Ученый открывший клеточное ядро. Клеточное ядро

Уже неоднократно мы упоминали, что тот или другой из перечисленных исследователей замечал в клетках ядра.

Так как в работе Шлейдена, к которой мы далее перейдем, ядру придается особое значение, то, отступая от хронологического изложения, рассмотрим здесь историю открытия этой важнейшей части клетки. Именно ядро помогло Шванну провести сравнение клеток животных и растений, и поэтому открытие ядра знаменует собою важнейший этап в развитии учения о клетке.

Ядра впервые увидел в эритроцитах рыб Лёвенгук в 1700 г. и изобразил их на рисунке. Позднее на том же объекте - эритроцитах многих позвоночных и беспозвоночных - зарисовал ядра Хьюсон (Hewson, 1777). Значение этого образования в тот ранний период зарождения микроскопии, конечно, не могло быть оценено ни самими авторами, ни их современниками. Фонтана в исследовании о яде гадюки, изображая эпителиальные клетки эпидермиса и эритроциты, рисует в клетках ядра и бегло упоминает о «их в тексте; но и в то время (работа Фонтана вышла в 1781 г.), когда только начиналось микроскопическое исследование животных тканей, открытие Фонтана не могло быть понято.

Тогда же некоторые исследователи наблюдали ядра в яйцеклетках. Каволини (Filippo Cavolini, 1756-1810) видел ядра в икре рыб (1787); а Поли (Poli, 1791) заметил ядра в яйцах моллюсков. Их наблюдения прошли бесследно, не обратив на себя внимания.

В исследовании о яйце птиц (1825) Пуркине описывал «зародышевый пузырек» (vesicula germinativa). Это было ядро яйцеклетки птиц. По описанию Пуркине, это «сжатый сферический пузырек, одетый тончайшей оболочкой. Он содержит свою собственную лимфу, включен в белый сосковидный бугорок и преисполнен производящей силой, отчего я и назвал его «зародышевый пузырек». Пуркине придавал открытому им образованию большое значение; вслед за ним последующие исследователи уже не обходили вниманием этот загадочный «пузырек». Открытие Пуркине, таким образом, не прошло бесследно, как наблюдения Каволини и Поли, но значение «зародышевого пузырька» долго оставалось неясным, так как в понимании частей яйца, с точки зрения представления о «клетке, правильный путь был намечен лишь после исследований Шванна.

У растений первое изображение клеточного ядра сделал Бауэр (Bauer) в 1802 г., но опубликован этот рисунок только в 1830 г. (J. Baker, 1949). Мейен (1830) на одном рисунке показывает ядро. В исследовании о маршанции Мирбель (1831-1832) также изображает ядро, давая ему название шарика; видел его и французский ботаник Броньяр (Adolphe Brogniart, 1801-1876). Но эти первые наблюдения ядер в растительных клетках не были оценены самими наблюдателями и также не привлекли к себе внимания.

Признание ядра в качестве обязательной части растительной клетки является заслугой английского ботаника Роберта Броуна (Robert Brown, 1773-1858).

Начав свои ботанические работы с описания сборов, сделанных во время путешествия по Австралии, Броун переходит затем к изучению анатомического строения растений. Он не ставил чисто морфологических задач в своей работе; анатомические исследования для него являются пособием для изучения систематики растений, но в этих работах Броун делает выдающиеся ботанические открытия относительно размножения у растений. В 1833 г. выходит работа Броуна «Об органах и способе оплодотворения у орхидных» (доложена в Линнеевском обществе в Лондоне еще в ноябре 1831 г.). Броун пишет в этой статье, что в каждой клетке эпидермиса он наблюдал «одиночную округлую ареолу, обычно более темную, чем оболочка клетки. Эта ареола более или менее зернистая, слегка выпуклая, и хотя она кажется лежащей на поверхности, в действительности она покрыта наружной пластинкой клетки. Положение ее в клетке не постоянно; часто, однако, в центре или близ него» (стр. 710). Эта ареола, или ядро (nucleus) клетки, как иначе обозначает это образование Броун, наблюдалось им не только в клетках эпидермиса; он видел ядро в паренхиме, во внутренних клетках частей растений, «особенно, когда они свободны от зернистого вещества». Броун, правда осторожно, высказывает предположение, что ядро является обычной составной частью клетки. У него нет категорического утверждения о том, что ядро есть обязательный органоид клетки; равным образом Броун не дает в своей работе изображений клеточных ядер. Тем не менее в исследованиях Броуна впервые ядро упоминается не как случайное образование в клетке, а фигурирует как какая-то существенная часть, имеющая значение для жизни клетки.

