Концепция биохимической эволюции кратко. Биохимическая эволюция

Биохимическая эволюция

Среди астрономов, геологов и биологов принято - считать, что возраст
Земли составляет примерно 4,5-5 млрд. лет.

По мнению многих биологов, в далеком прошлом состояние нашей планеты было мало похоже на нынешнее: по всей вероятности, температура ее поверхности была очень высокой (4000-8000°С), и по мере того, как Земля остывала, углерод и более тугоплавкие металлы конденсировались и образовали земную кору; поверхность планеты была, вероятно, голой и неровной, так как на ней в результате вулканической активности, непрерывных подвижек коры и сжатия, вызванного охлаждением, происходило образование складок и разрывов.

Полагают, что в те времена атмосфера была совершенно не такая, как теперь. Легкие газы - водород, гелий, азот, кислород и аргон - уходили из атмосферы, так как гравитационное поле нашей еще недостаточно плотной планеты не могло их удержать. Однако простые соединения, содержащие (среди прочих) эти элементы, должны были удерживаться; к ним относятся вода, аммиак, двуокись углерода и метан. До тех пор пока температура Земли не упала ниже 100°С, вся вода, вероятно, находилась в парообразном состоянии.

Атмосфера была, по-видимому, “восстановительной”, о чем свидетельствует наличие в самых древних горных породах Земли металлов в восстановленной форме, таких как двухвалентное железо. Более молодые горные породы содержат металлы в окисленной форме, например трехвалентное железо.
Отсутствие в атмосфере кислорода было, вероятно, необходимым условием для возникновения жизни; лабораторные опыты показывают, что, как это ни парадоксально, органические вещества (основа живых организмов) гораздо легче создаются в восстановительной среде, чем в атмосфере, богатой кислородом. В 1923 г. А. И. Опарин высказал мнение, что атмосфера первичной
Земли была не такой, как сейчас, а примерно соответствовала сделанному выше описанию. Исходя из теоретических соображений, он полагал, что органические вещества, возможно углеводороды, могли создаваться в океане из более простых соединений; энергию для этих реакций синтеза, вероятно, доставляла интенсивная солнечная радиация (главным образом ультрафиолетовая), падавшая на Землю до того, как образовался слой озона, который стал задерживать большую ее часть. По мнению Опарина, разнообразие находившихся в океанах простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался тот
“первичный бульон”, в котором могла возникнуть жизнь. Эта идея была не нова: в 1871 г. сходную мысль высказал Дарвин:

“Часто говорят, что все необходимые для создания живого организма условия, которые могли когда-то существовать, имеются и в настоящее время.
Но если (ох, какое это большое “если”) представить себе, что в каком-то небольшом теплом пруду, содержащем всевозможные аммонийные и фосфорные соли, при наличии света, тепла, электричества и т.п. образовался бы химическим путем белок, готовый претерпеть еще более сложные превращения, то в наши дни такой материал непрерывно пожирался бы или поглощался, чего не могло случиться до того, как появились живые существа”.

В 1953 г. Стэнли Миллер в ряде экспериментов моделировал условия, предположительно существовавшие на первобытной Земле. В созданной им установке (рис. 24.1), снабженной источником энергии, ему удалось синтезировать многие вещества, имеющие важное биологическое значение, в том числе ряд аминокислот, аденин и простые сахара, такие как рибоза. После этого Орджел в Институте Солка в сходном эксперименте синтезировал нуклеотидные цепи длиной в шесть мономерных единиц (простые нуклеиновые кислоты).

Позднее возникло предположение, что в первичной атмосфере, в относительно высокой концентрации содержалась двуокись углерода. Недавние эксперименты, приведенные с использованием установки Миллера, н которую, однако, поместили смесь СО2 и Н2О и только следовые количества других газов, дали такие же результаты, какие получил Миллер. Теория Опарина завоевала широкое признание, но она, оставляет нерешенными проблемы, связанные с переходом от сложных органических веществ к простым живым организмам. Именно в этом аспекте теория биохимической эволюции предлагает общую схему, приемлемую для большинства современных биологов. Однако они не пришли к единому мнению о деталях этого процесса.

