдре можно найти такую вершину (и даже две противололожные вершины), что все прилежащие к ней углы равны между собой.
Теорема 4 . Диагонали прямоугольного параллелепипеда равны между собой. Квадрат диагонали равен сумме квадратов трёх измерений.
В прямоугольном параллелепипеде ABCDA"B"C"D" (черт. 6) диагонали АС" и BD" равны, так как четырёхугольник ABC"D" - прямоугольник (прямая АВ перпендикулярна к плоскости ВСВ"С", в которой лежит ВС").
Кроме того, AC" 2 =BD" 2 = AB2+AD" 2 на основании теоремы о квадрате гипотенузы. Но на основании той же теоремы AD" 2 = AA" 2 + +A"D" 2 ; отсюда имеем:
АС" 2 = АВ 2 + АА" 2 +A"D" 2 =АВ 2 + AA" 2 + AD 2 .

ТЕМА 10.3. ПАРАЛЛЕЛИПИПЕД И ЕГО СВОЙСТВА.

Определение параллелепипеда. Свойства параллелепипеда с доказательствами. Куб.

Параллелепи́пед - призма , основанием которой служит параллелограмм .

Типы параллелепипеда

Различается несколько типов параллелепипедов:

  • Прямоугольный параллелепипед - это параллелепипед, у которого все грани - прямоугольники;
  • Прямой параллелепипед - это параллелепипед, у которого 4 боковые грани - прямоугольники;
  • Наклонный параллелепипед - это параллелепипед, боковые грани которого не перпендикулярны основаниям.

Основные элементы

Две грани параллелепипеда, не имеющие общего ребра, называются противоположными , а имеющие общее ребро - смежными . Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок , соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями .

Свойства

  1. Параллелепипед симметричен относительно середины его диагонали.
  2. Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
  3. Противолежащие грани параллелепипеда параллельны и равны.
  4. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Основные формулы

Прямой параллелепипед

Площадь боковой поверхности S б =Р о *h, где Р о - периметр основания, h - высота

Площадь полной поверхности S п =S б +2S о, где S о - площадь основания

Объём V=S о *h

] Прямоугольный параллелепипед

Площадь боковой поверхности S б =2c(a+b), где a, b - стороны основания, c - боковое ребро прямоугольного параллелепипеда

Площадь полной поверхности S п =2(ab+bc+ac)

Объём V=abc, где a, b, c - измерения прямоугольного параллелепипеда.

Если основание призмы есть параллелограмм, то она называется параллелепипедом. У параллелепипеда все грани - параллелограммы.

На рисунке 12, а) изображен наклонный параллелепипед, а на рисунке 12, б) - прямой параллелепипед.

Грани параллелепипеда, не имеющие общих вершин, называются противолежащими.

Теорема 1. У параллелепипеда противолежащие грани параллельны, и равны.


Доказательство: Рассмотрим какие-нибудь две противолежащие грани параллелепипеда, например и (рис. 13). Так как все грани параллелепипеда - параллелограммы, то прямая параллельна прямой , а прямая параллельна прямой . Отсюда следует, что плоскости рассматриваемых граней параллельны.

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Рассмотрим эти предметы:

Строительный кирпич, игральный кубик, микроволновая печь. Эти предметы объединяет форма.

Поверхность, состоящая из двух равных параллелограммов АВСD и А1В1С1D1

и четырех параллелограммов АА1В1В и ВВ1С1С, СС1D1D, АА1D1D называется параллелепипедом.

Параллелограммы, из которых составлен параллелепипед, называются гранями. Грань А1В1С1D1. Грань ВВ1С1С. Грань АВСD.

При этом грани АВСD и А1В1С1D1 чаще называют основаниями, а остальные грани боковыми.

Стороны параллелограммов называются ребрами параллелепипеда. Ребро А1В1. Ребро СС1. Ребро АD.

Ребро СС1, не принадлежит основаниям, оно называются боковое ребро.

Вершины параллелограммов называют вершинами параллелепипеда.

Вершина D1. Вершина В. Вершина С.

Вершины D1 и В

не принадлежат одной грани и называются противоположными.

Параллелепипед можно изображать разными способами

Параллелепипед в основании, которого лежит ромб, При этом изображениями граней являются параллелограммы.

Параллелепипед в основании, которого лежит квадрат. Невидимые рёбра АА1, АВ, АD изображаются штриховыми линиями.

Параллелепипед в основании, которого лежит квадрат

Параллелепипед в основании, которого лежит прямоугольник или параллелограмм

Параллелепипед, у которого все грани квадраты. Чаще его называют кубом.

Все рассмотренные параллелепипеды обладают свойствами. Сформулируем и докажем их.

Свойство 1. Противоположные грани параллелепипеда параллельны и равны.

Рассмотрим параллелепипед АВСDА1В1С1D1 и докажем, например, параллельность и равенство граней ВВ1С1С и АА1D1D.

