Цитология. Предмет цитологии. Историческое развитие цитологии



ЦИТОЛОГИЯ
наука о клетках - структурных и функциональных единицах почти всех живых организмов. В многоклеточном организме все сложные проявления жизни возникают в результате координированной активности составляющих его клеток. Задача цитолога - установить, как построена живая клетка и как она выполняет свои нормальные функции. Изучением клеток занимаются также патоморфологи, но их интересуют изменения, происходящие в клетках во время болезни или после смерти. Несмотря на то что учеными давно уже было накоплено немало данных о развитии и строении животных и растений, только в 1839 были сформулированы основные концепции клеточной теории и началось развитие современной цитологии. Клетки - это самые мелкие единицы живого, о чем наглядно свидетельствует способность тканей распадаться на клетки, которые затем могут продолжать жить в "тканевой" или клеточной культуре и размножаться подобно крошечным организмам. Согласно клеточной теории, все организмы состоят из одной или многих клеток. Из этого правила есть несколько исключений. Например, в теле слизевиков (миксомицетов) и некоторых очень мелких плоских червей клетки не отделены друг от друга, а образуют более или менее слитную структуру - т.н. синцитий. Однако можно считать, что такое строение возникло вторично в результате разрушения участков клеточных мембран, имевшихся у эволюционных предков этих организмов. Многие грибы растут, образуя длинные нитевидные трубки, или гифы. Эти гифы, часто разделенные перегородками - септами - на сегменты, тоже можно рассматривать как своеобразные вытянутые клетки. Из одной клетки состоят тела протистов и бактерий. Между бактериальными клетками и клетками всех других организмов существует одно важное различие: ядра и органеллы ("маленькие органы") бактериальных клеток не окружены мембранами, и поэтому эти клетки называют прокариотическими ("доядерными"); все другие клетки называют эукариотическими (с "настоящими ядрами"): их ядра и органеллы заключены в мембраны. В этой статье рассматриваются только эукариотические клетки.
См. также КЛЕТКА .
Открытие клетки. Изучение мельчайших структур живых организмов стало возможным лишь после изобретения микроскопа, т.е. после 1600. Первое описание и изображения клеток дал в 1665 английский ботаник Р.Гук: рассматривая тонкие срезы высушенной пробки, он обнаружил, что они "состоят из множества коробочек". Каждую из этих коробочек Гук назвал клеткой ("камерой"). Итальянский исследователь М.Мальпиги (1674), голландский ученый А. ван Левенгук, а также англичанин Н.Грю (1682) вскоре привели множество данных, демонстрирующих клеточное строение растений. Однако ни один из этих наблюдателей не понял, что действительно важным веществом был наполнявший клетки студенистый материал (впоследствии названный протоплазмой), а казавшиеся им столь важными "клетки" были просто безжизненными целлюлозными коробочками, в которых содержалось это вещество. До середины 19 в. в трудах ряда ученых уже просматривались зачатки некой "клеточной теории" как общего структурного принципа. В 1831 Р.Броун установил существование в клетке ядра, но не сумел оценить всю важность своего открытия. Вскоре после открытия Броуна несколько ученых убедились в том, что ядро погружено в полужидкую протоплазму, заполняющую клетку. Первоначально основной единицей биологической структуры считали волокно. Однако уже в начале 19 в. почти все стали признавать непременным элементом растительных и животных тканей структуру, которую называли пузырьком, глобулой или клеткой.
Создание клеточной теории. Количество прямых сведений о клетке и ее содержимом чрезвычайно возросло после 1830, когда появились усовершенствованные микроскопы. Затем в 1838-1839 произошло то, что называют "завершающим мазком мастера". Ботаник М.Шлейден и анатом Т.Шванн практически одновременно выдвинули идею клеточного строения. Шванн предложил термин "клеточная теория" и представил эту теорию научному сообществу. Согласно клеточной теории, все растения и животные состоят из сходных единиц - клеток, каждая из которых обладает всеми свойствами живого. Эта теория стала краеугольным камнем всего современного биологического мышления.