Опарин полагал, что решающая роль в превращении неживого в живое принадлежала белкам. Благодаря амфотерности белковых молекул они способны к образованию коллоидных гидрофильных комплексов -притягивают к себе молекулы воды, создающие вокруг них оболочку. Эти комплексы могут обособляться от всей массы воды, в которой они суспендированы (водной фазы), и образовывать своего рода эмульсию. Слияние таких комплексов друг с другом приводит к отделению коллоидов от водной среды - процесс, называемый коацервацией (от лат. coacervus - сгусток или куча). Богатые коллоидами коацерваты, возможно, были способны обмениваться с окружающей средой веществами и избирательно накапливать различные соединения, в особенности кристаллоиды.
Коллоидный состав данного коацервата, очевидно, зависел от состава среды.
Разнообразие состава “бульона” в разных местах вело к различиям в химическом составе коацерватов и поставляло таким образом сырье для
“биохимического естественного отбора”.

Предполагается, что в самих коацерватах входящие в их состав вещества вступали в дальнейшие химические реакции; при этом происходило поглощение коацерватами ионов металлов и образование ферментов. На границе между коацерватами и внешней средой выстраивались молекулы липидов (сложные углеводороды), что приводило к образованию примитивной клеточной мембраны, обеспечивавшей концерватам стабильность. В результате включения в коацерват пред существующей молекулы, способной к. самовоспроизведению, и внутренней перестройки покрытого липидной оболочкой коацервата могла возникнуть примитивная клетка. Увеличение размеров коацерватов и их фрагментация, возможно, вели к образованию идентичных коацерватов, которые могли поглощать больше компонентов среды, так что этот процесс мог продолжаться.
Такая предположительная последовательность событий должна была привести к возникновению примитивного самовоспроизводящегося гетеротрофного организма, питавшегося органическими веществами первичного бульона.

Хотя эту гипотезу происхождения жизни признают очень многие ученые, астроном Фред Хойл недавно высказал мнение, что мысль о возникновении живого в результате описанных выше случайных взаимодействий молекул “столь же нелепа и неправдоподобна, как утверждение, что ураган, пронесшийся над мусорной свалкой, может привести к сборке Боинга-747”1.

1 Самое трудное для этой теории - объяснить появление способности живых систем к самовоспроизведению. Гипотезы по этому вопросу пока мало убедительны.

В ее основе лежит гипотеза академика А.И. Опарина. Она основывается на том, что весь окружающий нас мир находится в постоянном движении, то есть постоянно изменяется. И прежде чем появилась клетка, появились более простые образования, из которых потом могла образоваться клетка.

Этих же взглядов придерживался и англичанин Дж. Холдейн, который в 20 годы 20 столетия (одновременно с А.И. Опариным) высказал гипотезу о возникновении жизни в процессе биохимической эволюции углеродных соединений. Эта гипотеза легла в основу современных представлений о зарождении и развитии жизни на Земле.

В 1924 отечественный ученый-биохимик А.И. Опарин опубликовал труд «Происхождение жизни на Земле». В своей работе он подчеркивал, что предшественники организмов (пробионты) в ходе ряда химических и физиологических процессов (этап химической эволюции), происходивших на протяжении длительного времени в условиях молодой планеты, приобрели свойства организмов. После этого начался этап борьбы за существование с закономерностями, выявленными

Ч. Дарвином (этап биологической эволюции).

Заслугой А.И. Опарина является создание теории эволюции живой материи.

Ее основные идеи:

1. Первоначально жизнь возникла в Мировом океане как результат химической эволюции (то есть абиогенно).

2. Развитие живой материи и появление большого разнообразия форм жизни происходило в процессе биологической эволюции (то есть биогенно), которая стала вторым этапом развития жизни на Земле.

ОСНОВНЫЕ ЭТАПЫ ЗАРОЖДЕНИЯ ЖИЗНИ НА ЗЕМЛЕ

В 1929 свои взгляды об абиогенном происхождении жизни изложил английский ученый Дж. Холдейн. Согласно его гипотезе, первичной была не коацерватная, а макромолекулярная система, способная к самопроизводству, то есть первичными были не белки (как у А.И. Опарина), а нуклеиновые кислоты.

Возникновение и развитие жизни на Земле происходило на протяжении трех эволюционных этапов.

1. Химическая эволюция – абиогенный синтез органических полимеров.

2. Предбиологическая эволюция – формирование белково -нуклеиново-липидных комплексов (коацерваты, пробионты, прогеноты), способных к упорядоченному обмену веществ и самовоспроизведению. Появление первых примитивных живых организмов – прокариотов.

3. Биологическая эволюция. Состояла из ряда последовательно протекающих процессов.