По определению параллелепипеда грань АВСD параллелограмм, значит по свойству параллелограмма ребро ВС параллельно ребру АD.

Грань АВВ1А1 тоже параллелограмм, значит ребра ВВ1 и АА1 параллельны.

Это означает что две пересекающиеся прямые ВС и BB1 одной плоскости соответственно параллельны двум прямым АD и АА1 соответственно другой плоскости, значит плоскости АВВ1А1 и ВСС1D1 параллельны.

Все грани параллелепипеда параллелограммы а значит ВС=АD, ВВ1 =АА1.

При этом стороны углов В1ВС и А1АD соответственно сонаправлены, значит они равны.

Таким образом, две смежные стороны и угол между ними параллелограмма АВВ1А1 соответственно равны двум смежным сторонам и углу между ними параллелограмма ВСС1D1, значит эти параллелограммы равны.

Параллелепипед обладает ещё свойством о диагоналях. Диагональю параллелепипеда называется отрезок соединяющий не соседние вершины. На чертеж пунктирной линией показаны диагонали В1D, BD1, А1С.

Итак, свойство 2. Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Для доказательства свойства рассмотрим четырехугольник ВВ1D1D. Его диагонали В1D, BD1 являются диагоналями параллелепипеда АВСDА1В1С1D1.

В первом свойстве мы уже выяснили, что ребро ВВ1 параллельно и равно ребру АА1, но ребро АА1 параллельно и равно ребру DD1. Следовательно рёбра ВВ1 и DD1 параллельны и равны, что доказывает четырехугольник ВВ1D1D- параллелограмм. А в параллелограмме по свойству диагонали В1D, BD1 пересекаются в некоторой точке О и этой точкой делятся пополам.

Четырехугольник ВС1D1А также является параллелограммом и его диагонали С1А, пересекаются в одной точке и делятся этой точкой пополам. Диагонали параллелограмма С1А, ВD1 являются диагоналями параллелепипеда, а значит сформулированное свойство доказано.

Для закрепления теоретических знаний о параллелепипеде рассмотрим задачу на доказательство.

На рёбрах параллелепипеда отмечены точки L,M,N,P так, что BL=CM=A1N=D1P. Доказать, что ALMDNB1C1P параллелепипед.

Грань ВВ1А1А параллелограмм, значит ребро ВВ1 равно и параллельно ребру АА1, но по условию отрезки BL и A1N, значит равны и параллельны отрезки LB1 и NA.

3)Следовательно, четырехугольник LB1NA по признаку параллелограмм.

4) Так как СС1D1D-параллелограмм, значит ребро СС1 равно и параллельно ребру D1D, а СМ равно D1P по условию, значит равны и параллельны отрезки МС1и DP

Следовательно, что четырехугольник MC1PD тоже параллелограмм.

5) Углы LB1N и MC1P равны как углы с соответственно параллельными и одинаково направленными сторонами.

6) Мы получили, что у параллелограммов и MC1PD соответствующие стороны равны и углы между ними равны, значит параллелограммы равны.

7) Отрезки равны по условию, значит BLMC- параллелограмм и сторона BC параллельна стороне LM параллельна стороне В1С1.

8) Аналогично из параллелограмма NA1D1P следует, что сторона A1D1 параллельна стороне NP и параллельна стороне AD.

9)Противоположные грани ABB1A1 и DCC1D1 параллелепипеда по свойству параллельны, а отрезки параллельных прямых заключенных между параллельными плоскостями равны, значит отрезки В1С1, LM, AD,NP равны.

Получено, что в четырехугольниках ANPD, NB1C1P, LB1C1M, ALMD две стороны параллельны и равны, значит они параллелограммы. Тогда наша поверхность ALMDNB1C1P состоит из шести параллелограммов, два из которых равны, а по определению это параллелепипед.

Определение

Многогранником будем называть замкнутую поверхность, составленную из многоугольников и ограничивающую некоторую часть пространства.

Отрезки, являющиеся сторонами этих многоугольников, называются ребрами многогранника, а сами многоугольники – гранями . Вершины многоугольников называются вершинами многогранника.

Будем рассматривать только выпуклые многогранники (это такой многогранник, который находится по одну сторону от каждой плоскости, содержащей его грань).

Многоугольники, из которых составлен многогранник, образуют его поверхность. Часть пространства, которую ограничивает данный многогранник, называется его внутренностью.

Определение: призма

Рассмотрим два равных многоугольника \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) , находящихся в параллельных плоскостях так, что отрезки \(A_1B_1, \ A_2B_2, ..., A_nB_n\) параллельны. Многогранник, образованный многоугольниками \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) , а также параллелограммами \(A_1B_1B_2A_2, \ A_2B_2B_3A_3, ...\) , называется (\(n\) -угольной) призмой .