Открытие протоплазмы. Сначала незаслуженно большое внимание уделяли стенкам клетки. Однако еще Ф.Дюжарден (1835) описал живой студень у одноклеточных организмов и червей, назвав его "саркодой" (т.е. "похожим на мясо"). Эта вязкая субстанция была, по его мнению, наделена всеми свойствами живого. Шлейден тоже обнаружил в растительных клетках мелкозернистое вещество и назвал его "растительной слизью" (1838). Спустя 8 лет Г.фон Моль воспользовался термином "протоплазма" (примененным в 1840 Я.Пуркинье для обозначения субстанции, из которой формируются зародыши животных на ранних стадиях развития) и заменил им термин "растительная слизь". В 1861 М.Шультце обнаружил, что саркода содержится также в тканях высших животных и что это вещество идентично как структурно, так и функционально т.н. протоплазме растений. Для этой "физической основы жизни", как определил ее впоследствии Т.Гексли, был принят общий термин "протоплазма". Концепция протоплазмы в свое время сыграла важную роль; однако уже давно стало ясно, что протоплазма не однородна ни по своему химическому составу, ни по структуре, и этот термин постепенно вышел из употребления. В настоящее время главными компонентами клетки обычно считают ядро, цитоплазму и клеточные органеллы. Сочетание цитоплазмы и органелл практически соответствует тому, что имели в виду первые цитологи, говоря о протоплазме.
Основные свойства живых клеток. Изучение живых клеток пролило свет на их жизненно важные функции. Было установлено, что последние можно разбить на четыре категории: подвижность, раздражимость, метаболизм и размножение. Подвижность проявляется в различных формах: 1) внутриклеточная циркуляция содержимого клетки; 2) перетекание, обеспечивающее перемещение клеток (например, клеток крови); 3) биение крошечных протоплазматических выростов - ресничек и жгутиков; 4) сократимость, наиболее развитая у мышечных клеток. Раздражимость выражается в способности клеток воспринимать стимул и реагировать на него импульсом, или волной возбуждения. Эта активность выражена в наивысшей степени у нервных клеток. Метаболизм включает все превращения вещества и энергии, протекающие в клетках. Размножение обеспечивается способностью клетки к делению и образованию дочерних клеток. Именно способность воспроизводить самих себя и позволяет считать клетки мельчайшими единицами живого. Однако многие высокодифференцированные клетки эту способность утратили.
ЦИТОЛОГИЯ КАК НАУКА
В конце 19 в. главное внимание цитологов было направлено на подробное изучение строения клеток, процесса их деления и выяснение их роли как важнейших единиц, обеспечивающих физическую основу наследственности и процесса развития.
Развитие новых методов. Вначале при изучении деталей строения клеток приходилось полагаться главным образом на визуальное исследование мертвого, а не живого материала. Необходимы были методы, которые позволяли бы сохранять протоплазму, не повреждая ее, изготавливать достаточно тонкие срезы ткани, проходящие и через клеточные компоненты, а также окрашивать срезы, чтобы выявлять детали клеточного строения. Такие методы создавались и совершенствовались в течение всей второй половины 19 в. Совершенствовался и сам микроскоп. К числу важных достижений в его устройстве следует отнести: осветитель, расположенный под столиком, для фокусировки пучка света; апохроматический объектив для корректировки недостатков окрашивания, искажающих изображение; иммерсионный объектив, дающий более четкое изображение и увеличение в 1000 раз и более. Было также обнаружено, что основные красители, например гематоксилин, обладают сродством к содержимому ядра, а кислотные красители, например эозин, окрашивают цитоплазму; это наблюдение послужило основой для создания разнообразных методов контрастного или дифференциального окрашивания. Благодаря этим методам и усовершенствованным микроскопам постепенно накапливались важнейшие сведения о строении клетки, ее специализированных "органах" и различных неживых включениях, которые клетка либо сама синтезирует, либо поглощает извне и накапливает.
Закон генетической непрерывности. Фундаментальное значение для дальнейшего развития клеточной теории имела концепция генетической непрерывности клеток. В свое время Шлейден считал, что клетки образуются в результате своего рода кристаллизации из клеточной жидкости, а Шванн в этом ошибочном направлении пошел еще дальше: по его мнению, клетки возникали из некой "бластемной" жидкости, находящейся вне клеток. Сначала ботаники, а затем и зоологи (после того как разъяснились противоречия в данных, полученных при изучении некоторых патологических процессов) признали, что клетки возникают только в результате деления уже существующих клеток. В 1858 Р.Вирхов сформулировал закон генетической непрерывности в афоризме "Omnis cellula e cellula" ("Каждая клетка из клетки"). Когда была установлена роль ядра в клеточном делении, В.