Таблица на тему органоиды. Тема Клеточная теория. Клеточные структуры: цитоплазма, плазматическая мембрана, ЭДС, рибосомы, комплекс Гольджи, лизосомы

Клетка - основная форма организации живой материи, элементарная единица организма. Она представляет собой самовоспроизводящуюся систему, которая обособлена от внешней среды и сохраняет определенную концентрацию химических веществ, но одновременно осуществляет постоянный обмен со средой.

Клетка - основная структурная единица одноклеточных, колониальных и многоклеточных организмов. Единственная клетка одноклеточного организма универсальна, она выполняет все функции, необходимые для обеспечения жизни и размножения. У многоклеточных организмов клетки чрезвычайно разнообразны по размеру, форме и внутреннему строению. Это разнообразие связано с разделением функций, выполняемых клетками в организме.

Несмотря на огромное разнообразие, клетки растений характеризуются общностью строения - это клетки эукариотические , имеющие оформленное ядро. От клеток других эукариот - животных и грибов - их отличают следующие особенности: 1) наличие пластид; 2) наличие клеточной стенки, основным компонентом которой является целлюлоза; 3) хорошо развитая система вакуолей; 4) отсутствие центриолей при делении; 5) рост путем растяжения.

Форма и размеры растительных клеток очень разнообразны и зависят от их положения в теле растения и функций, которые они выполняют. Плотно сомкнутые клетки чаще всего имеют форму многогранников, что определяется их взаимным давлением, на срезах они обычно выглядят как 4 – 6-угольники. Клетки, диаметр которых по всем направлениям приблизительно одинаков, называются паренхимными . Прозенхимными называются клетки сильно вытянутые в длину, длина превышает их ширину в 5-6 и более раз. В отличие от клеток животных, взрослые клетки растений всегда имеют постоянную форму, что объясняется присутствием жесткой клеточной стенки.

Размеры клеток большинства растений колеблются от 10 до 100 мкм (чаще всего 15-60 мкм), они видны только под микроскопом. Более крупными обычно бывают клетки, запасающие воду и питательные вещества. Мякоть плодов арбуза, лимона, апельсина состоит из столь крупных (несколько миллиметров) клеток, что их можно увидеть невооруженным глазом. Очень большой длины достигают некоторые прозенхимные клетки. Например, лубяные волокна льна имеют длину около40 мм, а крапивы – 80 мм, при этом величина их поперечного сечения остается в микроскопических пределах.

Число клеток в растении достигает астрономических величин. Так, один лист дерева насчитывает более 100 млн. клеток.

В растительной клетке можно различить три основные части: 1) углеводную клеточную стенку , окружающую клетку снаружи; 2) протопласт – живое содержимое клетки, - прижатый в виде довольно тонкого постенного слоя к клеточной стенке, и 3) вакуоль – пространство в центральной части клетки, заполненное водянистым содержимым – клеточным соком . Клеточная стенка и вакуоль являются продуктами жизнедеятельности протопласта.

2.2. Протопласт

Протопласт – активное живое содержимое клетки. Протопласт представляет собой чрезвычайно сложное образование, дифференцированное на различные компоненты, называемые органеллами (органоидами) , которые постоянно в нем встречаются, имеют характерное строение и выполняют специфические функции (рис. 2.1 ). К органеллам клетки относятся ядро , пластиды , митохондрии , рибосомы , эндоплазматическая сеть , аппарат Гольджи , лизосомы , микротельца . Органеллы погружены в гиалоплазму , которая обеспечивает их взаимодействие. Гиалоплазма с органеллами, за вычетом ядра, составляет цитоплазму клетки. От клеточной стенки протопласт отделен наружной мембраной – плазмалеммой , от вакуоли - внутренней мембраной – тонопластом . В протопласте осуществляются все основные процессы обмена веществ.

Рис. 2.1. Строение растительной клетки по данным электронной микроскопии : 1 – ядро; 2 – ядерная оболочка; 3 – ядерная пора; 4 – ядрышко; 5 – хроматин; 6 – кариоплазма; 7 – клеточная стенка; 8 – плазмалемма; 9 – плазмодесмы; 10 – агранулярная эндоплазматическая сеть; 11 – гранулярная эндоплазматическая сеть; 12 – митохондрия; 13 – рибосомы; 14 – лизосома; 15 – хлоропласт; 16 – диктиосома; 17 – гиалоплазма; 18 – тонопласт; 19 – вакуоль.

Химический состав протопласта очень сложен и разнообразен. Каждая клетка характеризуется своим химическим составом в зависимости от физиологических функций. Основными классами конституционных , т. е. входящих в состав протопласта, соединений являются: вода (60-90%), белки (40-50% сухой массы протопласта), нуклеиновые кислоты (1-2%), липиды (2-3%), углеводы и другие органические соединения. В состав протопласта входят и неорганические вещества в виде ионов минеральных солей (2-6%). Белки, нуклеиновые кислоты, липиды и углеводы синтезируются самим протопластом.

Помимо конституционных веществ, в клетке присутствуют запасные вещества (временно выключенные из обмена) и отбросы (конечные его продукты). Запасные вещества и отбросы получили обобщенное название эргастических веществ. Эргастические вещества, как правило, накапливаются в клеточном соке вакуолей в растворенном виде или образуют включения – оформленные частицы, видимые в световой микроскоп. К эргастическим обычно относят вещества вторичного синтеза, изучаемые в курсе фармакогнозии, - терпеноиды, алкалоиды, полифенольные соединения.

По физическим свойствам протопласт представляет собой многофазный коллоидный раствор (плотность 1,03-1,1). Обычно это гидрозоль, т.е. коллоидная система с преобладанием дисперсионной среды – воды. В живой клетке содержимое протопласта находится в постоянном движении, его можно заметить под микроскопом по передвижению органоидов и включений. Движение может быть вращательным (в одном направлении) или струйчатым (направление токов в разных тяжах цитоплазмы различно). Ток цитоплазмы называется также циклозом . Он обеспечивает лучшую транспортировку веществ и способствует аэрации клетки.

Цитоплазма -обязательная часть живой клетки, где происходят все процессы клеточного обмена, кроме синтеза нуклеиновых кислот, совершающегося в ядре. Основу цитоплазмы составляет ее матрикс , или гиалоплазма , в который погружены органеллы.

Гиалоплазма – сложная бесцветная, оптически прозрачная коллоидная система, она связывает все погруженные в нее органеллы, обеспечивая их взаимодействие. Гиалоплазма содержит ферменты и активно участвует в клеточном метаболизме, в ней протекают такие биохимические процессы, как гликолиз, синтез аминокислот, синтез жирных кислот и масел и др. Она способна к активному движению и участвует во внутриклеточном транспорте веществ.

Часть структурных белковых компонентов гиалоплазмы формирует надмолекулярные агрегаты со строго упорядоченным расположением молекул - микротрубочки и микрофиламенты . Микротрубочки – это тонкие цилиндрические структуры диаметром около 24 нм и длиной до нескольких микрометров. Их стенка состоит из спирально расположенных сферических субъединиц белка тубулина. Микротрубочки участвуют в ориентации образуемых плазмалеммой целлюлозных микрофибрилл клеточной стенки, во внутриклеточном транспорте, поддержании формы протопласта. Из них образуются нити веретена деления во время митоза, жгутики и реснички. Микрофиламенты представляют собой длинные нити толщиной 5-7 нм, состоящие из сократительного белка актина. В гиалоплазме они образуют пучки – цитоплазматические волокна, или принимают вид трехмерной сети, прикрепляясь к плазмалемме, пластидам, элементам эндоплазматической сети, рибосомам, микротрубочкам. Считается, что, сокращаясь, микрофиламенты генерируют движение гиалоплазмы и направленное перемещение прикрепленных к ним органелл. Совокупность микротрубочек и микрофиламентов составляет цитоскелет .

В основе структуры цитоплазмы лежат биологические мембраны –тончайшие (4-10 нм) пленки, построенные в основном из фосфолипидов и белков – липопротеидов. Молекулы липидов образуют структурную основу мембран. Фосфолипиды располагаются двумя параллельными слоями таким образом, что их гидрофильные части направлены наружу, в водную среду, а гидрофобные остатки жирных кислот – внутрь. Часть молекул белков располагается несплошным слоем на поверхности липидного каркаса с одной или обеих его сторон, часть их погружена в этот каркас, а некоторые проходят через него насквозь, образуя в мембране гидрофильные «поры» (рис. 2.2 ). Большинство мембранных белков представлено различными ферментами.


Рис. 2.2. Схема строения биологической мембраны : Б – молекула белка; Фл – молекула фосфолипида.

Мембраны – живые компоненты цитоплазмы. Они отграничивают протопласт от внеклеточной среды, создают внешнюю границу органелл и участвуют в создании их внутренней структуры, во многом являясь носителем их функций. Характерной особенностью мембран является их замкнутость, непрерывность – концы их никогда не бывают открытыми. В некоторых особенно активных клетках мембраны могут составлять до 90% сухого вещества цитоплазмы.

Одноизосновных свойств биологических мембран – их избирательная проницаемость (полупроницаемость): одни вещества проходят через них с трудом или вообще не проходят (барьерное свойство), другие проникают легко. Избирательная проницаемость мембран создает возможность подразделения цитоплазмы на изолированные отсеки – компартменты – различного химического состава, в которых одновременно и независимо друг от друга могут протекать различные биохимические процессы, часто противоположные по направлению.