Многоугольники \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) называются основаниями призмы, параллелограммы \(A_1B_1B_2A_2, \ A_2B_2B_3A_3, ...\) – боковыми гранями, отрезки \(A_1B_1, \ A_2B_2, \ ..., A_nB_n\) – боковыми ребрами.
Таким образом, боковые ребра призмы параллельны и равны между собой.

Рассмотрим пример - призма \(A_1A_2A_3A_4A_5B_1B_2B_3B_4B_5\) , в основании которой лежит выпуклый пятиугольник.

Высота призмы – это перпендикуляр, опущенный из любой точки одного основания к плоскости другого основания.

Если боковые ребра не перпендикулярны основанию, то такая призма называется наклонной (рис. 1), в противном случае – прямой . У прямой призмы боковые ребра являются высотами, а боковые грани – равными прямоугольниками.

Если в основании прямой призмы лежит правильный многоугольник, то призма называется правильной .

Определение: понятие объема

Единица измерения объема – единичный куб (куб размерами \(1\times1\times1\) ед\(^3\) , где ед - некоторая единица измерения).

Можно сказать, что объем многогранника – это величина пространства, которую ограничивает этот многогранник. Иначе: это величина, числовое значение которой показывает, сколько раз единичный куб и его части вмещаются в данный многогранник.

Объем имеет те же свойства, что и площадь:

1. Объемы равных фигур равны.

2. Если многогранник составлен из нескольких непересекающихся многогранников, то его объем равен сумме объемов этих многогранников.

3. Объем – величина неотрицательная.

4. Объем измеряется в см\(^3\) (кубические сантиметры), м\(^3\) (кубические метры) и т.д.

Теорема

1. Площадь боковой поверхности призмы равна произведению периметра основания на высоту призмы.
Площадь боковой поверхности - сумма площадей боковых граней призмы.

2. Объем призмы равен произведению площади основания на высоту призмы: \

Определение: параллелепипед

Параллелепипед – это призма, в основании которой лежит параллелограмм.

Все грани параллелепипеда (их \(6\) : \(4\) боковые грани и \(2\) основания) представляют собой параллелограммы, причем противоположные грани (параллельные друг другу) представляют собой равные параллелограммы (рис. 2).


Диагональ параллелепипеда – это отрезок, соединяющий две вершины параллелепипеда, не лежащие в одной грани (их \(8\) : \(AC_1, \ A_1C, \ BD_1, \ B_1D\) и т.д.).

Прямоугольный параллелепипед - это прямой параллелепипед, в основании которого лежит прямоугольник.
Т.к. это прямой параллелепипед, то боковые грани представляют собой прямоугольники. Значит, вообще все грани прямоугольного параллелепипеда – прямоугольники.

Все диагонали прямоугольного параллелепипеда равны (это следует из равенства треугольников \(\triangle ACC_1=\triangle AA_1C=\triangle BDD_1=\triangle BB_1D\) и т.д.).

Замечание

Таким образом, параллелепипед обладает всеми свойствами призмы.

Теорема

Площадь боковой поверхности прямоугольного параллелепипеда равна \

Площадь полной поверхности прямоугольного параллелепипеда равна \

Теорема

Объем прямоугольного параллелепипеда равен произведению трех его ребер, выходящих из одной вершины (три измерения прямоугольного параллелепипеда): \


Доказательство

Т.к. у прямоугольного параллелепипеда боковые ребра перпендикулярны основанию, то они являются и его высотами, то есть \(h=AA_1=c\) Т.к. в основании лежит прямоугольник, то \(S_{\text{осн}}=AB\cdot AD=ab\) . Отсюда и следует данная формула.

Теорема

Диагональ \(d\) прямоугольного параллелепипеда ищется по формуле (где \(a,b,c\) - измерения параллелепипеда) \

Доказательство

Рассмотрим рис. 3. Т.к. в основании лежит прямоугольник, то \(\triangle ABD\) – прямоугольный, следовательно, по теореме Пифагора \(BD^2=AB^2+AD^2=a^2+b^2\) .

Т.к. все боковые ребра перпендикулярны основаниям, то \(BB_1\perp (ABC) \Rightarrow BB_1\) перпендикулярно любой прямой в этой плоскости, т.е. \(BB_1\perp BD\) . Значит, \(\triangle BB_1D\) – прямоугольный. Тогда по теореме Пифагора \(B_1D=BB_1^2+BD^2=a^2+b^2+c^2\) , чтд.

Определение: куб

Куб - это прямоугольный параллелепипед, все грани которого – равные квадраты.


Таким образом, три измерения равны между собой: \(a=b=c\) . Значит, верны следующие

Теоремы

1. Объем куба с ребром \(a\) равен \(V_{\text{куба}}=a^3\) .

2. Диагональ куба ищется по формуле \(d=a\sqrt3\) .

3. Площадь полной поверхности куба \(S_{\text{полн.пов-ти куба}}=6a^2\) .