Флемминг (1882) перефразировал этот афоризм, провозгласив: "Omnis nucleus e nucleo" ("Каждое ядро из ядра"). Одним из первых важных открытий в изучении ядра было обнаружение в нем интенсивно окрашивающихся нитей, названных хроматином. Последующие исследования показали, что при делении клетки эти нити собираются в дискретные тельца - хромосомы, что число хромосом постоянно для каждого вида, а в процессе клеточного деления, или митоза, каждая хромосома расщепляется на две, так что каждая клетка получает типичное для данного вида число хромосом. Следовательно, афоризм Вирхова можно распространить и на хромосомы (носители наследственных признаков), поскольку каждая из них происходит от предсуществующей. В 1865 было установлено, что мужская половая клетка (сперматозоид, или спермий) представляет собой полноценную, хотя и высокоспециализированную клетку, а спустя 10 лет О.Гертвиг проследил путь сперматозоида в процессе оплодотворения яйцеклетки. И наконец, в 1884 Э. ван Бенеден показал, что в процессе образования как сперматозоида, так и яйцеклетки происходит модифицированное клеточное деление (мейоз), в результате которого они получают по одному набору хромосом вместо двух. Таким образом, каждый зрелый сперматозоид и каждая зрелая яйцеклетка содержат лишь половинное число хромосом по сравнению с остальными клетками данного организма, и при оплодотворении происходит просто восстановление нормального числа хромосом. В итоге оплодотворенная яйцеклетка содержит по одному набору хромосом от каждого из родителей, что является основой для наследования признаков и по отцовской, и по материнской линии. Кроме того, оплодотворение стимулирует начало дробления яйцеклетки и развитие нового индивида. Представление о том, что хромосомы сохраняют свою идентичность и поддерживают генетическую непрерывность от одного поколения клеток к другому, окончательно сформировалось в 1885 (Рабль). Вскоре было установлено, что хромосомы качественно отличаются друг от друга по своему влиянию на развитие (Т.Бовери, 1888). Начали появляться также экспериментальные данные в пользу высказанной ранее гипотезы В. Ру (1883), согласно которой даже отдельные части хромосом влияют на развитие, структуру и функционирование организма. Таким образом, еще до конца 19 в. было сделано два важных заключения. Одно состояло в том, что наследственность есть результат генетической непрерывности клеток, обеспечиваемой клеточным делением. Другое - что существует механизм передачи наследственных признаков, который находится в ядре, а точнее - в хромосомах. Было установлено, что благодаря строгому продольному расщеплению хромосом дочерние клетки получают совершенно такую же (как качественно, так и количественно) генетическую конституцию, как исходная клетка, от которой они произошли.
Законы наследственности. Второй этап в развитии цитологии как науки охватывает 1900-1935. Он наступил после того, как в 1900 были вторично открыты основные законы наследственности, сформулированные Г.Менделем в 1865, но не привлекшие к себе внимания и надолго преданные забвению. Цитологи, хотя и продолжали заниматься изучением физиологии клетки и такими ее органеллами, как центросома, митохондрии и аппарат Гольджи, основное внимание сосредоточили на строении хромосом и их поведении. Проводившиеся в это же время эксперименты по скрещиванию быстро увеличивали объем знаний о способах наследования, что привело к становлению современной генетики как науки. В результате возник "гибридный" раздел генетики - цитогенетика.
ДОСТИЖЕНИЯ СОВРЕМЕННОЙ ЦИТОЛОГИИ
Новые методы, особенно электронная микроскопия, применение радиоактивных изотопов и высокоскоростного центрифугирования, появившиеся после 1940-х годов, позволили достичь огромных успехов в изучении строения клетки. В разработке единой концепции физико-химических аспектов жизни цитология все больше сближается с другими биологическими дисциплинами. При этом ее классические методы, основанные на фиксации, окрашивании и изучении клеток под микроскопом, по-прежнему сохраняют практическое значение. Цитологические методы используются, в частности, в селекции растений для определения хромосомного состава растительных клеток. Такие исследования оказывают большую помощь в планировании экспериментальных скрещиваний и оценке полученных результатов. Аналогичный цитологический анализ проводится и на клетках человека: он позволяет выявить некоторые наследственные заболевания, связанные с изменением числа и формы хромосом. Такой анализ в сочетании с биохимическими тестами используют, например, при амниоцентезе для диагностики наследственных дефектов плода.
См. также
ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ ;
НАСЛЕДСТВЕННОСТЬ . Однако самое важное применение цитологических методов в медицине - это диагностика злокачественных новообразований. В раковых клетках, особенно в их ядрах, возникают специфические изменения, распознаваемые опытными патоморфологами.
См. также РАК .
ЛИТЕРАТУРА
Ченцов Ю.С. Общая цитология, 3-е изд. М., 1995 Грин Н., Стаут У., Тейлор Д. Биология, т. 1. М., 1996