Пограничными мембранами протопласта являются плазмалемма – плазматическая мембрана и тонопласт – вакуолярная мембрана. Плазмалемма – наружная, поверхностная мембрана цитоплазмы, обычно плотно прилегает к клеточной стенке. Она регулирует обмен веществ клетки с окружающей средой, воспринимает раздражения и гормональные стимулы, координирует синтез и сборку целлюлозных микрофибрилл клеточной стенки. Тонопласт регулирует обмен веществ между протопластом и клеточным соком.

Рибосомы – маленькие (около 20 нм), почти сферические гранулы, состоящие из рибонуклеопротеидов – комплексов РНК и различных структурных белков. Это единственные органеллы эукариотической клетки, которые не имеют мембран. Рибосомы располагаются в цитоплазме клетки свободно, или же прикрепляются к мембранам эндоплазматической сети. Каждая клетка содержит десятки и сотни тысяч рибосом. Располагаются рибосомы поодиночке либо группами из 4-40 (полирибосомы , или полисомы ), где отдельные рибосомы связаны между собой нитевидной молекулой информационной РНК, несущей информацию о структуре белка. Рибосомы (точнее, полисомы) – центры синтеза белка в клетке.

Рибосома состоит из двух субъединиц (большой и малой), соединенных между собой ионами магния. Субъединицы образуются в ядре, а именно в ядрышке, сборка рибосом осуществляется в цитоплазме. Рибосомы обнаружены также в митохондриях и пластидах, но их размер меньше и соответствует размеру рибосом прокариотических организмов.

Эндоплазматическая сеть (эндоплазматический ретикулум) представляет собой разветвленную трехмерную сеть каналов, пузырьков и цистерн, ограниченных мембранами, пронизывающую гиалоплазму. Эндоплазматическая сеть в клетках, синтезирующих белки, состоит из мембран, несущих на наружной поверхности рибосомы. Такая форма получила название гранулярной , или шероховатой (рис. 2.1 ). Эндоплазматическая сеть, не имеющая рибосом, называется агранулярной , или гладкой . Агранулярная эндоплазматическая сеть принимает участие в синтезе жиров и других липофильных соединений (эфирные масла, смолы, каучук).

Эндоплазматическая сеть функционирует как коммуникационная система клетки и используется для транспортировки веществ. Эндоплазматические сети соседних клеток соединяются через цитоплазматические тяжи – плазмодесмы , которые проходят сквозь клеточные стенки. Эндоплазматическая сеть – центр образования и роста клеточных мембран. Она дает начало таким компонентам клетки, как вакуоли, лизосомы, диктиосомы, микротельца. При посредстве эндоплазматической сети осуществляется взаимодействие между органеллами.

Аппарат Гольджи названпоимениитальянскогоученого К. Гольджи, впервые описавшего его в животных клетках. В клетках растений аппарат Гольджи состоит из отдельныхдиктиосом , или телец Гольджи и пузырьков Гольджи . Каждая диктиосома представляет собой стопку из 5-7 и более уплощенных округлых цистерн диаметром около 1 мкм, ограниченных мембраной (рис. 2.3). По краям диктиосомы часто переходят в систему тонких ветвящихся трубок. Число диктиосом в клетке сильно колеблется (от 10-50 до нескольких сотен) в зависимости от типа клетки и фазы ее развития. Пузырьки Гольджи различного диаметра отчленяются от краев диктиосомных цистерн или краев трубок и направляются обычно в сторону плазмалеммы или вакуоли.

Рис. 2.3. Схема строения диктиосомы.

Диктиосомы являются центрами синтеза, накопления и выделения полисахаридов, прежде всего пектиновых веществ и гемицеллюлоз матрикса клеточной стенки и слизей. Пузырьки Гольджи транспортируют полисахариды к плазмалемме. Особенно развит аппарат Гольджи в клетках, интенсивно секретирующих полисахариды.

Лизосомы –органеллы, отграниченные от гиалоплазмы мембраной и содержащие гидролитические ферменты, способные разрушать органические соединения. Лизосомы растительных клеток представляют собой мелкие (0,5-2 мкм) цитоплазматические вакуоли и пузырьки – производные эндоплазматической сети или аппарата Гольджи. Основная функция лизосом - локальный автолиз – разрушение отдельных участков цитоплазмы собственной клетки, заканчивающееся образованием на ее месте цитоплазматической вакуоли. Локальный автолиз у растений имеет в первую очередь защитное значение: при временном недостатке питательных веществ клетка может сохранять жизнеспособность за счет переваривания части цитоплазмы. Другая функция лизосом – удаление изношенных или избыточных клеточных органелл, а также очищение полости клетки после отмирания ее протопласта, например при образовании водопроводящих элементов.

Микротельца – мелкие (0,5-1,5 мкм) сферические органеллы, окруженные одной мембраной. Внутри находится тонкогранулярный плотный матрикс, состоящий из окислительно-восстановительных ферментов. Наиболее известны из микротелец глиоксисомы и пероксисомы . Глиоксисомы участвуют в превращении жирных масел в сахара, что происходит при прорастании семян. В пероксисомах происходят реакции светового дыхания (фотодыхания), при этом в них окисляются продукты фотосинтеза с образованием аминокислот.

Митохондрии - округлые или эллиптические, реже нитевидные органеллы диаметром 0,3-1 мкм, окруженные двумя мембранами. Внутренняя мембрана образует выросты в полость митохондрии – кристы , которые значительно увеличивают ее внутреннюю поверхность. Пространство между кристами заполнено матриксом . В матриксе находятся рибосомы, более мелкие, чем рибосомы гиалоплазмы, и нити собственной ДНК ( рис. 2.4).


Рис. 2.4. Схемы строения митохондрии в трехмерном изображении (1) и на срезе (2): ВМ – внутренняя мембрана митохондрии; ДНК – нить митохондриальной ДНК; К – криста; Ма – матрикс; НМ – наружная мембрана митохондрии; Р – митохондриальные рибосомы.

Митохондрии называют силовыми станциями клетки. В них осуществляется внутриклеточное дыхание , в результате которого органические соединения расщепляются с высвобождением энергии. Эта энергия идет на синтез АТФ – окислительное фосфорилирование . По мере необходимости энергия, запасенная в АТФ, используется для синтеза различных веществ и в различных физиологических процессах. Число митохондрий в клетке колеблется от нескольких единиц до нескольких сотен, особенно их много в секреторных клетках.

Митохондрии являются постоянными органеллами, которые не возникают заново, а распределяются при делении между дочерними клетками. Увеличение числа митохондрий происходит за счет их деления. Это возможно благодаря наличию в митохондриях собственных нуклеиновых кислот. Митохондрии способны к независимому от ядра синтезу некоторых своих белков на собственных рибосомах под контролем митохондриальной ДНК. Однако эта их независимость неполная, так как развитие митохондрий происходит под контролем ядра, и митохондрии, таким образом, являются полуавтономными органеллами.

Пластиды –органеллы, характерные только для растений. Различают три типа пластид: 1) хлоропласты (пластиды зеленого цвета); 2) хромопласты (пластиды желтого, оранжевого или красного цвета) и лейкопласты (бесцветные пластиды). Обычно в клетке встречаются пластиды только одного типа.

Хлоропласты имеют наибольшее значение, в них протекает фотосинтез. Они содержат зеленый пигмент хлорофилл , придающий растениям зеленый цвет, и пигменты, относящиеся к группе каротиноидов . Каротиноиды имеют окраску от желтой и оранжевой до красной и коричневой, но обычно она маскируется хлорофиллом. Каротиноиды делят на каротины , имеющие оранжевую окраску, и ксантофиллы , имеющие желтую окраску. Это липофильные (жирорастворимые) пигменты, по химической структуре они относятся к терпеноидам.

Хлоропласты растений имеют форму двояковыпуклой линзы и размеры 4-7 мкм, они хорошо видны в световой микроскоп. Число хлоропластов в фотосинтезирующих клетках может достигать 40-50. У водорослей роль фотосинтетического аппарата выполняют хроматофоры . Их форма разнообразна: чашевидная (хламидомонада), лентовидная (спирогира), пластинчатая (пиннулярия) и др. Хроматофоры значительно крупнее, число их в клетке – от 1 до 5.

Хлоропласты имеют сложное строение. От гиалоплазмы они отграничены двумя мембранами – наружной и внутренней. Внутреннее содержимое называется строма . Внутренняя мембрана формирует внутри хлоропласта сложную, строго упорядоченную систему мембран, имеющих форму плоских пузырьков, называемых тилакоидами . Тилакоиды собраны в стопки - граны , напоминающие столбики монет. Граны связаны между собой тилакоидами стромы (межгранными тилакоидами), проходящими через них насквозь вдоль пластиды (рис. 2.5 ). Хлорофиллы и каротиноиды встроены в мембраны тилакоидов гран. В строме хлоропластов находятся пластоглобулы – сферические включения жирных масел, в которых растворены каротиноиды, а также рибосомы, сходные по величине с рибосомами прокариот и митохондрий, и нити ДНК. Часто в хлоропластах встречаются крахмальные зерна, это так называемый первичный , или ассимиляционный крахмал – временное хранилище продуктов фотосинтеза.