1) первые одноклеточные организмы (прокариоты) были гетеротрофами, с малоэффективным анаэробным типам обмена веществ. Запас органических веществ на Земле стал постепенно истощаться.

2) затем эволюция прокариот пошла по пути процесса хемосинтеза – образования органических веществ из оксида углерода за счет энергии окисления неорганических веществ (серенные пурпурные бактерии).

3) условия на Земле начали меняться: уменьшалась вулканическая деятельность, солнечный свет уже не задерживался атмосферой, так как в ней было меньше пыли. Поэтому дальнейшая эволюция пошла по пути использования солнечной энергии. Возник процесс фотосинтеза – образование органических веществ и кислорода из неорганических: углекислого газа и воды, с использованием энергии Солнца. Первыми фотосинтезирующими организмами были синезеленые водоросли.

4) с появлением фотосинтезирующих организмов в атмосферу стал выделяться кислород. Который под действием ультрафиолетового излучения частично превращается в озон. Сформировался защитный озоновый слой.

5) в условиях окислительной атмосферы появился энергетически более выгодный кислородный тип обмена веществ. Появились аэробные бактерии.

История Земли разделяется на длительные промежутки времени – эры. Эры подразделяются на периоды, периоды – на эпохи, эпохи – на века. Разделение на эры и периоды определяется существенными преобразованиями лика Земли, изменением соотношений суши и моря, интенсивными горообразовательными процессами.

Названия эр (греческого происхождения):

Катархей – ниже древнейшего

Архей – древнейший

Протерозой первичная жизнь

Палеозой – древнейшая жизнь

Мезозой средняя жизнь

Кайнозой – новая жизнь.

ЗАДАНИЕ. Используя текст учебника, дополнительный материал, информацию из докладов учащихся, заполните таблицу «».

ИСТОРИЯ РАЗВИТИЯ ОРГАНИЧЕСКОГО МИРА

ИСТОРИЯ РАЗВИТИЯ ОРГАНИЧЕСКОГО МИРА

ИСТОРИЯ РАЗВИТИЯ ОРГАНИЧЕСКОГО МИРА

Экология – это раздел биологии, занимающийся изучением всего комплекса взаимоотношений отдельных организмов или их сообществ с окружающим миром или средой обитания.

Экологические факторы – компоненты природной среды, влияющие на состояние и свойства организма.

ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ

Условия среды (экологические условия) – изменяющиеся во времени и пространстве абиотические факторы среды, на которые реагируют организмы.

Температура, свет и влажность являются важными факторами внешней среды. Эти факторы закономерно изменяются как в течение года и суток, так и в связи с географической зональностью. К этим факторам организмы обнаруживают зональный и сезонный характер приспособления.

Интенсивность фактора, наиболее благоприятную для жизнедеятельности организма, наз. оптимальной (или оптимумом ). Границы, за которыми существование организма невозможно, называют нижним и верхним пределам выносливости, или минимумом и максимумом . Чем больше отклонение от оптимума, тем хуже для организма. Оптимум для различных организмов разный, поскольку разные виды обладают неодинаковой нормой реакции в отношении факторов среды.

Оптимум и границы выносливости по отношению к одному из факторов среды зависит от уровня других факторов среды. Если же количественное значение хотя бы одного из факторов выходит за пределы выносливости, то существование вида становится невозможным, как бы ни были благоприятны остальные условия.

Такие факторы, выходящие за границы максимума или минимума, называются ограничивающими.

Закон минимума (закон Юстуса Либиха).

Интенсивность биологических процессов зависит от нескольких факторов окружающей среды. Но тот фактор, который имеется в минимальном количестве от потребностей организма, играет решающую роль в выживании организма.

Экологические ресурсы – вещества и энергия, вовлекаемые организмами в процессы их жизнедеятельности.

1. Основной энергетический ресу рс – солнечное излучение. Оно дает необходимую энергию для процесса фотосинтеза – преобразование энергии солнца в энергию химических связей органических веществ.

2. Пищевой ресурс . Для растений – вода, минеральные соли, углекислый газ; животных – растения и животные (органические вещества).

Приспособлениями или адаптациями , называют любые признаки и свойства организмов, повышающие их шансы на выживание во внешней среде.

1. Морфологические адаптации – по внешнему облику разных видов животных и растений можно понять не только то, в какой среде они обитают, но и какой образ жизни в ней ведут.