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "ЦИТОЛОГИЯ" в других словарях:

    Цитология … Орфографический словарь-справочник

    - (от цито... и...логия) наука о клетке. Изучает строение и функции клеток, их связи и отношения в органах и тканях у многоклеточных организмов, а также одноклеточные организмы. Исследуя клетку как важнейшую структурную единицу живого, цитология… … Большой Энциклопедический словарь

    ЦИТОЛОГИЯ, изучение живых КЛЕТОК, их строения, поведения и функций. Начало этой дисциплине положил Роберт Гук, который в 1665 г. исследовал под микроскопом пробку. Различные типы микроскопов до сих пор являются основным инструментом цитологии. В… … Научно-технический энциклопедический словарь

    ЦИТОЛОГИЯ, цитологии, мн. нет, жен. (от греч. kytos сосуд и logos учение) (биол.). Отдел биологии, изучающий строение и жизнь клетки. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

Цитология - это наука о структуре, функциях и строении клетки, об организации живого на клеточном, субклеточном и надмолекулярном уровнях.

Цитология рассматривает химический состав, структурные компоненты клеток и их взаимодействие.

Наука о клетке появилась с изобретением и внедрением в практику микроскопа. К нему как к инструменту биологического исследования впервые было привлечено внимание исследованиями Антона Ван Ливенгука (1632-1723), который с помощью примитивных систем стекол добивался большого увеличения. Он очень много занимался изучением различных микроскопических биологических объектов. Однако эти исследования не имели существенного значения в развитии собственно науки о клетке.

Впервые клетки были описаны Робертом Гуком в монографии Микрография, или описание маленьких предметов» в 1667 г. Он рассматривал тонкие срезы пробки, сердцевины бузины, тростника и других растений и сделал открытие: растительная ткань состоит из многочисленных «пузырьков» с отчетливо заметными слепками. Эти ячейки он и назвал «клеточками», сравнивая их с пчелиными сотами. Гук вплел не только мертвые, но и живые растительные клетки.

В XVII в. М. Мальпиги и Н. Грью довольно подробно описали распределение клеток в растениях, но они рассматривали клетку как одну из многих структур, которые можно найти при изучении растений с помощью микроскопа.

Каспер Вольф в 1759 г. уделял большое внимание клеточному строению для обоснования теории зародышевого развития организмов. Он рассматривал развитие клеточного строения применительно к растительным организмам (в меньшей степени к животным) и предложил первую «клеточную теорию».

Очень интересные мысли о тонком строении организмов высказал Л. Окен (1809). По его мнению, всякий организм животного является суммой элементарных организмов, которые, войдя в его состав, живут жизнью целого, оставаясь до какой-то степени независимыми. Они являются пузырьками с плотной оболочкой и жидким содержимым и в философском смысле могут быть названы инфузориями.

В конце XVIII - начале XIX в. появилось множество работ, посвященных клеточному строению растений, по своему построению и объектам вполне сопоставимых с исследованиями начала XX в. Они указывали на распространенность клеточного строения, но о самой клетке их авторы почти ничего не знали.

Дютроше (1824) считал, что все ткани как растений, так и животных в конечном итоге состоят из клеток. В 1833 г. Роберт Броун описал клеточное ядро и высказал гипотезу, что ядро присутствует во всех клетках. Наконец, в 1837 г. Майен подчеркнул в своих работах, что только клетки являются элементарными анатомическими единицами растений.

В 1838 г. Шлейден, изучая ядра клеток растений, обнаружил в них ядрышки. По его мнению, из ядрышек развивается ядро, а уж из него - клетка. Теория Шлейдена была совершенно неверной, но тем не менее именно она дала толчок к постановке целого ряда исследований.

В числе приверженцев теории Шлейдена был Теодор Шванн, который изучал происхождение клеток у животных. В 1839 г. в своей книге «Микроскопические исследования о соответствии в структуре и росте растений и животных» он окончательно утвердил представление о клеточном строении как о всеобщем принципе организации. Основой всех теоретических представлений, исходя из которой Шванн доказал принципиальное сходство животных и растений, были неправильные идеи Шлейдена о генезе клеток. Шванн описал формирование клеток из ядрышек в хряще и хорде. Ничего нового в отношении происхождения клеток Шванн не внес. Так совершенно неправильное представление послужило основой для гениальных выводов, которые легли в основу клеточной теории.

Таким образом, и Шлейден, и Шванн не могут рассматриваться как безусловные основатели клеточной теории, однако только они сделали выводы, подкрепленные многочисленными, пусть и неверными, доказательствами. Основные положения Шванна относительно клеточной теории актуальны в той или иной мере до сих пор.

Огромный вклад в развитие клеточной теории внесли труды Рудольфа Вирхова. В своем основном сочинении «Целлюлярная патология как учение, основанное на физиологической и патологической гистологии» (1858) он показал, что «клетка действительно представляет собой последний морфологический элемент всего живого, и вне ее мы не должны предполагать существования нашей жизнедеятельности.

Вирхов ввел закон: всякая клетка от клетки и, таким образом, он отверг представления Шлейдена и Шванна. Он указал на то, что клетки имеют своего рода социальную организацию и существование многоклеточного организма есть продукт взаимодействия этих клеток. Однако Вирхов не отрицал и относительную самостоятельность клеток. Его же можно рассматривать как основателя учения о патологии клеток. Клеточная теория - наиболее общее, фундаментальное представление цитологии. Постулаты к неточной теории, предложенные еще в XIX в. Шванном и Шлейденом и дополненные Вирховым, гласят:

1. Клетка - минимальная структурно-функциональная единица живого. Для нее характерны основные свойства живого, в том числе: способность к воспроизведению (молекул, структур клетки, целой клетки), возбудимость и чувствительность, обмен веществ как внутри клетки, так и между клеткой и внешней средой. В одноклеточных организмах единственная клетка - это и есть целый организм. В сложно организованных многоклеточных организмах клетки специализированы и образуют ансамбли, формирующие ткани и органы. В то же время клетки относительно автономны и способны существовать (иногда весьма длительное время) вне организма.