Мейен, автор «Фитотомии» - сочинения, о котором была речь уже ранее,- в более позднем руководстве «Новая система физиологии растений» (1837-1839) упоминает ядро как постоянную часть клетки, значение которой остается загадочным. Собственно лишь работа Негели (С. Nageli, 1844) доказала всеобщее распространение клеточных ядер не только у цветковых растений, но и в клетках водорослей, грибов, мхов и других низших растений.

В гистологию животных термин «ядро» был введен Валентином. В сообщении «О тонком строении органов чувств» (1836) Валентин писал об эпителии конъюнктивы: «Он состоит из ромбоидальных или квадратных округлых клеток, лежащих тесно друг около друга, границы которых образованы простыми нитевидными линиями; в каждой клетке без исключения находится несколько более темное и компактное ядро (nucleus) круглой или продолговато-округлой формы. Большей частью оно занимает середину клетки, состоит из мелкозернистой субстанции, но содержит внутри совершенно круглое тельце, которое по тому же образцу образует внутри него своего рода второе ядро» (стр. 143). Из этого описания видно, что Валентин отчетливо наблюдал ядра эпителиальных клеток. Внутри ядра Валентин видел ядрышко; это было, по-видимому, первое описание этой внутриядерной структуры.

Отчетливое описание и изображение ядер в клетках эпителия дал Генле (1837). Бэйкер (1949) верно отмечает, что работами Валентина и Генле начинается эпоха ядерных клеток в гистологии животных.

В 1838 г. в Muller’s Archiv появляется статья молодого ботаника Шлейдена под заглавием «Материалы к фитогенезу» (Beitrage zur Phytogenesis). Эта работа по традиции считается важнейшим этапом в развитии клеточного учения, и ее автор признается вместе со Шванном творцом клеточной теории. Значение Шлейдена в истории клеточного учения бесспорно, но в учебной, популярной, а подчас и в исторической литературе это значение освещается поверхностно и неверно. Шлейдену приписывают порой чуть не открытие растительных клеток, поэтому. необходимо разобрать, в чем же действительно значение этого ученого в истории клеточного учения, где правда в той легенде, которая сложилась вокруг его работы и по традиции переходит из учебника в учебник.

Маттиас Шлейден (Matthias Jacob Schleiden, 1804-1881) является крупнейшим представителем немецкой ботаники середины Прошлого столетия. Первоначально он окончил юридический факультет и занимался адвокатурой. Не имея в этой деятельности успеха, Шлейден в 1831 г. бросает юриспруденцию и приступает к изучению медицины и естественных наук. С 1840 г. он профессор ботаники в Иене, где остается до 1862 г. Это основной период творческой деятельности Шлейдена. В 1842 г. выходит его капитальное сочинение «Основы научной ботаники», сыгравшее большую роль в направлении дальнейших ботанических исследований. Вместо натурфилософских рассуждений Шлейден требует внедрения в ботанику точных методов исследования строения и функции растений; особенно подчеркивал он необходимость внимания к истории развития, в которой видел ключ для решения многих спорных проблем. Философские позиции Шлейдена, изложенные им в его сочинениях, не отличаются оригинальностью и обнаруживают отпечаток кантовской философии. С 1862 г. по 1864 г. Шлейден - профессор антропологии в Дерпте (ныне Тарту, Эст. ССР), в 1864 г. он оставляет Дерпт из-за столкновения с церковными кругами и вместе с тем прекращает педагогическую деятельность. Будучи автором не только ряда научных работ, но и многих популярных сочинений, Шлейден пользовался широкой известностью.