Рис. 2.5. Схема строения хлоропласта в трехмерном изображении (1) и на срезе (2): Вм – внутренняя мембрана; Гр – грана; ДНК – нить пластидной ДНК; НМ – наружная мембрана; Пг – пластоглобула; Р – рибосомы хлоропласта; С – строма; ТиГ – тилакоид граны; ТиМ – межгранный тилакоид.

Хлорофилл и хлоропласты образуются только на свету. Растения, выращенные в темноте, не имеют зеленой окраски и называются этиолированными . Вместо типичных хлоропластов в них образуются измененные пластиды, не имеющие развитой внутренней мембранной системы, - этиопласты .

Основная функция хлоропластов – фотосинтез , образование органических веществ из неорганических за счет энергии света. Центральная роль в этом процессе принадлежит хлорофиллу. Он поглощает энергию света и направляет ее на осуществление реакций фотосинтеза. Эти реакции подразделяются на светозависимые и темновые (не требующие присутствия света). Светозависимые реакции состоят в преобразовании световой энергии в химическую и разложении (фотолизе) воды. Они приурочены к мембранам тилакоидов. Темновые реакции – восстановление углекислого газа воздуха водородом воды до углеводов (фиксация СО 2) – протекают в строме хлоропластов.

В хлоропластах, как и в митохондриях, происходит синтез АТФ. В этом случае источником энергии служит солнечный свет, поэтому его называют фотофосфорилированием . Хлоропласты участвуют также в синтезе аминокислот и жирных кислот, служат хранилищем временных запасов крахмала.

Наличие ДНК и рибосом указывает, как и в случае митохондрий, на существование в хлоропластах своей собственной белоксинтезирующей системы. Действительно, большинство белков мембран тилакоидов синтезируется на рибосомах хлоропластов, тогда как основное число белков стромы и липиды мембран имеют внепластидное происхождение.

Лейкопласты - мелкие бесцветные пластиды. Они встречаются в основном в клетках органов, скрытых от солнечного света, таких как корни, корневища, клубни, семена. Строение их в общих чертах сходно со строением хлоропластов: оболочка из двух мембран, строма, рибосомы, нити ДНК, пластоглобулы аналогичны таковым хлоропластов. Однако, в отличие от хлоропластов, у лейкопластов слабо развита внутренняя мембранная система.

Лейкопласты – это органеллы, связанные с синтезом и накоплением запасных питательных веществ, в первую очередь крахмала, редко белков и липидов. Лейкопласты, накапливающие крахмал, называются амилопластами . Этот крахмал имеет вид зерен, в отличие от ассимиляционного крахмала хлоропластов, он называется запасным , или вторичным . Запасной белок может откладываться в форме кристаллов или аморфных включений в так называемых протеинопластах , жирные масла – в виде пластоглобул в элайопластах .

Часто в клетках встречаются лейкопласты, не накапливающие запасные питательные вещества, их роль еще до конца не выяснена. На свету лейкопласты могут превращаться в хлоропласты.

Хромопласты - пластиды оранжевого, красного и желтого цвета, который обусловлен пигментами, относящимися к группе каротиноидов. Хромопласты встречаются в клетках лепестков многих растений (ноготки, лютик, одуванчик), зрелых плодов (томат, шиповник, рябина, тыква, арбуз), редко - корнеплодов (морковь), а также в осенних листьях.

Внутренняя мембранная система в хромопластах, как правило, отсутствует. Каротиноиды чаще всего растворены в жирных маслах пластоглобул (рис. 2.6), и хромопласты имеют более или менее сферическую форму. В некоторых случаях (корнеплоды моркови, плоды арбуза) каротиноиды откладываются в виде кристаллов различной формы. Кристалл растягивает мембраны хромопласта, и он принимает его форму: зубчатую, игловидную, серповидную, пластинчатую, треугольную, ромбовидную и др.

Рис. 2.6. Хромопласт клетки мезофилла лепестка лютика: ВМ – внутренняя мембрана; НМ – наружная мембрана; Пг – пластоглобула; С – строма.

Значение хромопластов до конца еще не выяснено. Большинство из них представляют собой стареющие пластиды. Они, как правило, развиваются из хлоропластов, при этом в пластидах разрушаются хлорофилл и внутренняя мембранная структура, и накапливаются каротиноиды. Это происходит при созревании плодов и пожелтении листьев осенью. Косвенное биологическое значение хромопластов состоит в том, что они обусловливают яркую окраску цветков и плодов, привлекающую насекомых для перекрестного опыления и других животных для распространения плодов. В хромопласты могут превращаться и лейкопласты.

Пластиды всех трех типов образуются из пропластид – мелких бесцветных телец, которые находятся в меристематических (делящихся) клетках корней и побегов. Пропластиды способны делиться и по мере дифференциации превращаются в пластиды разного типа.

В эволюционном смысле первичным, исходным типом пластид являются хлоропласты, из которых произошли пластиды остальных двух типов. В процессе индивидуального развития (онтогенеза) почти все типы пластид могут превращаться друг в друга.

Пластиды имеют много общих черт с митохондриями, отличающих их от других компонентов цитоплазмы. Это, прежде всего, оболочка из двух мембран и относительная генетическая автономность, обусловленная наличием собственных рибосом и ДНК. Такое своеобразие органелл легло в основу представления, что предшественниками пластид и митохондрий были бактерии, которые в процессе эволюции оказались встроенными в эукариотическую клетку и постепенно превратились в хлоропласты и митохондрии.

Ядро – основная и обязательная часть эукариотической клетки. Ядро является центром управления обменом веществ клетки, ее ростом и развитием, контролирует деятельность всех других органелл. Ядро хранит генетическую информацию и передает ее дочерним клеткам в процессе клеточного деления. Ядро имеется во всех живых растительных клетках, исключение составляют только зрелые членики ситовидных трубок флоэмы. Клетки с удаленным ядром, как правило, быстро погибают.

Ядро – самая крупная органелла, его размер составляет 10-25 мкм. Очень большие ядра у половых клеток (до 500 мкм). Форма ядра чаще сферическая или эллипсоидальная, но в сильно удлиненных клетках может быть линзовидной или веретеновидной.

Клетка, как правило, содержит одно ядро. В молодых (меристематических) клетках оно обычно занимает центральное положение. По мере роста центральной вакуоли ядро смещается к клеточной стенке и располагается в постенном слое цитоплазмы.

По химическому составу ядро резко отличается от остальных органелл высоким (15-30%) содержанием ДНК – вещества наследственности клетки. В ядре сосредоточено 99% ДНК клетки, она образует с ядерными белками комплексы – дезоксирибонуклеопротеиды. В ядре содержатся также в значительных количествах РНК (в основном иРНК и рРНК) и белки.

Структура ядра одинакова у всех эукариотических клеток. В ядре различают хроматин и ядрышко , которые погружены в кариоплазму ; от цитоплазмы ядро отделено ядерной оболочкой с порами (рис. 2.1 ).

Ядерная оболочка состоит из двух мембран. Наружная мембрана, граничащая с гиалоплазмой, несет прикрепленные рибосомы. Оболочка пронизана довольно крупными порами, благодаря которым обмен между цитоплазмой и ядром значительно облегчен; через поры проходят макромолекулы белка, рибонуклеопротеиды, субъединицы рибосом и др. Наружная ядерная мембрана в некоторых местах объединяется с эндоплазматической сетью.

Кариоплазма (нуклеоплазма , или ядерный сок) – основное вещество ядра, служит средой для распределения структурных компонентов – хроматина и ядрышка. В ней содержатся ферменты, свободные нуклеотиды, аминокислоты, иРНК, тРНК, продукты жизнедеятельности хромосом и ядрышка.

Ядрышко - плотное, сферическое тельце диаметром 1-3 мкм. Обычно в ядре содержатся 1-2, иногда несколько ядрышек. Ядрышки являются основным носителем РНК ядра, состоят из рибонуклеопротеидов. Функция ядрышек – синтез рРНК и образование субъединиц рибосом.

Хроматин - важнейшая часть ядра. Хроматин состоит из молекул ДНК, связанных с белками, - дезоксирибонуклеопротеидов. Во время деления клетки хроматин дифференцируется в хромосомы . Хромосомы представляют собой уплотненные спирализованные нити хроматина, они хорошо различимы в метафазе митоза, когда можно подсчитать число хромосом и рассмотреть их форму. Хроматин и хромосомы обеспечивают хранение наследственной информации, ее удвоение и передачу из клетки в клетку.

Число и форма хромосом (кариотип ) одинаковы во всех клетках тела организмов одного вида. В ядрах соматических (неполовых) клеток содержится диплоидный (двойной) набор хромосом – 2n. Он образуется в результате слияния двух половых клеток с гаплоидным (одинарным) набором хромосом – n. В диплоидном наборе каждая пара хромосом представлена гомологичными хромосомами, происходящими одна от материнского, а другая от отцовского организма. Половые клетки содержат по одной хромосоме из каждой пары гомологичных хромосом.

Число хромосом у разных организмов варьирует от двух до нескольких сотен. Как правило, каждый вид имеет характерный и постоянный набор хромосом, закрепленный в процессе эволюции данного вида. Изменение хромосомного набора происходит только в результате хромосомных и геномных мутаций. Наследственное кратное увеличение числа наборов хромосом получило название полиплоидии , некратное изменение хромосомного набора – анеуплоидии . Растения – полиплоиды характеризуются более крупными размерами, большей продуктивностью, устойчивостью к неблагоприятным факторам внешней среды. Они представляют большой интерес как исходный материал для селекции и создания высокопродуктивных сортов культурных растений. Полиплоидия также играет большую роль в видообразовании у растений.