2. Все клетки многоклеточных организмов сходны по своему строению. Несмотря на большое разнообразие структуры и функции клеток эукариот, в них имеются ядро, цитоплазма, цитолемма (цитомембрана), определенный набор органелл. Сходен и способ хранения наследственной информации в ядре (в ДНК). Таким образом, между клетками, например человека, мамонта и динозавра, небольшая разница, и все они подчинены или были подчинены строго определенным законам. Изучение многих химических веществ, в том числе ферментов, доказывает, что состав большинства из них сходен у высших млекопитающих, пресмыкающихся, земноводных и даже растений и беспозвоночных. Такие вещества еще называют эволюционно-консервативными. Часть же белков подверглась значительным изменениям в ходе эволюции, что сформировало новые функции и признаки отдельным клеткам и организму в целом.

3. Каждая новая клетка образуется из другой клетки путем деления. Все, даже самые сложные, многоклеточные организмы также формируются в результате деления исходной материнской клетки и дифференцировки. Деление клеток обеспечивает увеличение многоклеточного организма в процессе его индивидуального развития, а дифференцировка приводит к формированию специализированных органов и систем. Нарушение какой-либо из сторон этого процесса неминуемо ведет к развитию заболевания, а иногда и к гибели.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .



Цитология (от Цито... и...Логия

Развитие современной цитологии. С 50-х гг. 20 в. Ц. вступила в современный этап своего развития. Разработка новых методов исследования и успехи смежных дисциплин дали толчок бурному развитию Ц. и привели к стиранию чётких границ между Ц., биохимией, биофизикой и молекулярной биологией. Использование электронного микроскопа (его разрешающая способность достигает 2-4 Å, предел разрешения светового микроскопа около 2000 Å) привело к созданию субмикроскопической морфологии клетки и приблизило визуальное изучение клеточных структур к макромолекулярному уровню. Были обнаружены неизвестные до этого детали строения ранее открытых клеточных органоидов и ядерных структур; открыты новые ультрамикроскопические компоненты клетки: плазматическая, или клеточная, мембрана, отграничивающая клетку от окружающей среды, эндоплазматический ретикулум (сеть), рибосомы (осуществляющие синтез белка), лизосомы (содержащие гидролитические ферменты), пероксисомы (содержащие ферменты каталазу и уриказу), микротрубочки и микрофиламенты (играющие роль в поддержании формы и в обеспечении подвижности клеточных структур); в растительных клетках обнаружены диктиосомы - элементы комплекса Гольджи. Наряду с общеклеточными структурами выявляются ультрамикроскопические элементы и особенности, присущие специализированным клеткам. С помощью электронной микроскопии показано особое значение мембранных структур в построении различных компонентов клетки. Субмикроскопические исследования дали возможность все известные клетки (и соответственно все организмы) разделить на 2 группы: эукариоты (тканевые клетки всех многоклеточных организмов и одноклеточные животные и растения) и прокариоты (бактерии, сине-зелёные водоросли, актиномицеты и риккетсии). Прокариоты - примитивные клетки - отличаются от эукариотов отсутствием типичного ядра, лишены ядрышка, ядерной оболочки, типичных хромосом, митохондрий, комплекса Гольджи.

Усовершенствование методов изоляции клеточных компонентов, использование методов аналитической и динамической биохимии применительно к задачам Ц. (меченные радиоактивными изотопами предшественники, авторадиография, количественная цитохимия с использованием цитофотометрии, разработка цитохимических методик для электронной микроскопии, применение антител, меченных флуорохромами, для обнаружения под флуоресцентным микроскопом локализации индивидуальных белков; метод гибридизации на срезах и мазках радиоактивных ДНК и РНК для идентификации нуклеиновых кислот клетки и т.д.) привело к уточнению химической топографии клеток и расшифровке функционального значения и биохимической роли многих составных частей клетки. Это потребовало широкого объединения работ в области Ц. с работами по биохимии, биофизике и молекулярной биологии. Для изучения генетических функций клеток большое значение имело открытие содержания ДНК не только в ядре, но и в цитоплазматических элементах клетки - митохондриях, хлоропластах, а по некоторым данным, и в базальных тельцах. Для оценки роли ядерного и цитоплазматического генного аппарата в определении наследственных свойств клетки используется пересадка ядер и митохондрий. Гибридизация соматических клеток становится перспективным методом изучения генного состава отдельных хромосом (см. Соматических клеток генетика). Установлено, что проникновение веществ в клетку и в клеточные органоиды осуществляется с помощью особых транспортных систем, обеспечивающих Проницаемость биологических мембран . Электронно-микроскопические, биохимические и генетические исследования увеличили число сторонников гипотезы симбиотического (см. Симбиогенез) происхождения митохондрий и хлоропластов, выдвинутой в конце 19 в.