«Материалы к фитогенезу» - вторая работа Шлейдена, который был тогда еще начинающим ботаникам. Она представляет собой статью, размером около 40 страниц, к которой приложены две таблицы. Общий основной закон человеческого разума, - так начинает Шлейден свою работу, - закон, обусловливающий непреодолимое стремление его к единству в познании и установлению как вообще в науке, так и в области организмов аналогии для обоих больших отделов - царства животных и растений, - побуждал многократно заниматься этим предметом. Столько людей ума занимались им, но - этого нельзя отрицать - все до сих пор произведенные в этом отношении попытки не удавались и были заблуждениями. Причина лежит в том, что понятие индивидуума в том смысле, как оно применяется в животной природе, в мире растений не имеет никакого применения. Самое большое можно говорить об индивидууме в этом смысле у наиболее низших растений, некоторых водорослей и грибов, состоящих только из одной клетки. Но каждое более высоко развитое растение есть агрегат совершенно индивидуализированных замкнутых отдельностей…, являющихся клетками» (стр. 137). Мы нарочно привели эту длинную цитату, являющуюся началом статьи Шлейдена, чтобы показать, насколько чужда была ему мысль об единстве микроскопической структуры животных и растений, выражающемся в клеточном строении. А между тем именно эта мысль является краеугольным камнем клеточной теории, одним из соавторов которой обычно считают Шлейдена.

Для правильной оценки работы Шлейдена нужно вспомнить положение клеточного учения в ботанике к 1837 г., когда Шлейден закончил свою работу. Совершенно неверно распространенное представление, будто Шлейден доказал всеобщее распространение клеток у растений, или даже открыл клетки у растений. Это искажение действительного исторического развития науки. К началу тридцатых годов прошлого века в ботанике создается законченное представление о клетке как элементарной структуре растительного мира; Шлейден в своей работе берет это положение в качестве незыблемо установленного вывода. Даже такие, казалось раньше, неклеточные части растений, как водоносные сосуды древесины, к этому времени рассматриваются как видоизмененные, своеобразно дифференцированные и слившиеся клетки. Шлейдену не надо было устанавливать всеобщее распространение клеток у растений: установление этого положения явилось, как мы видели, коллективным успехом целого ряда работ многочисленной плеяды ботаников первой четверти прошлого века.

К. А. Тимирязев (1920) по поводу выражения «открытие клетки» справедливо писал: «Но дело в том, что клеточку никто не открывал» (стр. 79), подчеркивая этим, что «открытие» клетки не есть заслуга какого-то определенного ученого. Неверно и то, что Шлейден, как пишет Ашофф (Aschoff, 1938), развил учение «о всеобъемлющем построении из клеток всех растений» (стр. 177). И в этом отношении прав К. А. Тимирязев, который писал: «Шлейдена вообще принято считать творцом этого учения о клеточке, оказавшегося столь богатым самыми плодотворными обобщениями. Но это едва ли справедливо… Шлейден красноречивый, страстный противник рутины и застоя, мог бы по праву сказать о себе, как некогда Бэкон, что он трубач, герольд, buccinator, возвещавший о появлении этого учения, но фактические данные, его обосновывавшие, уже существовали ранее…» (стр. 75). Характерно, что Унгер (Unger, 1846) в своих основах ботаники, излагая положение о клетке как о всеобщей элементарной структуре организмов, в литературной ссылке указывает Шванна и Кёлликера, не упоминая даже в этом аспекте о Шлейдене.

Самое понятие о клетке у Шлейдена не отличается от представлений, оформившихся ранее и нашедших отражение в учебнике Мейена (1830) еще до того, как Шлейден вообще начал заниматься ботаникой. В уровень с этими представлениями Шлейден принимал клетку за пузырек или камеру, отграниченную оболочкой, внутри которой может находиться содержимое. Это «содержимое» клетки (будущая протоплазма!) привлекало еще внимание Мейена, посвятившего ему большое исследование, но не уяснившего значения этой основной составной части клеток. Видел протоплазму растительных клеток и Шлейден, но и он не понял значения «содержимого» клетки. Для него это - камедь (Gummi) или студень (Gallerte). Часть протоплазмы Шлейден относил к клеточной стенке. Последняя, по его мнению, состоит из двух слоев, между ними находится клеточное ядро - «дитобласт», который никогда не лежит внутри клетки, а всегда заключен в клеточную стенку «таким образом, что стенка клетки расщепляется на две пластинки, из которых одна проходит снаружи, а другая изнутри цитобласта. Та, которая проходит с внутренней стороны, обычно нежнее и более студневидная» (стр. 142). Из рисунков Шлейдена очевидно, что за «внутренний слой клеточной стенки» он принимал пристеночный слой протоплазмы растительных клеток.