Деление клетки

Возникновение новых ядер происходит за счет деления уже существующих. При этом ядро в норме никогда не делится простой перетяжкой пополам, поскольку такой способ не может обеспечить совершенно одинакового распределения наследственного материала между двумя дочерними клетками. Это достигается с помощью сложного процесса деления ядра, называемого митозом .

Митоз –это универсальная форма деления ядра, сходная у растений и животных. В нем различают четыре фазы: профазу , метафазу , анафазу и телофазу (рис. 2.7 ). Период между двумя митотическими делениями называется интерфаза .

В профазе в ядре начинают выявляться хромосомы. Сначала они имеют вид клубка из перепутанных нитей. Затем хромосомы укорачиваются, утолщаются и располагаются упорядоченно. В конце профазы исчезает ядрышко, а ядерная оболочка фрагментируется на отдельные короткие цистерны, неотличимые от элементов эндоплазматической сети, кариоплазма смешивается с гиалоплазмой. На двух полюсах ядра появляются скопления микротрубочек, из которых впоследствии образуются нити митотического веретена .

В метафазе хромосомы окончательно обособляются и собираются в одной плоскости посередине между полюсами ядра, образуя метафазную пластинку . Хромосомы образованы двумя сложенными по длине одинаковыми хроматидами , каждая из которых содержит одну молекулу ДНК. Хромосомы имеют перетяжку - центромеру , которая делит их на два равных или неравных плеча. В метафазе хроматиды каждой хромосомы начинают отделяться друг от друга, связь между ними сохраняется только в области центромеры. К центромерам прикрепляются нити митотического веретена. Они состоят из параллельно расположенных групп микротрубочек. Митотическое веретено – это аппарат специфической ориентации хромосом в метафазной пластинке и распределения хромосом по полюсам клетки.

В анафазе каждая хромосома окончательно разделяется на две хроматиды, которые становятся сестринскими хромосомами. Затем с помощью нитей веретена одна из пары сестринских хромосом начинает двигаться к одному полюсу ядра, вторая – к другому.

Телофаза наступает, когда сестринские хромосомы достигают полюсов клетки. Веретено исчезает, группирующиеся по полюсам хромосомы деконденсируются и удлиняются – они переходят в интерфазный хроматин. Появляются ядрышки, вокруг каждого из дочерних ядер собирается оболочка. Каждая дочерняя хромосома состоит всего из одной хроматиды. Достройка второй половины, осуществляемая путем редупликации ДНК, происходит уже в интерфазном ядре.


Рис. 2.7. Схема митоза и цитокинеза клетки с числом хромосом 2 n =4 : 1 – интерфаза; 2,3 – профаза; 4 – метафаза; 5 – анафаза; 6 – телофаза и образование клеточной пластинки; 7 – завершение цитокинеза (переход к интерфазе); В – митотическое веретено; КП – формирующаяся клеточная пластинка; Ф – волокна фрагмопласта; Хм – хромосома; Яд – ядрышко; ЯО – ядерная оболочка.

Продолжительность митоза колеблется от 1 до 24 часов. В результате митоза и последующей интерфазы клетки получают одинаковую наследственную информацию и содержат идентичные по числу, размеру и форме с материнскими клетками хромосомы.

В телофазе начинается деление клетки – цитокинез . Сначала между двумя дочерними ядрами появляются многочисленные волокна, совокупность этих волокон имеет форму цилиндра и называется фрагмопласт (рис. 2.7 ). Как и нити веретена, волокна фрагмопласта образованы группами микротрубочек. В центре фрагмопласта, в экваториальной плоскости между дочерними ядрами, скапливаются пузырьки Гольджи, содержащие пектиновые вещества. Они сливаются друг с другом и дают начало клеточной пластинке , а ограничивающая их мембрана становится частью плазмалеммы.

Клеточная пластинка имеет форму диска и растет центробежно по направлению к стенкам материнской клетки. Волокна фрагмопласта контролируют направление движения пузырьков Гольджи и рост клеточной пластинки. Когда клеточная пластинка достигает стенок материнской клетки, образование перегородки и обособление двух дочерних клеток заканчиваются, фрагмопласт исчезает. После завершения цитокинеза обе клетки приступают к росту, достигают размера материнской клетки и затем могут снова делиться или переходят к дифференциации.

Мейоз (редукционное деление ядра) – особый способ деления, при котором в отличие от митоза происходит редукция (уменьшение) числа хромосом и переход клеток из диплоидного состояния в гаплоидное. У животных мейоз – основное звено гаметогенеза (процесса образования гамет), а у растений – спорогенеза (процесса образования спор). Если бы не было мейоза, число хромосом при слиянии клеток во время полового процесса должно было бы удваиваться до бесконечности.

Мейоз состоит из двух последовательных делений, в каждом из которых можно выделить те же четыре стадии, что и в обычном митозе (рис.2.8 ).

В профазе первого деления, как и в профазе митоза, хроматин ядра переходит в конденсированное состояние – образуются типичные для данного вида растения хромосомы, ядерная оболочка и ядрышко исчезают. Однако при мейозе гомологичные хромосомы располагаются не в беспорядке, а попарно, контактируя друг с другом по всей их длине. При этом спаренные хромосомы могут обмениваться между собой отдельными участками хроматид. В метафазе первого деления гомологичные хромосомы образуют не однослойную, а двухслойную метафазную пластинку. В анафазе первого деления гомологичные хромосомы каждой пары расходятся по полюсам веретена деления без продольного разъединения их на изолированные хроматиды. В результате в телофазе у каждого из полюсов деления оказывается уменьшенное вдвое, гаплоидное число хромосом, состоящих не из одной, а из двух хроматид. Распределение гомологичных хромосом по дочерним ядрам носит случайный характер.

Сразу после телофазы первого деления начинается второй этап мейоза – обычный митоз с разделением хромосом на хроматиды. В результате этих двух делений и следующего за ними цитокинеза образуются четыре гаплоидные дочерние клетки – тетрада . При этом между первым и вторым ядерными делениями интерфаза, а, значит, и редупликация ДНК, отсутствуют. При оплодотворении диплоидный набор хромосом восстанавливается.


Рис. 2.8. Схема мейоза при числе хромосом 2 n =4 : 1 – метафаза I (гомологичные хромосомы собраны попарно в метафазной пластинке); 2 – анафаза I (гомологичные хромосомы отдаляются друг от друга к полюсам веретена без расщепления на хроматиды); 3 – метафаза II (хромосомы располагаются в метафазной пластинке в один ряд, их число уменьшено вдвое); 4 – анафаза II (после расщепления дочерние хромосомы отдаляются друг от друга); 5 – телофаза II (образуется тетрада клеток); В – митотическое веретено; Хм 1 – хромосома из одной хроматиды; Хм 2 – хромосома из двух хроматид.

Значение мейоза состоит не только в обеспечении постоянства числа хромосом у организмов из поколения в поколение. Благодаря случайному распределению гомологичных хромосом и обмену их отдельными участками, образующиеся в мейозе половые клетки содержат разнообразнейшие сочетания хромосом. Это обеспечивает разнообразие хромосомных наборов, повышает изменчивость признаков у последующих поколений и, таким образом, дает материал для эволюции организмов.

Тема Клеточная теория. Клеточные структуры: цитоплазма, плазматическая мембрана, ЭДС, рибосомы, комплекс Гольджи, лизосомы

Клетка – элементарная единица живой системы. Специфические функции в клетке распределены между органоидами – внутриклеточными структурами. Несмотря на многообразие форм, клетки разных типов обладают поразительным сходством в своих главных структурных особенностях. Клеточная теория Началом изучения клетки можно считать 1665 год, когда английский учёный Роберт Гук впервые увидел в микроскоп на тонком срезе пробки мелкие ячейки; он назвал их клетками. По мере усовершенствования микроскопов появлялись все новые сведения о клеточном строении растительных и животных организмов. С приходом в науку о клетке физических и химических методов исследования было выявлено удивительное единство в строении клеток разных организмов, доказана неразрывная связь между их структурой и функцией. Основные положения клеточной теории
    Клетка – основная единица строения и развития всех живых организмов. Клетки всех одно- и многоклеточных организмов сходны по своему строению, химическому составу, основным проявлением жизнедеятельности и обмену веществ. Размножаются клетки путём деления. В многоклеточных организмах клетки специализированы по выполняемым функциям и образуют ткани. Из тканей состоят органы.
В качестве подтверждения некоторых из приведенных выше положений клеточной теории назовем общие черты, характерные для животной и растительной клеток. Общие признаки растительной и животной клетки
    Единство структурных систем – цитоплазмы и ядра. Сходство процессов обмена веществ и энергии. Единство принципа наследственного кода. Универсальное мембранное строение. Единство химического состава. Сходство процесса деления клеток.
Таблица Отличительные признаки растительной и животной клетки

Признаки

Растительная клетка

Животная клетка

Пластиды

Хлоропласты, хромопласты, лейкопласты

Отсутствует

Способ питания

Автотрофный (фототрофный, хемотрофный).