Основные задачи современной Ц. - дальнейшее изучение микроскопических и субмикроскопических структур и химической организации клеток; функций клеточных структур и их взаимодействий; способов проникновения веществ в клетку, выделения их из клетки и роли мембран в этих процессах; реакций клеток на нервные и гуморальные стимулы макроорганизма и на стимулы окружающей среды; восприятия и проведения возбуждения; взаимодействия между клетками; реакций клеток на повреждающие воздействия; репараций повреждения и адаптации к факторам среды и повреждающим агентам; репродукции клеток и клеточных структур; преобразований клеток в процессе морфофизиологической специализации (дифференцировки); ядерного и цитоплазматического генетического аппарата клетки, его изменений при наследственных заболеваниях; взаимоотношений клеток с вирусами; превращений нормальных клеток в раковые (малигнизация); процессов поведения клеток; происхождения и эволюции клеточной системы. Наряду с решением теоретических вопросов Ц. участвует в разрешении ряда важнейших биологических, медицинских и с.-х. проблем. В зависимости от объектов и методов исследования развивается ряд разделов Ц.: цитогенетика, кариосистематика, цитоэкология, радиационная Ц., онкологическая Ц., иммуноцитология и т.д.

В СССР имеются специальные цитологические исследовательские учреждения: институт цитологии АН СССР, институт цитологии и генетики Сибирского отделения АН СССР, институт генетики и цитологии АН БССР. Во многих др. биологических, медицинских и с.-х. научных учреждениях имеются специальные цитологические лаборатории. Работы по Ц. координируются в СССР Научным советом по проблемам Ц. при АН СССР. Издаются журналы «Цитология» (АН СССР), «Цитология и генетика» (АН УССР). Цитологические работы публикуются в журналах по смежным дисциплинам. В мире издаётся более 40 цитологических журналов. Периодически выходят книги многотомных интернациональных изданий: протоплазматология («Protoplasmatologia») (Вена) и международное обозрение по Ц. («International Review of Cytology») (Нью-Йорк). Имеется Международное общество биологии клетки (International Society of Cell Biology), регулярно созывающее цитологические конгрессы. Международная организация по исследованию клетки (International Cell Research Organization) и Европейская организация по биологии клетки (European Cell Biology Organization) создают рабочие группы по отдельным проблемам Ц., организуют курсы по узловым вопросам Ц. и для изучения методик, обеспечивают обмен информацией. В университетах СССР на биологических и биолого-почвенных факультетах преподаётся курс общей Ц. Во многих университетах проводятся специализированные курсы по разным проблемам Ц. В виде раздела Ц. входит также в состав курсов гистологии животных, анатомии растений, эмбриологии, протистологии, бактериологии, физиологии, патологической анатомии, которые читаются в с.-х., педагогических и медицинских учебных заведениях. См. также ст. Клетка и лит. при ней.

Лит.: Кацнельсон З. С., Клеточная теория в ее историческом развитии, Л., 1963; Руководство по цитологии, т. 1-2, М. - Л., 1965-66; Де Робертис Э., Новинский В., Саэс Ф., Биология клетки, пер. с англ., М., 1973; Brown W. V., Bertke E. M., Textbook of cytology, Saint Louis, 1969; Hirsch G. С., Ruska H., Sitte P., Grundlagen der Cytologie, Jena, 1973.

В. Я. Александров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Ученые, положившие начало цитологии.

английский естествоиспытатель, разносторонний ученый и экспериментатор, архитектор. Открыл (1660) закон, названный его именем. Высказал гипотезу тяготения. Сторонник волновой теории света. Улучшил и изобрел многие приборы, установил (совместно с Х. Гюйгенсом) постоянные точки термометра. Усовершенствовал микроскоп и установил клеточное строение тканей, ввел термин «клетка».

ЛЕВЕНГУК (Leeuwenhoek) Антони ван (1632-1723)

нидерландский натуралист, один из основоположников научной микроскопии. Изготовив линзы с 150-300-кратным увеличением, впервые наблюдал и зарисовал (публикации с 1673) ряд простейших, сперматозоиды, бактерии, эритроциты и их движение в капиллярах.

МАЛЬПИГИ (Malpighi) Марчелло (1628 - 94)

итальянский биолог и врач, один из основателей микроскопической анатомии. Открыл капиллярное кровообращение. Описал микроскопическое строение ряда тканей и органов растений, животных и человека.