Какую же задачу ставил Шлейден в своей работе? «Каждая клетка, - пишет он, - ведет двойную жизнь: вполне самостоятельную, связанную только с ее собственным развитием, и другую зависимую, поскольку она является составной частью растения. Однако легко видеть, что как для физиологии растений, так и для сравнительной физиологии жизненные процессы отдельных клеток должны быть в общем на первом месте, должны представлять собою неизбежную основу, и при этом в первую очередь выдвигается вопрос: как собственно происходит этот своеобразный маленький организм, клетка?» (стр. 138). Эта задача-генезис клетки - основа статьи Шлейдена. Генетический момент в таком смысле выдвигался и ранее, но нельзя отрицать, что Шлейден, соответственно своему времени, поставил эту проблему отчетливее, чем его предшественники.

Отвечая на поставленный вопрос, Шлейден развивает свою теорию клеткообразования. В этой теории центральная роль в процессе развития новых клеток отводится ядру. Как мы видели, оно было открыто задолго до работы Шлейдена, «о не получило никакого определенного толкования. По Шлейдену, ядро есть «цитобласт» - образователь клетки. Теория клеткообразования, развиваемая Шлейденом, кратко может быть охарактеризована следующим образом.

В камеди, прилегающей изнутри к стенкам ранее существовавших клеток, образуются зернышки; Шлейден называет их слизью и считает, что эти зернышки, путем конденсации, образуют ядрышки, а затем формируется ядро, возникающее, в виде зернистого осадка вокруг ядрышка. На поверхности ядра, с одной стороны, снова из «слизи» образуется оболочка; она отграничивает цитобласт, и таким образом возникает отграниченное стенками пространство, где в толще стенки заключено ядро. Это пространство и есть новая клетка. Следовательно, по Шлейдену, дочерние клетки возникают внутри материнских клеток. Количество новых клеток, которые могут развиваться в одной материнской клетке, а равно и судьба этой материнской образовательной клетки, Шлейденом не обсуждается.

Такова сущность теории клеткообразования, сущность «превосходных исследований Шлейдена, которые пролили на эту область так много света», - характеристика работы Шлейдена, данная Теодором Шванном. Как вскоре было показано, теория Шлейдена основана на ложно истолкованных наблюдениях. Именно эту неверную теорию клеткообразования воспринял от Шлейдена его друг Шванн и она явилась наиболее слабым пунктом учения Шванна. Сакс в своей истории ботаники характеризует теорию Шлейдена следующими резкими словами: «Шлейденовская теория клеткообразования возникла из трудно постижимого слияния неясных наблюдений и предвзятых мнений, больше того, она сильно напоминает в основном старые теории Шпренгеля и Тревирануса» (стр. 76). Сам Шлейден упорно отстаивал свою теорию цитогенеза и приводил ее даже в 4-м изд. «Основ научной ботаники» (1861).

В своей статье Шлейден, кроме рассмотренной теории клеткообразования, занимается вопросом о развитии утолщений на стенках спиральных сосудов и развивает теоретические рассуждения о работе растений. Принципиально нового в данном разделе работа Шлейдена не содержит, и, так как эта часть статьи прямого отношения к нашей теме не имеет, останавливаться на ней нет необходимости.

Какую же оценку нужно дать в историческом аспекте роли Шлейдена в развитии клеточного учения? Мартин Гейденгайн (М. Heidenhain, 1899) еще в конце прошлого столетия отметил неправильность представления о равноценном значении в истории клеточной теории Шлейдена и Шванна. Позже этот вопрос со всей решительностью был поставлен вновь на основании критического разбора литературы чешским гистологом Студничкой (1933) - большим знатоком истории клеточного учения. Действительно, традиционное сопоставление имен Шлейдена и Шванна, выдвигаемых обычно в качестве «соавторов» клеточной теории, не оправдывается при внимательном изучении источников. Шлейден не был соавтором клеточной теории; ему, как мы видели, была совершенно чужда основная мысль этой теории - единство микроскопической элементарной структуры животных и растений; он не является и создателем клеточного учения в области ботаники, так как основные положения этого учения были развиты до него. Это нужно подчеркнуть, так как в литературе, и иностранной и нашей, вокруг имени Шлейдена создалась «легенда», которых так много в истории науки вследствие недостаточного знакомства с оригиналами. Студничка в цитируемой выше статье о Шлейдене привел выписки из нескольких десятков иностранных руководств по гистологии и биологии и даже из специальных статей по истории клеточного учения, где совершенно превратно освещается роль Шлейдена и повторяется легенда о том, что Шлейдену наука обязана открытием клеточного строения у растений, что Шлейден и Шванн создали клеточную теорию и т. п. К тому списку неоправданных, а порой просто нелепых утверждений о роли Шлейдена, который привел Студничка, можно, к сожалению, добавить немалый список цитат из более новых учебников и даже специальных работ, в том числе сочинений, претендующих на значение исторических работ как в нашей, так и в зарубежной литературе. Историческая роль работы Шлейдена несомненна, но эта роль иная, чем ее обычно освещают. Шлейдену принадлежит заслуга внедрения генетического подхода в учение о тканях и клетке. Попытки подобного подхода делались и до Шлейдена (Вольф, Мирбель, Шпренгель, Тревиранус; в гистологии животных - Валентин), но в то время они не могли быть столь эффективными, как работа Шлейдена, появившаяся тогда, когда представление о клетке как об основной структуре растений было уже общепринятым. Без генетического подхода Шванн не мог бы создать стройную клеточную теорию, обоснованную убедительными для того времени данными. Только обратившись к истории развития тканей и клеток, Шванн смог показать «соответствие» различных элементарных структур, мог доказать их гомологию. В направлении мысли Шванна на подобный путь исследования работа Шлейдена сыграла, конечно, существенную роль.