Жизненные формы – своеобразие внешнего строения, отражающие приспособление вида к определенному образу жизни в среде обитания.

2. Экологические адаптации выражаются не только во внешних признаках вида, но и в изменениях физиологических процессов в характере поведения, в жизненных циклах, а также во внутриклеточных биохимических превращениях и при распространении.

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Биохимическая Эволюция

Среди астрономов, геологов и биологов принято - считать, что возраст Земли составляет примерно 4,5-5 млрд. лет.

По мнению многих биологов, в далеком прошлом состояние нашей планеты было мало похоже на нынешнее: по всей вероятности, температура ее поверхности была очень высокой (4000-8000°С), и по мере того, как Земля остывала, углерод и более тугоплавкие металлы конденсировались и образо­вали земную кору; поверхность планеты была, вероятно, голой и неровной, так как на ней в результате вулканической активности, непрерывных подвижек коры и сжатия, вызванного охлаждением, происходило образование складок и разрывов.

Полагают, что в те времена атмосфера была совершенно не такая, как теперь. Легкие газы - водород, гелий, азот, кислород и аргон - уходили из атмосферы, так как гравитационное поле нашей еще недостаточно плотной планеты не могло их удержать. Однако простые соединения, содержащие (среди прочих) эти элементы, должны были удерживаться; к ним относятся вода, аммиак, двуокись углерода и метан. До тех пор пока температура Земли не упала ниже 100°С, вся вода, вероятно, находилась в парообразном состоянии.

Атмосфера была, по-видимому, “восстановительной”, о чем свидетельствует наличие в самых древних горных породах Земли металлов в восстановленной форме, таких как двухвалентное железо. Более молодые горные породы содержат металлы в окисленной форме, например трехвалентное железо. Отсутствие в атмосфере кислорода было, вероятно, необходимым условием для возникновения жизни; лабораторные опыты показывают, что, как это ни парадоксально, органические вещества (основа живых организмов) гораздо легче создаются в восстановительной среде, чем в атмосфере, богатой кислородом. В 1923 г. А. И. Опарин высказал мнение, что атмосфера первичной Земли была не такой, как сейчас, а примерно соответствовала сделанному выше описанию. Исходя из теоретических соображений, он полагал, что органические вещества, воз­можно углеводороды, могли создаваться в океане из более простых соединений; энергию для этих реакций синтеза, вероятно, доставляла интенсивная солнечная радиация (главным образом ультрафиолетовая), падавшая на Землю до того, как образовался слой озона, который стал задерживать большую ее часть. По мнению Опарина, разнообразие

находившихся в океанах простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался тот “первичный бульон”, в котором могла возникнуть жизнь. Эта идея была не нова: в 1871 г. сходную мысль высказал Дарвин:

“Часто говорят, что все необходимые для создания живого организма условия, которые могли когда-то существовать, имеются и в настоящее время. Но если (ох, какое это большое “если”) представить себе, что в каком-то небольшом теплом пруду, содержащем всевозможные аммонийные и фосфорные соли, при наличии света, тепла, электричества и т.п. образовался бы химическим путем белок, готовый претерпеть еще более сложные превращения, то в наши дни такой материал непрерывно пожирался бы или поглощался, чего не могло случиться до того, как появились живые существа”.

В 1953 г. Стэнли Миллер в ряде экспериментов моделировал условия, предположительно существовавшие на первобытной Земле. В созданной им установке (рис. 24.1), снабженной источником энергии, ему удалось синтезировать многие вещества, имеющие важное биологическое значение, в том числе ряд аминокислот, аденин и простые сахара, такие как рибоза. После этого Орджел в Институте Солка в сходном эксперименте синтезировал нуклеотидные цепи длиной в шесть мономерных единиц (простые нуклеиновые кислоты).

Позднее возникло предположение, что в первичной атмосфере, в относительно высокой концентрации содержалась двуокись углерода. Недавние эксперименты, приведенные с использованием установки Миллера, н которую, однако, поместили смесь СО 2 и Н 2 О и только следовые количества других газов, дали такие же результаты, какие получил Миллер. Теория Опарина завоевала широкое признание, но она, оставляет нерешенными проблемы, связанные с переходом от сложных органических веществ к простым живым организмам. Именно в этом аспекте теория биохимической эволюции предлагает общую схему, приемлемую для большинства современных биологов. Однако они не пришли к единому мнению о деталях этого процесса.