Гетеротрофный (сапротрофный, хемотрофный).

Синтез АТФ

В хлоропластах, митохондриях.

В митохондриях.

Расщепление АТФ

В хлоропластах и всех частях клетки, где необходимы затраты энергии.

Клеточный центр

У низших растений.

Во всех клетках.

Целлюлозная клеточная стенка

Расположена снаружи от клеточной мембраны.

Отсутствует.

Включение

Запасные питательные вещества в виде зерен крахмала, белка, капель масла; в вакуоли с клеточным соком; кристаллы солей.

Запасные питательные вещества в виде зерен и капель (белки, жиры, углевод гликоген); конечные продукты обмена, кристаллы солей; пигменты.

Крупные полости, заполненные клеточным соком – водным раствором различных веществ, являющихся запасными или конечными продуктами. Осмотические резервуары клетки.

Сократительные, пищеварительные, выделительные вакуоли. Обычно мелкие.

Значение теории : она доказывает единство происхождения всех живых организмов на Земле. Клеточные структуры Рисунок Схема строения животной и растительной клеток

Органеллы

Строение

Функции

Цитоплазма

Находится между плазматической мембраной и ядром, включает различные органоиды. Пространство между органоидами заполнено цитозолем – вязким водным раствором разных солей и органических веществ, пронизанным системой белковых нитей – цитоскелетом.

Большинство химических и физиологических процессов клетки проходит в цитоплазме. Цитоплазма объединяет все клеточные структуры в единую систему, обеспечивает взаимосвязь по обмену веществами и энергией между органоидами клетки.

Наружная клеточная мембрана

Ультрамикроскопическая пленка, состоящая из двух мономолекулярных слоев белка и расположенного между ними бимолекулярного слоя липидов. Цельность липидного слоя может прерываться белковыми молекулами- "порами".

Изолирует клетку от окружающей среды, обладает избирательной проницаемостью, регулирует процесс поступления веществ в клетку; обеспечивает обмен веществ и энергии с внешней средой, способствует соединению клеток в ткани, участвует в пиноцитозе и фагоцитозе; регулирует водный баланс клетки и выводит из нее конечные продукты жизнедеятельности.

Эндоплазматическая сеть (ЭС)

Ультрамикроскопическая система мембран образующих трубочки, канальцы, цистерны, пузырьки. Строение мембран универсальное (как и наружной), вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭС несет рибосомы, гладкая лишена их.

Обеспечивает транспорт веществ, как в нутрии клетки, так и между соседними клетками. Делит клетку на отдельные секции, в которых одновременно происходят различные физиологические процессы и химические реакции. Гранулярная ЭС участвует в синтезе белка. В каналах ЭС образуются сложные молекулы белка, синтезируются жиры, транспортируются АТФ.

Рибосомы

Мелкие сферические органоиды, состоящие из рРНК и белка.

На рибосомах синтезируются белки.

Аппарат Гольджи

Микроскопические одномембранные органеллы, состоящие из стопочки плоских цистерн, по краям которых ответвляются трубочки, отделяющие мелкие пузырьки.

В общей системе мембран любых клеток – наиболее подвижная и изменяющаяся органелла. В цистернах накапливаются продукты синтеза распада и вещества, поступившие в клетку, а также вещества, которые выводятся из клетки. Упакованные в пузырьки, они поступают в цитоплазму: одни используются, а другие выводятся наружу.

Лизосомы

Микроскопические одномембранные органеллы округлой формы. Их число зависит от жизнедеятельности клетки и ее физиологического состояния. В лизосомах находятся лизирующие (растворяющие) ферменты, синтезированные на рибосомах.

Переваривание пищи, попавшей в животную клетку при фагоцитозе и пиноцитозе. Защитная функция. В клетках любых организмов осуществляют автолиз (саморастворение органелл) особенно в условиях пищевого или кислородного голодания у животных рассасывается хвост. У растений растворяются органеллы при образовании пробковой ткани сосудов древесины.

Выводы по лекции
    Важным достижением биологической науки является формирование представлений о строении и жизнедеятельности клетки как структурной и функциональной единице организма. Наука, изучающая живую клетку во всех ее проявлениях, называется цитологией. Первые этапы развития цитологии, как области научного знания, были связаны с трудами Р. Гука, А. Левенгука, Т. Шванна, М. Шлейдена, Р. Вирхова, К.Бэра. Итогом их деятельности явилось формулирование и развитие основных положений клеточной теории. В процессах жизнедеятельности клетки принимают непосредственное участие разнообразные клеточные структуры. Цитоплазма обеспечивает деятельность всех клеточных структур как единой системы. Цитоплазматическая мембрана обеспечивает пропускную избирательность веществ в клетке и защищает ее от внешней среды. ЭС обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками. В цистернах Аппарата Гольджи накапливаются продукты синтеза и распада веществ, поступившие в клетку, а также вещества, которые выводятся из клетки. В лизосомах происходит расщепление веществ, попавших в клетку.
Вопросы для самоконтроля
    Используя знания о клеточной теории, докажите единство происхождения жизни на Земле. В чем сходство и различие в строении растительной и животной клеток? Как связано строение клеточной мембраны с ее функциями? Как происходит активное поглощение веществ клеткой? Какова связь между рибосомами и ЭС? Каковы строение и функции лизосом в клетке?
Клеточные структуры: митохондрии, пластиды, органоиды движения, включения. Ядро Таблица Клеточные органеллы, их строение и функции

Органеллы

Строение

Функции

Митохондрии

Микроскопические органеллы, имеющие двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты – кристы. В матриксе митохондрии (полужидком веществе) находятся ферменты, рибосомы, ДНК, РНК.

Универсальная органелла является дыхательным и энергетическим центром. В процессе кислородного (окислительного) этапа в матриксе с помощью ферментов происходит расщепление органических веществ с освобождением энергии, которая идет на синтез АТФ на (кристах).

Лейкопласты

Микроскопические органеллы, имеющие двухмембранное строение. Внутренняя мембрана образует 2–3 выроста. Форма – округлая. Бесцветны.

Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется, и они преобразуются в хлоропласты. Образуются из пропластид.

Хлоропласты

Микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Внутренняя мембрана образует систему двухслойных пластин – тилакоидов стромы и тилакоидов гран. В мембранах тилакоидов гран между слоями молекул белков и липидов сосредоточены пигменты – хлорофилл и каротиноиды. В белково-липидном матриксе находятся собственные рибосомы, ДНК, РНК.

Характерны для растительных клеток органеллы фотосинтеза, способные создавать из неорганических веществ (CO2 и H3O) при наличии световой энергии и пигмента хлорофилла органические вещества – углеводы и свободный кислород. Синтез собственных белков. Могут образовываться из пластид или лейкопластов, а осенью перейти в хлоропласты (красные и оранжевые плоды, красные и желтые листья).

Хромопласты

Микроскопические органеллы, имеющие двухмембранное строение. Собственно хромопласты имеют шаровидную форму, а образовавшиеся из хлоропластов, принимают форму кристаллов каратинондов, типичную для данного вида растения. Окраска красная, оранжевая, желтая.

Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых-опылителей. В осенних листьях и зрелых плодах отделяющихся от растений, содержатся кристаллические каротиноиды?– конечные продукты обмена.

Клеточный центр

Ультрамикроскопическая органелла немембранного строения. Состоит из двух центриолей. Каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. Центриоли расположены перпендикулярно друг другу.

Принимает участие в делении клеток животных и низших растений. В начале деления (в профазе) центриоли расходятся к разным полюсам клетки. От центриолей к центромерам хромосом отходят нити веретена деления. В анафазе эти нити притягивают хроматиды к полюсам. После окончания деления центриоли остаются в дочерних клетках. Удваиваются и образуют клеточный центр.

Клеточные включения (непостоянные структуры)

Плотные в виде гранул включения, имеющие мембрану (например, вакуоли).

Органоиды движения

Реснички – многочисленные цитоплазмические выросты на поверхности мембраны.

Удаление частичек пыли (реснитчатые эпителии верхних дыхательных путей), передвижение (одноклеточные организмы).

Жгутики – единичные цитоплазматические выросты на поверхности клетки.

Передвижение (сперматозоиды, зооспоры, одноклеточные организмы).

Ложные ножки (псевдоподии) – амебовидные выступы цитоплазмы.

Образуются у животных в разных местах цитоплазмы для захвата пищи, для передвижения.

Миофибриллы – тонкие нити до 1 см. длиной и больше.

Служат для сокращения мышечных волокон, вдоль которых они расположены.

Цитоплазма, осуществляющая струйчатое и круговое движение.

Перемещение органелл клетки по отношению к источнику света (при фотосинтезе), тепла, химического раздражителя.

Рисунок Схема состав и функции клеточных включений

Фагоцитоз – захват плазматической мембраной твёрдых частиц и втягивание их внутрь. Плазматическая мембрана образует впячивание в виде тонкого канальца, в который попадает жидкость с растворёнными в ней веществами. Этот способ называют пиноценозом . Ядро Все организмы, имеющие клеточное строение без оформленного ядра называются прокариотами . Все организмы, имеющие клеточное строение с ядром называются эукариотами . Таблица Ядерные структуры, их строение и функции

Структуры

Строение

Функции

Ядерная оболочка

Двухслойная пористая. Наружная мембрана переходит в мембраны ЭС. Свойственна всем клеткам животных и растений, кроме бактерий и сине-зеленых, которые не имеют ядра.