ШВАНН (Schwann) Теодор (1810 - 82)

немецкий биолог, основоположник клеточной теории . На основании собственных исследований, а также работ М. Шлейдена и других ученых в классическом труде «Микроскопические исследования о соответствии в структуре и росте животных и растений» (1839) впервые сформулировал основные положения об образовании клеток и клеточном строении всех организмов. Труды по физиологии пищеварения, гистологии, анатомии нервной системы. Открыл пепсин в желудочном соке (1836).

БЭР Карл Максимович (Карл Эрнст) (1792 - 1876)

естествоиспытатель, основатель эмбриологии, один из учредителей Русского географического общества, иностранный член-корреспондент (1826), академик (1828-30 и 1834-62; почетный член с 1862) Петербургской АН. Родился в Эстляндии. Работал в Австрии и Германии; в 1829-30 и с 1834 — в России. Открыл яйцеклетку у млекопитающих, описал стадию бластулы; изучил эмбриогенез цыпленка. Установил сходство эмбрионов высших и низших животных, последовательное появление в эмбриогенезе признаков типа, класса, отряда и т. д.; описал развитие всех основных органов позвоночных. Исследовал Новую Землю, Каспийское море. Редактор серии изданий по географии России. Объяснил закономерность подмыва берегов рек (Бэра закон).

ЦИТОЛОГИЯ И ГИСТОЛОГИЯ

Список литературы

Гибель клеток: некроз и апоптоз

Механизмы клеточного деления

Цитоплазма

Строение клеточного ядра

Методы цитологии

Предмет цитологии и краткая история её развития

ЦИТОЛОГИЯ

Роль ядра в жизни клетки.Значение в переносе инф.ДНК к белку

Структура и функ.взаимосвязь всех компарментов вакуолярной системы.


1. Клеточная теория

2.1. Световая микроскопия

2.2. Витальное (прижизненное) изучение клеток

2.3. Изучение фиксированных клеток

2.4. Электронная микроскопия

2.5. Специальные методы

3.1. Центральная догма молекулярной биологии

3.2. Морфология ядерных структур

3.2.1. Структура и химия хроматина

3.2.2. Ядерный белковый матрикс

3.2.3. Общая организация митотических хромосом

3.3. Ядерные транскрипты и их транспорт

3.3.1. Ядрышко – источник рибосом

3.3.2. Нерибосомные продукты клеточного ядра

3.4. Ядерная оболочка

4.1. Гиалоплазма и органеллы

4.2. Общие свойства биологических мембран

4.2.1. Плазматическая мембрана

4.2.2. Специальные межклеточные соединения

4.2.3. Клеточная стенка (оболочка) растений

4.2.4. Клеточные оболочки бактерий

4.3. Вакуолярная система внутриклеточного транспорта

4.3.1. Гранулярный эндоплазматический ретикулум

4.3.2. Аппарат Гольджи

4.3.3. Лизосомы

4.3.4. Гладкий ретикулум

4.3.5. Вакуоли растительных клеток

4.3.6. Пероксисомы (микротельца)

4.4. Секреция белков и образование мембран у бактерий

4.5. Цитоплазма: системы энергообеспечения клетки

4.5.1. Митохондрии – строение и функции

4.5.2. Пластиды

4.6. Цитоплазма: опорно-двигательная система (цитоскелет)

4.6.1. Промежуточные филаменты

4.6.2. Микрофиламенты

4.6.3. Микротрубочки

4.6.4. Клеточный центр

4.6.5. Базальные тельца, строение и движение ресничек и жгутиков

4.6.6. Двигательный аппарат бактерий

5.1. Митотическое деление клеток

5.1.2. Митоз растительной клетки

5.2. Деление бактериальных клеток

5.4. Регуляция клеточного цикла


Лекций _____часов

Лабораторных работ _____часов

Основная литература:

1.Ченцов Ю.С. Введение в клеточную биологию. М.Академкнига. 2004 г. 495 с

2. Ченцов Ю.С. Основы цитологии. Учебник М. Изд. Моск. ун-та. 1984, 344с.

3. Хэм А, Кормак Д. Гистология в 5 томах. М.Мир,1982-83. Т.1.

4. Рябов К.П. Гистология с основами эмбриологии. Мн.,1990, 3-е издание

Дополнительная литература:

Цитология (от греч.kytos – ячейка, клетка) – наука о клетке, наука о клеточном уровне организации живой материи.

Во второй половине прошлого столетия цитология из описательной превратилась в экспериментальную науку, изучающую физиологию клетки, ее основные функции и свойства, ее биологию. Современная цитология – это физиология клетки.

Цитология - наука довольно молодая. Из среды других биологических наук она выделилась чуть более ста лет назад. Впервые обобщенные сведения о строении клеток были собраны книге Ж.Б.Карнуа «Биология клетки», вышедшей в 1884 году.

Клеточная теория – это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

Появлению и формулированию отдельных положений клеточной теории предшествовал трехсотлетний период изучения различных одно – и многоклеточных организмов растений и животных. Этот период связан с развитием применением и усовершенствованием различных оптических методов исследований.