Опарин полагал, что решающая роль в превращении неживого в живое принадлежала белкам. Благодаря амфотерности белковых молекул они способны к образованию коллоидных гидрофильных комплексов -притягивают к себе молекулы воды, создающие вокруг них оболочку. Эти комплексы могут обособляться от всей массы воды, в которой они суспендированы (водной фазы), и образовывать своего рода эмульсию. Слияние таких комплексов друг с другом приводит к отделению коллоидов от водной среды - процесс, называемый коацервацией (от лат. coacervus - сгусток или куча). Богатые коллоидами коацерваты, возможно, были способны обмениваться с окружающей средой веществами и избирательно накапливать различные соединения, в особенности кристаллоиды. Коллоидный состав данного коацервата, очевидно, зависел от состава среды. Разнообразие состава “бульона” в разных местах вело к различиям в химическом составе коацерватов и поставляло таким образом сырье для “биохимического естественного отбора”.

Предполагается, что в самих коацерватах входящие в их состав вещества вступали в дальнейшие химические реакции; при этом происходило поглощение коацерватами ионов металлов и образование ферментов. На границе между коацерватами и внешней средой выстраивались молекулы липидов (сложные углеводороды), что приводило к образованию примитивной клеточной мембраны, обеспечивавшей концерватам стабильность. В результате включения в коацерват пред существующей молекулы, способной к. самовоспроизведению, и внутренней перестройки покрытого липидной оболочкой коацервата могла возникнуть примитивная клетка. Увеличение размеров коацерватов и их фрагментация, возможно, вели к образованию идентичных коацерватов, которые могли поглощать больше компонентов среды, так что этот процесс мог продолжаться. Такая предположительная последовательность событий должна была привести к возникновению примитивного самовоспроизводящегося гетеротрофного организма, питавшегося органическими веществами первичного бульона.

Хотя эту гипотезу происхождения жизни признают очень многие ученые, астроном Фред Хойл недавно высказал мнение, что мысль о возникновении живого в результате описанных выше случайных взаимодействий молекул “столь же нелепа и неправдоподобна, как утверждение, что ураган, пронесшийся над мусорной свалкой, может привести к сборке Боинга-747” 1 .

1 Самое трудное для этой теории - объяснить появление способности живых систем к самовоспроизведению. Гипотезы по этому вопросу пока мало убедительны.


Похожие рефераты:

Сущность жизни и попытки ее определения основными теориями и гипотезами последних десятилетий. Отличительные черты живого и неживого. Появление, этапы развития жизни на Земле. Концепция креационизма, самозарождения жизни из неживого вещества, панспермии.

История представлений о возникновении жизни на Земле. Гипотезы возникновения жизни на Земле. Образование первичных органических соединений. Что считать жизнью? Эволюция жизни на Земле. Появление высокоорганизованных форм жизни.

Ранние представления о происхождении жизни, подходы к решению проблемы: идеи спонтанного зарождения, теория биогенеза. Биохимическая революция по Опарину: формирование геосферных оболочки Земли, появление гидросферы, возникновение органических соединений.

Государственный университет управления Институт информационных систем управления студенческий билет №18-98м Реферат по дисциплине “ Концепции современного естествознания

Вопрос о возникновении жизни на Земле - борьба религии и науки, идеализма и материализма. Проблема отличия живого от неживого. Современное двуединое понятие первобытного бульона и самозарождения жизни - теория Опарина-Холдейна о происхождении жизни.

Теория возникновения жизни, основанная на первоначальности фотосинтеза, на природных комплексных соединениях металлов и коррелятивности передачи признаков по наследству. Дефицит кислорода на древнейшей Земле. Фотосинтетическое питание. Первые клетки.

Проблема происхождения жизни на Земле. Возможности существования жизни в других областях Вселенной. Креационизм. Теория стационарного состояния, самопроизвольного самозарождения, панспермии. Современные возрения на происхождение жизни на Земле.

Характеристика основных теорий происхождения Земли: гипотеза Канта-Лапласа и теория Большого Взрыва. Сущность современных теорий эволюции Земли. Образование Солнечной системы, возникновение условий для жизни. Возникновение гидросферы и атмосферы.

Реферат на тему «Эволюция микроорганизмов» Выполнил: Никоненко Е.В.10б Проверил: Кулик Н.И. Челябинск 2003 г Геологическая летопись нашей планеты – останки вымерших существ - неопровержимо доказывает, что жизнь на планете менялась: одни виды животных и растений исчезали, другие...