Но это не все. Для того чтобы, обратившись к истории развития элементарных структур, можно было убедительно показать их гомологию, нужно было найти руководящий признак и, взяв его в качестве ведущего звена, распутывать клубок сложных взаимоотношений элементарных структур в животных тканях. Этот руководящий признак Шванн почерпнул у Шлейдена. Это - ядро. Клетки в различных тканях могут быть внешне очень не похожи друг на друга, но сходство ядер бросается в глаза, помогает гомологизировать внешне несходные образования. Ядро было известно и в клетках растений и в животных структурах до Шлейдена. Но только в его работе ядро приобрело значение основного признака развивающейся клетки. Этот признак послужил для Шванна рычагом, ухватившись за который он смог создать клеточную теорию.

Таким представляется значение Шлейдена в истории клеточного учения. Его нельзя ставить рядом со Шванном, он не был соавтором клеточной теории, но его работа была необходимым звеном в цепи исследований, подготовивших материал, без которого гений Шванна, возможно, оказался бы бессильным сделать обобщения, сформулированные им в виде клеточной теории. Вирхов (1859) правильно выразил это, указав, что Шванн стоял «на плечах» Шлейдена.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Диаграмма клеточного ядра В клеточной биологии, ядро (лат. nucleus) – клеточные органеллы, найденная в большинстве клеток эукариот и содержит ядерные гены, которые составляют большую часть генетического материала. Ядро имеет две основные функции: управление химическими реакциями в пределах цитоплазмы и хранения информации, необходимой для деления клетки.
Ядро было открыто около 1833 ботаником Робертом Брауном.
Кроме клеточного генома, ядро содержит определенные белки, регулирующие считывания генетической информации. Считывания гена на ядерном уровне привлекает сложные процессы транскрипции, обработки первичной мРНК и экспорт зрелой мРНК к цитоплазме.
Ядро обычно имеет размер 8-25 микрометров в диаметре. Оно окружено двойной мембраной, которая называется ядерной оболочкой. Сквозь внутреннюю и внешнюю мембраны на некоторых интервалах проходят ядерные поры. Ядерная оболочка регулирует и облегчает транспорт между ядром и цитоплазмой, отделяя химические реакции, имеющие место в цитоплазме, от реакций, происходящих в пределах ядра. Внешняя мембрана непрерывная с грубым эндоплазматическим ретикулумом (RER) и может иметь связанные рибосомы. Пространство между двумя мембранами (который называется "перинуклеарных пространством") непрерывный с люменам RER. Ядерная сторона ядерной оболочки окружена сетью филаментов, которая называются ядерной Ламин.
Внутренняя часть ядра содержит одно или несколько ядрышек, окруженных матрицей, которая называется нуклеоплазмы. Нуклеоплазма – гелеобразные жидкость (подобная в этом отношении к цитоплазме), в которой растворены многие вещества. Эти вещества включают нуклеотид-трифосфат, сигнальные молекулы, ДНК, РНК и белки (энзимы и филаменты).
Ядро и ендомембранна система Генетический материал присутствует в ядре в виде хроматина, или комплекса белка и ДНК. ДНК присутствует как целый ряд дискретных молекул, известных как хромосомы. Есть два вида хроматина: эухроматин и гетерохроматин. Эухроматин менее компактная форма ДНК, области ДНК находящихся в форме эухроматина содержат гены, которые часто считываются клеткой.
В гетерохроматина ДНК более компактно упаковано. Области ДНК находящихся в форме гетерохроматина содержат гены, которые не считываются клеткой на данной стадии развития (этот вид гетерохроматина известен как факультативный гетерохроматин) или являются областями, которые составляют теломеры и центромеры хромосом (этот вид гетерохроматина известен как конструктивный гетерохроматин). У многоклеточных организмах, клетки чрезвычайно специализированы, чтобы выполнять специфические функции, поэтому разные наборы генов нужны и считываются. Поэтому, области ДНК, которые находятся в форме гетерохроматина, зависят от типа клетки.
Ядрышко – плотная структура в ядре, где собираются элементы рибосом. В ядре может быть одно или несколько ядрышек.