Первый микроскоп был сконструирован голландским оптиком З.Янсеном в 1590 году. В 1612 году микроскоп был изготовлен Г.Галилеем . Но эти первые микроскопы не обратили на себя внимания. Только в 1659 году английский физик Х.Гюйгенс сконструировал окуляр , которым воспользовался его соотечественник Роберт Гук (1665 г) и применил к микроскопу для исследования тонкого строения пробки. Микроскоп Гука увеличивал в 100-140 раз. Изучая срезы пробки Гук обнаружил, что они состоят из очень мелких, отделенных друг от друга стенками ячеек, которые он и назвал клетками. И хотя Гук исследовал ткань мертвую и на срезах видел не клетки, а их оболочки, его работой было положено начало микроскопическим исследованиям растений.

Итальянец Мальпиги (1671), англичанин Грю (1671) подтвердили наблюдения Гука и показали, что разнообразные части растений состоят из «пузырьков» или «мешочков ».

А.Левенгук (1696) первый открыл мир одноклеточных организмов и впервые увидел клетки животных (эритроциты). Позднее клетки животных описал Ф.Фонтана (1781). Но эти и другие многочисленные исследования не привели к правильным представлениям о том, что же представляет собой клетка.

Прогресс в изучении клетки был связан с развитием микроскопирования в 19 в. К этому времени изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а содержимое клетки – протоплазма. В протоплазме было открыто Брауном ядро (1883). Его нашли в яйце курицы и дали ему название зародышевого пузырька.

К 30-м годам 19 века накопился значительный фактический материал по микроскопическому строению растений и животных. Но еще не существовало ясного представления о значении клетки в организме, ничего не было известно о том, как она размножается.

В 1838 г оду появилась работа немецкого ботаника М.Шлейдена , в которой излагалась мысль о том, что растительный организм есть агрегат клеток и сформулировал теорию цитогенеза , согласно которой клетки возникают из студнеобразного вещества – цитобластемы – путем кристаллизации. Основываясь на этом обобщении и собственных данных о строении клеток животных немецкий физиолог и цитолог Шванн (1839 ) в труде «Микроскопические исследования о соответствии в структуре и росте животных и растений». сформулировал ряд следующих обобщений:

1) клетка растений и животных сходны между собой (гомологичны)

2) клетки развиваются из цитобластемы.

3)жизнь организма основана на жизни клеток.

На этом основании Шлейден и Шванн считаются основоположниками клеточной теории. Дальнейшее развитие эти представления получили в работах русского ученого Р.Вирхова (1858 ). Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы.

Со второй половины 19 в. при университетах Харькова, Москвы, Казани, Томска, Петербурна, Киева начали создаваться кафедры цитологии и гистологии, а при кафедрах лаборатории.

Большой вклад в развитие цитологии внесли российские и советские ученые Н.М.Якубович (1817-1879), Ф.В.Овсянников (1827-1906), А.И.Бабухин (1835-1891), К.А.Арнштейн, Н.И.Перемежко (1823-1893), И.М.Мечников (1845-1916), А.А.Заварзин, Н.Г.Хлопин, А.А.Шабадаш, Г.И.Роскин и др.

С изобретением в 1934 году электронного микроскопа (Е.Руска, 1934) появилась возможность проникнуть в субмикроскопические области клетки и получить ценные данные о строении её внутриклеточных структур.

Наряду с развитием цитологии за рубежом она успешно развивалась и развивается в России, Советском Союзе, странах СНГ, в том числе и в Беларуси.

Современная цитология изучает:

1) строение клеток, их функционирование как элементарных живых систем.

2) Исследует функции отдельных клеточных компонентов.

3) Процессы воспроизведения клеток, их репарацию.

4) Приспособление к условиям внешней среды.

5) Особенности специализированных клеток.

Современная цитология тесно связана с научными и методическими достижениями биохимии, биофизики, молекулярной биологии и генетики. Эта взаимосвязь является основанием для углубленного изучения общих свойств клетки, для изучения ее функционирования уже с позиций этих наук. Всё вместе взятое стало основанием для появления нового раздела биологии - биологии клетки или, как её еще называют, клеточной биологии . Она применяет как морфологические, так и молекулярно-биологические методы изучения, поэтому считают, что термины цитология и биология клетки совпадают, т.к. их предметом изучения является клетка, имеющая свои собственные закономерности организации и функционирования.

В настоящее время дисциплина «Биология клетки» относится к фундаментальным разделам биологии, исследующая единственную единицу всего живого – клетку.

Современная цитология или биология клетки имеет важнейшее значение для развития множества других биологических наук , таких как физиология, генетика, молекулярная биология, медицина, ветеринария и др..

Изучение клетки и накопление о ней знаний привело к формулированию важного теоретического обобщения - клеточной теории , имеющей огромное общебиологическое значение.