Отделяет ядро от цитоплазмы. Регулирует транспорт веществ из ядра в цитоплазму (РНК и субъединицы рибосом) и из цитоплазмы в ядро (белки, жир, углеводы, АТФ, вода, ионы).

Хромосомы (хроматин)

В интерфазной клетке хроматин имеет вид мелкозернистых нитевидных структур, состоящих из молекул ДНК и белковой обкладки. В делящихся клетках хроматиновые структуры спирализуются и образуют хромосомы. Хромосома состоит из двух хроматид, и после деления ядра становится однохроматидной. К началу следующего деления у каждой хромосомы достраивается вторая хроматида. Хромосомы имеют первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины. У ядрышковых хромосом есть вторичная перетяжка.

Хроматиновые структуры – носители ДНК. ДНК состоит из участков – генов, несущих наследственную информацию и передающихся от предков к потомкам через половые клетки. Совокупность хромосом, а, следовательно, и генов половых клеток родителей передается детям, что обеспечивает устойчивость признаков, характерных для данной популяции, вида. В хромосомах синтезируется ДНК, РНК, что служит необходимым фактором передачи наследственной информации при делении клеток и построении молекул белка.

Шаровидное тело, напоминающее клубок нити. Состоит из белка и РНК. Образуется на вторичной перетяжке ядрышковой хромосомы. При делении клеток распадается.

Формирование половинок рибосом из рРНК и белка. Половинки (субъединицы) рибосом через поры в ядерной оболочке выходят в цитоплазму и объединяются в рибосомы.

Ядерный сок (кариолимфа)

Полужидкое вещество, представляющее коллоидный раствор белков, нуклеиновых кислот, углеводов, минеральных солей. Реакция кислая.

Участвует в транспорте веществ и ядерных структур, заполняет пространство между ядерными структурами; во время деления клеток смешивается с цитоплазмой.

Рисунок Схема строения ядра клетки

Функции ядра клетки:
    регуляция процессов обмена веществ в клетке; хранение наследственной информации и ее воспроизводство; синтез РНК; сборка рибосом.
Выводы по лекции
    В митохондриях происходит расщепление органических веществ с освобождением энергии, которая идет на синтез АТФ. Важную роль играют пластиды в обеспечении процессов жизнедеятельности растительной клетки. К органоидам движения относят клеточные структуры: реснички, жгутики, миофибриллы. Все клеточные организмы делятся на прокариоты (безъядерные) и эукариоты (с ядром). Ядро представляет собой структурный и функциональный центр, координирующий ее обмен веществ, руководящий процессами самовоспроизведения и хранения наследственной информации.
Вопросы для самоконтроля
    Почему митохондрии образно называют "силовыми станциями" клетки? Какие структуры клетки способствуют ее движению? Что относится к клеточным включениям? Какова их роль? Каковы функции ядра в клетке?
Органические вещества в составе клетки (углеводы, белки, липиды, нуклеиновые кислоты, АТФ, витамины и др.) Биологические полимеры – органические соединения, входящие в состав клеток живых организмов. Полимер – многозвенная цепь простых веществ – мономеров (n ÷ 10 тыч. – 100 тыс. моном.) Пример Свойства биополимеров зависят от строения их молекул, от числа и разнообразия мономерных звеньев. Если мономеры разные, то повторяющиеся чередования их в цепи создают регулярный полимер. Пример …А – А – В – А – А – В… регулярный …А – А – В – В – А – В – А… нерегулярный Углеводы Общая формула С n (H 2 O) m Углеводы в организме человека играют роль энергетических веществ. Самые важные из них – сахароза, глюкоза, фруктоза , а также крахмал . Они быстро усваиваются ("сгорают") в организме. Исключение составляет клетчатка (целлюлоза), которой особенно много в растительной пище. Она практически не усваивается организмом, но имеет большое значение: выступает в роли балласта и помогает пищеварению, механически очищая слизистые оболочки желудка и кишечника. Углеводов много в картофеле и овощах, крупах, макаронных изделиях, фруктах и хлебе. Пример Глюкоза, рибоза, фруктоза, дезоксирибоза - моносахариды Сахароза - дисахариды Крахмал, гликоген, целлюлоза - полисахариды Нахождение в природе: в растениях, фруктах, в цветочной пыльце, овощах (чеснок, свекла), картофеле, рисе, кукурузе, зерне пшеницы, древесине… Их функции:
    энергетическая: при окислении до СО 2 и Н 2 О высвобождается энергия; избыток энергии запасается в клетках печени и мышц в виде гликогена; строительная: в растительной клетке – прочная основа клеточных стенок (целлюлоза); структурная: входят в состав межклеточного вещества кожи сухожилий хрящей; узнавание клетками др.: в составе клеточных мембран, если разделённые клетки печени смешать с клетками почек, то они самостоятельно разойдутся на две группы благодаря взаимодействию однотипных клеток.
Липиды (липоиды, жиры) К липидам относятся разнообразные жиры, жироподобные вещества, фосфорлипиды… Все они нерастворимы в воде, но растворимы в хлороформе, эфире… Нахождение в природе: в клетках животных и человека в клеточной мембране; между клетками – подкожный слой жира. Функции:
    теплоизоляционная (у китов, ластоногих …); запасное питательное вещество; энергетическая: при гидролизе жиров выделяется энергия; структурная: некоторые липиды служат составной частью клеточных мембран.
Жиры тоже служат для человеческого организма источником энергии. Их организм откладывает "про запас" и они служат энергетическим источником долговременного пользования. Кроме того, жиры обладают низкой теплопроводностью и предохраняют организм от переохлаждения. Неудивительно, что в традиционном рационе северных народов так много животных жиров. Для людей, занятых тяжелым физическим трудом, затраченную энергию тоже проще всего (хотя и не всегда полезней) компенсировать жирной пищей. Жиры входят в состав клеточных стенок, внутриклеточных образований, в состав нервной ткани. Еще одна функция жиров – поставлять в ткани организма жирорастворимые витамины и другие биологически активные вещества. Белки Рисунок 1.2.1. Молекула белка



Если в R заменить ещё один Н на аминогруппу NH 2 , получим аминокислоту: Белки – биополимеры, мономерами которых являются аминокислоты. Образование линейных молекул белков происходит в результате реакций аминокислот др. с др.

Источниками белков могут служить не только животные продукты (мясо, рыба, яйца, творог), но и растительные, например, плоды бобовых (фасоль, горох, соя, арахис, которые содержат до 22–23% белков по массе), орехи и грибы. Однако больше всего белка в сыре (до 25 %), мясных продуктах (в свинине 8–15 %, баранине 16–17 %, говядине 16–20 %), в птице (21 %), рыбе (13–21 %), яйцах (13 %), твороге(14 %). Молоко содержит 3 % белков, а хлеб 7–8 %. Среди круп чемпион по белкам – гречневая крупа (13 % белков в сухой крупе), поэтому именно ее рекомендуют для диетического питания. Чтобы избежать "излишеств" и в то же время обеспечить нормальную жизнедеятельность организма, надо, прежде всего, дать человеку с пищей полноценный по ассортименту набор белков. Если белков в питании недостает, взрослый человек ощущает упадок сил, у него снижается работоспособность, его организм хуже сопротивляется инфекции и простуде. Что касается детей, то они при неполноценном белковом питании сильно отстают в развитии: дети растут, а белки – основной "строительный материал" природы. Каждая клетка живого организма содержит белки. Мышцы, кожа, волосы, ногти человека состоят главным образом из белков. Более того, белки – основа жизни, они участвуют в обмене веществ и обеспечивают размножение живых организмов. Строение:
    первичная структура – линейная, с чередованием аминокислот; вторичная – в виде спирали со слабыми связями между витками (водородными); третичная – спираль свёрнутая в клубок; четвертичная – при объединении нескольких цепей, различных по первичной структуре.
При радиации, больших температурах, экстремальных значениях pH, в спирте, ацетоне белок разрушается - реакция денатурации. Таблица 1.2.1. Строение белка

Первичная структура – определенная последовательность α-аминокислотных остатков в полипептидной цепи

Вторичная структура – конформация полипептидной цепи, закрепленная множеством водородных связей между группами N-H и С=О. Одна из моделей вторичной структуры – α-спираль, обусловленная кооперативными внутримолекулярными Н-связями. Другая модель – b-форма ("складчатый лист"), в которой преобладают межцепные (межмолекулярные) Н-связи

Третичная структура - форма закрученной спирали в пространстве, образованная главным образом за счет дисульфидных мостиков -S-S-, водородных связей, гидрофобных и ионных взаимодействий

Четвертичная структура – агрегаты нескольких белковых макромолекул (белковые комплексы), образованные за счет взаимодействия разных полипептидных цепей

Функции:
    строительная: белки являются обязательным компонентом всех клеточных структур; структурная: белки в соединении с ДНК составляют тело хромосом, а с РНК – тело рибосом; ферментативная: катализатором хим. реакций выступает любой фермент – белок, но очень специфичный; транспортная: перенос О 2 , гормонов в теле животных и человека; регуляторная: белки могут выполнять регуляторную функцию, если они являются гормонами. Например инсулин (гормон, поддерживающий работу поджелудочной железы) активизирует захват клетками молекул глюкозы и расщепление или запасание их внутри клетки. При недостатке инсулина глюкоза накапливается в крови, развивая диабет; защитная: при попадании инородных тел в организме вырабатываются защитные белки – антитела, которые связываются с чужеродными, соединяются и подавляют их жизнедеятельность. Такой механизм сопротивления организма называют иммунитетом; энергетическая: при недостатке углевода и жиров могут окислиться молекулы аминокислот.
Аденозинтрифосфорная кислота (АТФ) – универсальный переносчик и основной аккумулятор энергии в живых кленках, который необходим для синтеза органических веществ, движения, производства тепла, нервных импульсов, свечений. АТФ содержится во всех клетках растений и животных. Представляет собой нуклеотид, образованный остатками азотистого основания (аденина), сахара (рибозы) и тремя остатками фосфорной кислоты. АТФ – нестабильная молекула: при отщеплении концевого остатка фосфорной кислоты. АТФ переходит в АДФ (аденозиндифосфорную кислоту), при этом выделяется около 30,5 кДж. Рисунок 1.2.2. Строение молекулы АТФ Гормоны органические соединения, которые могут иметь белковую природу (гормоны поджелудочной железы) и могут относиться к липидам (половые гормоны), могут быть производными аминокислот. Гормоны образуются как животными, так и растениями. Гормоны осуществляют разнообразные функции:
    регулируют содержание ионов натрия, воды в организме; обеспечивают половое созревание; гормоны тревоги и стресса усиливают выход глюкозы в кровь и, следовательно, обуславливают активное использование энергии; сигнальные гормоны сообщают о нахождении пищи, об опасности; у растений свои гормоны, ускоряющие созревание плодов, привлекающие насекомых.
Нуклеиновые кислоты – биополимеры, мономерами которых являются нуклеотиды. Рисунок 1.2.3. Синтез нуклеиновых кислот

Рисунок 1.2.4. Схематическое строение ДНК (многоточием обозначены водородные связи)

Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. (рис. 1.2.4 ) Рисунок 1.2.5. Участок молекулы ДНК Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основание Ц. Сказанное можно показать в виде схемы: Эти пары оснований называют комплементарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу, называют комплементарными нитями. На рис. 1.2.5 приведены две нити ДНК, которые соединены комплементарными участками. Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков. Таблица Сравнительная характеристика ДНК и РНК

Признаки сравнения

Местонахождение в клетке

Ядро, митохондрии, хлоропласты

Ядро, рибосомы, цитоплазмы, митохондрии, хлоропласты

Местонахождение в ядре

Хромосомы

Строение макромолекулы

Двойной неразветвленный линейный полимер, свернутый правозакрученной спиралью

Одинарная полинуклеотидная цепочка

Состав нукотидов

Азотистое основание (аденин, гуанин, тимин, цитозин); дезоксирибоза (углевод); остаток фосфорной кислоты

Азотистое основание (аденин, гуанин, урацил, цитозин); рибоза (углевод); остаток фосфорной кислоты

Химическая основа хромосомного генетического материала (гена); синтез ДНК и РНК, информация о структуре белков

Информационная (иРНК) передает код наследственной информации о первичной структуре белковой молекулы; рибосомальная (рРНК) входит в состав рибосом; транспортная (тРНК) переносит аминокислоты к рибосомам.

Витамины Еще в конце 19 века ученые обнаружили, что страшная болезнь бери- бери, при которой происходит поражение нервной системы, вызвана нехваткой какого-то особого вещества в пище. В 1912 г. польский исследователь Казимеж Функ (1884–1967) выделил вещество из рисовых отрубей и назвал его витамином (от лат.vita – "жизнь"). Так называют химические соединения, которые требуются для нормальной жизнедеятельности организма в очень незначительных количествах. Организм "не умеет" самостоятельно синтезировать витамины. Поэтому очень важно пополнять организм витаминосодержащими продуктами питания. Недостаток витаминов в организме является причиной тяжелого заболевания – авитаминоза. Здоровый человек в нормальных жизненных условиях должен стараться полностью покрывать свою потребность в витаминах за счет разнообразного и полноценного питания. Обращаться к аптечным препаратам, содержащим витамины, следует в тех случаях, когда вы испытываете постоянный или сезонный (осенью, весной) дефицит витаминов, а также при тяжелых стрессах. Бессистемное самодеятельное "поедание" витаминных пилюль может вызвать неприятные последствия в виде гипервитаминоза, когда даже необходимое количество витаминов не усваивается, а выводится организмом. Витамины Еще в конце 19 века ученые обнаружили, что страшная болезнь бери-бери, при которой происходит поражение нервной системы, вызвана нехваткой какого-то особого вещества в пище. В 1912 г. польский исследователь Казимеж Функ (1884–1967) выделил такое вещество из рисовых отрубей и назвал его витамином (от лат.vita – "жизнь"). Сейчас хорошо изучены около 25 витаминов. Химический состав и названия их очень сложны, поэтому им присвоили буквенные символы. Принято все витамины разделять на две большие группы: водорастворимые и жирорастворимые . Среди водорастворимых витаминов главные:
    В 1 – тиамин , впервые найденный в белокочанной капусте; потом его обнаружили также в некоторых крупах, сырой рыбе, дрожжах и проросшей пшенице. Этот витамин регулирует обмен веществ, нервную деятельность и ответствен за состояние сердечно-сосудистой системы. Отсутствие В 1 в пище вызывает бери-бери – тяжелейшую болезнь суставов, сопряженную с поражением нервной системы, сердца и сосудов. Бери-бери распространена в тех регионах Юго-Восточной Азии, где население питается скудно и однообразно, в основном лишь очищенным рисом, в котором витамина В 1 почти нет. Суточная потребность организма в витамине В 1 – 1,5–2,0 мг. В 2 – рибофлавин . Регулирует обмен веществ, повышает остроту зрения, улучшает функцию печени и нервной системы, а также состояние кожи. Источники витамина В 2 – дрожжи, мясо, рыба, печень и другие субпродукты (почки, сердце, язык), яичный желток, молочные продукты, бобовые и многие крупы. Суточная потребность организма в витамине В2 – 2,0–2,5 мг; РР – никотиновая кислота (ниацин) регулирует клеточное дыхание и сердечную деятельность. Источником витамина РР служат дрожжи, мясные и молочные продукты, зерновые культуры. Кроме того, это один из немногих витаминов, которые могут образовываться в организме человека. Витамин РР образуется из триптофана – аминокислоты, входящей в состав поступающих с пищей белков. Суточная потребность организма в витамине РР – 15–20 мг; В 6 – пиридоксин , участвует в обменных процессах, необходим для усвоения аминокислот и для синтеза из триптофана витамина РР. Суточная потребность организма в витамине В 6 – 2 мг; В C – фолацин , фолиевая кислота и ее производные, регулируют кроветворение и жировой обмен. Содержится в печени, дрожжах, многих овощах (зелени петрушки, шпината, в листовом салате). Суточная потребность организма в витамине В C – 2,0–2,5 мг. В 12 – цианкобаламин . Предупреждает малокровие. Присутствует в говяжьей и свиной печени, мясе кроликов и кур, яйцах, рыбе, молоке. Суточная потребность организма в витамине В 12 – 3 мг. С – аскорбиновая кислота , предохраняет от цинги, повышает иммунитет. Источники этого витамина в питании – свежие и консервированные овощи, фрукты, ягоды. Особенно богаты "аскорбинкой" плоды шиповника, смородина, петрушка, укроп, а среди дикорастущих – крапива, кислица, черемша. Аскорбиновая кислота неустойчива: на воздухе она легко окисляется до дегидроаскорбиновой кислоты, не имеющей витаминных свойств. Это надо учитывать при кулинарной обработке овощей и фруктов. Суточная потребность организма в витамине С – 75–100 мг. Р – рутин (биофлавоноид) сосудоукрепляющее средство, проявляет активность вместе с витамином С. Особенно много его в смородине, шиповнике, черноплодной рябине (аронии), цитрусовых и зеленом чае. Суточная потребность организма в витамине Р – 25–50 мг.
Среди жирорастворимых витаминов наиболее важны:
    А – ретинол и его производные, улучшает состояние кожи и слизистых оболочек глаз, повышает иммунитет, а главное, обеспечивает остроту зрения в сумерках. При недостатке витамина А возникает "куриная слепота" (человек плохо видит в вечернее время). Ретинол содержится в молоке, сливочном масле, сыре, рыбьем жире, а также может синтезироваться в печени человека из провитамина А – каротина, источником которого являются морковь, томаты и облепиха. Суточная потребность организма в витамине А – 1,5 – 2,0 мг (или 6 мг каротина); D – эргокальциферол , оказывает противорахитное действие и помогает усвоению кальция. Он совершенно необходим растущему организму в период формирования и развития костей и зубов. Витамин D содержится в рыбьем жире, икре, сливочном масле, яйцах, молоке. Помимо этого, он образуется в организме под влиянием солнечных лучей. Суточная потребность организма в витамине D – 0,01 мг. Е – токоферол , влияет на функции половых желез и способствует нормальному протеканию беременности, способствует усвоению жирорастворимых витаминов, участвует в обмене веществ. Содержится в растительном масле, гречневой крупе, бобовых. Суточная потребность организма в витамине Е – 12–15 мг. К – антигеморрагический фактор , регулирует свертываемость крови, предотвращает возникновение кровотечений. Источниками этого витамина служат картофель, капуста, тыква, шпинат, щавель, печень. Суточная потребность организма в витамине К – 0,2–0,3 мг.
Выводы по лекции
    К основным органическим веществам в составе клетки относят белки, углеводы, жиры, нуклеиновые кислоты и АТФ. Углеводы в жизни растений, животных, грибов и микроорганизмов играют роль энергетических веществ. Жиры – основной структурный компонент клеточных мембран и источник энергии. Они претерпевают в клетке сложные превращения. Белки - биологические полимеры, мономерами которых являются 20 важнейших аминокислот, выполняют ряд важнейших функций в клетке. Строительная: белки являются обязательным компонентом всех клеточных структур; структурная: белки в соединении с ДНК составляют тело хромосом, а с РНК – тело рибосом; ферментативная: катализатор хим. реакций – специфичный фермент – белок; транспортная: перенос О 2 , гормонов в теле животных и человека; регуляторная: (гормоны) часть гормонов – белки, например инсулин, – гормон, поддерживающий железы, активизирует захват клетками молекул глюкозы и расщепление или запасание их внутри клетки. При недостатке инсулина глюкоза накапливается в крови, развивая диабет; защитная: при попадании инородных тел в организм вырабатываются защитные белки – антитела, которые связываются с чужеродными, соединяются и подавляют их жизнедеятельность. Такой механизм сопротивления организма называют иммунитетом; энергетическая: при недостатке углевода и жиров могут окислится молекулы аминокислот. ДНК – молекулы наследственности, состоят из мономеров – нуклеотидов. Нуклеотиды ДНК и РНК имеют черты сходства и различия в строении и выполняют разные функции. Выявлено большое значение витаминов для организмов.
Вопросы для самоконтроля
    Какие углеводы характерны для растительной клетки, для животной клетки? Укажите функции углеводов. Охарактеризуйте строение молекул белков в связи с их функциями в клетке. Что собой представляет первичная, вторичная, третичная и четвертичная структура белковой молекулы? В чем особенность строения молекулы ДНК? Какие компоненты входят в состав нуклеотидов? Какие функции выполняют ДНК и РНК?
По материалам сайта

В общих чертах

Клетка - элементарная структурная и функциональная единица всего живого. Строение растительной клетки обладает рядом отличительных особенностей, хотя и имеет множество схожих черт с клетками организмов остальных эукариотических царств - грибов и животных. Как и клетки всех эукариот, растительные клетки обладают цитоплазмой с оформленным ядром. Кроме того, растения имеют клеточную оболочку, которой нет в животных клетках. Начнем именно с этого элемента строения.

Клеточная оболочка

Особенности строения растительной клетки следует начинать рассматривать с наличия у нее твердой клеточной стенки. Жесткая оболочка выполняет множество различных функций. Прежде всего, механическую: стенка позволяет клетке сохранять четкую форму, поддерживает ее и защищает цитоплазматическую мембрану от негативного воздействия давления, возникающего внутри клетки. Кроме того, клеточная оболочка позволяет соседним клеткам осуществлять различные взаимодействия, защищает содержимое клетки и задает направление ее роста. Благодаря твердой стенке клетка остается цельной при высоком осмотическом давлении. Клеточная оболочка состоит из целлюлозы, пектиновых соединений, гемицеллюлозы и структурных белков.

Цитоплазма

Строение растительной клетки - это прежде всего особенности строения ее цитоплазмы. Цитоплазма - сложная структура, разделяющаяся на гиалоплазму (цитозоль) и органоиды. Цитозоль представляет собой среду, в которую погружены органоиды, от нее зависит протекание внутриклеточных биохимических процессов.

Цитоскелет, состоящий из микротрубочек и микрофиламентов, также определяют как часть гиалоплазмы. Он играет важнейшую роль в самых разнообразных процессах: делении клетки, транспорте веществ и др. В целом строение растительной клетки, а именно ее цитоплазмы, как было сказано выше, схоже со строением клеток организмов других царств, так что органоиды будут представлены весьма кратко. Рибосомы участвуют в синтезе белка. Цитоплазматическая мембрана выполняет множество различных функций, среди которых: отделение внутренней среды клетки от внешней, рецепторная функция, выборочная проводимость и многое другое. На ЭПР находятся различные соединения и рибосомы, в аппарате Гольджи накапливаются и выделяются важные для жизнедеятельности клетки вещества. Лизосомы и пероксисомы участвуют в выведении и разрушении ненужных клетке веществ. В митохондриях осуществляется синтез АТФ. Отличительные органоиды растительной клетки - центральная вакуоль и хлоропласты. Первая - полость, заполненная клеточным соком, окруженная мембраной и занимающая 90% объема клетки. Вторые позволяют осуществляться процессам фотосинтеза.


Ядро

В строение растительной клетки входит оформленное ядро. Оно имеет те же функции, что и ядра клеток всех эукариотов: это функции накопления и передачи наследственной информации. Органоид состоит из нуклеиновых кислот (ДНК и РНК) и различных белков. Стоит отметить, что встречаются растительные клетки с несколькими ядрами, хотя, как правило, растения одноядерны.

Клетки разных царств имеют много общих черт, но есть и существенные различия.

Мы рассмотрим клетки 4-х живых организмов — животных, растений, грибов и бактерий.

Опишем их общие органоиды и то, что различает их.

Бактериальная клетка


Отличается от всех остальных как самая просто устроенная.

Клеточная оболочка — основные функции — защита и обмен веществ. Запасное питательное вещество уникально, в других живых клетках его нет — это углевод муреин.

Мембрана - как и у остальных живых клеток, основная функция — защита и обмен веществ.

Цитоплазма

Рибосомы - синтезируют белок.
Мезосомы - осуществление окислительно-восстановительных процессов.
Ядра нет, есть нуклеоид - кольцевая ДНК и РНК.
Жгутитки - обеспечивают движение.

Клетка растений


Клеточная стенка — функции те же, запасное питательное вещество — углевод — крахмал, целлюлоза и т.п.
Мембрана - защита и обмен веществ, небольшое отличие — есть плазмодесмы - что-то вроде мостиков между соседними клетками в многоклеточных растениях.
Цитоплазма - внутренняя полужидкая среда, содержит питательные вещества.
Рибосомы - есть, но немного, синтезируют белок.
Ядро - центр генетической информации клетки.
ЭПС (эндоплазматический ретикулум), гладкий (без рибосом) — обеспечивает транспорт веществ, поддерживает форму клетки, шероховатый — рибосомы на нем обеспечивают синтез белка.
Цитоплазма - внутренняя полужидкая среда, содержит питательные вещества.
Хлоропласт - обязательный органойд исключительно растительной клетки. Функция — фотосинтез.
Вакуоль - тоже именно растительный органойд — запас клеточного сока.
Митохондрия - синтез АТФ — обеспечение клетки энергией.
Лизосомы - пищеварительные органеллы.
Аппарат Гольджи - производит лизосомы и хранит питательные вещества.
Микрофиламенты - белковые нити — “рельсы” для передвижения некоторых органелл, участвуют в делении клетки.
Микротрубочки - примерно то же самое, что микрофиламенты, только толще.

Клетка животных

Картинка 21 из презентации «Клетка организма» к урокам биологии на тему «Клетка»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока биологии, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Клетка организма.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 1309 КБ.

Скачать презентацию

Клетка

«Митоз деление клетки» - Пары центриолей расходятся к полюсам клетки. Деление цитоплазмы и образование новых клеточных мембран. Телофаза. Нарушения митоза. Митоз -. Кариокинез. Образование веретена деления, укорочение хромосом, формирование экваториальной пластинки. Профаза Метафаза Анафаза телофаза. Митоз. Выполнила ученица 10 класса Филонова Татьяна.

«Органоиды клетки» - При исследовании строения клеток обнаружено оформленное ядро. В картах самооценки сравните строение животной и растительной клетки. Обнаружен неизвестный науке вид живого существа. Способно к активному движению ползёт в сторону света. Запишите в карте ответов первую или указанную букву. 8, 3, 2, 5, 6, 7, 4, 1. Хлоропласт, вакуоль, клеточная стенка. 3, 4, 6, 9.

«Неклеточные формы жизни» - Что является предметом изучения цитологии? Строение животной клетки на примере простейших. Как называются органоиды клетки, указанные стрелками? Кто ввёл понятие «цитология»? Строение какой клетки? А ты знаешь «врага» в лицо? Задачи: Действие бактериофага. Актуальнейшая проблема осенне-зимнего периода - ГРИПП!!!

«Ядро клетки» - ? Жгутики, реснички. Организмы. Цитоплазма. Одноклеточные (бактерии, простейшие). Проблемный вопрос. Жгутик. 80 S рибосомы. От. Ядро. Клеточная стенка. Толстая муреиновая оболочка (пептидогликановый слой).

«Ферменты» - Сложные. 3.Ферменты – белки, при кипячении разрушаются и теряют свои ферментативные свойства. Энергетическая(1г белка- 17,6 кДж). Строительная Каталитическая, или ферментативная. Ход работы. Ферменты. 1 – речной песок. Оборудование: Регуляторная - гормоны Инсулин – регулирует содержание глюкозы в крови.

Всего в теме 13 презентаций