III. Клеточное ядро.

Ядро открыто и описано в 1831 г. английским ботаником Р.Броуном.

Характерно для всех эукариотических клеток, за исключением зрелых эритроцитов млекопитающих и ситовидных трубок растений. Клетки могут быть одноядерными (как правило); многоядерными (клетки печени и мышц у человека и млекопитающих, грибы и др.). Форма и размеры ядра клетки очень изменчивы и зависят от вида организма, а также от типа, возраста и функционального состояния клетки. В округлых или многоугольных клетках оно обычно шаровидное, в вытянутых – палочковидное или овальное, в лейкоцитах - лапасное или даже многолопастным (в клетки паутинных желез некоторых насекомых и пауков). Диаметр ядер от 3 до 10 мкм, (5 – 20 мкм)

По химическому составу ядро отличается от остальных компонентов клетки высоким содержанием ДНК (15 – 30%) и РНК (12%). 99% ДНК клетки сосредоточено в ядре, где она вместе с белками (гистонами и негистонами) образует комплексы – дезоксирибонуклеопротеиды (ДНП).

Функции ядра :

1) хранения и воспроизведения генетической информации;

2) регуляции процессов обмена веществ, протекающих а клетке.

Жизненный цикл клетки (клеточный цикл) включает два периода:

1) деление, в результате которого образуются две дочерние клетки;

2) период между двумя делениями, который называется – интерфаза.

Во время интерфазы происходит подготовка клетки к делению: клетка растет, происходит репликация ДНК, накапливаются различные вещества, необходимые для деления, происходит запасание энергии. В процессе деления клеточные структуры ядра претерпеваю значительные изменения.

В интерфазном ядре различают: ядерную оболочку; ядерный сок; ядрышки, и хроматин.

Ядерная оболочка (кардиолемма) представлена двумя элементарными мембранами, между которыми находится перинуклеарное пространство . Наружная мембрана ядерной оболочки, граничащая с гиалоплазмой, имеют сложную складчатую структуру, местами соединенную с каналами ЭПС. Перинуклеарное пространство и ЭПС образуют единую систему сообщающихся каналов. На наружной ядерной оболочке расположены рибосомы, внутренняя мембрана гладкая. Ядерная оболочка пронизана множеством пор, диаметр около 30 – 100 нм. Их число меняется в зависимости от функциональной активности ядра. В молодых клетках пор всегда больше, чем в старых.

Функция ядерной оболочки:

1. регуляция обмена веществ между ядром и цитоплазмой;

2. защитная функция.

Обмен веществ между ядром и цитоплазмой осуществляется несколькими путями:

1. Через поры, обеспечивающих избирательную проницаемость;

Пример: выход в цитоплазму иРНК и рибосомных субчастиц, или поступление в ядро рибосомных белков, нуклеотидов,и молекул регулирующих активность ДНК.

2. Путем отшнуровывания выростов и выпячиваний ядерной оболочки.

3. Путем диффузии через ядерную оболочку.

Несмотря на активный обмен веществ между ядром и цитоплазмой, ядерная оболочка, отграничивает ядерное содержимое от цитоплазмы, делая возможным существование особой внутриядерной среды отличной от окружающей цитоплазмы.

Ядерный сок (нуклеоплазма; кариоплазма) – это однородная масс заполняющая пространство между структурами ядра (хроматином и ядрышками).В его состав входят белки (ферменты), нуклеотиды, аминокислоты и различные виды РНК (иРНК, тРНК, рРНК) и ДНК, а также промежуточные продукты обмена. Ядерный сок осуществляет взаимосвязь ядерных структур и обмен с цитоплазмой клетки.

Хроматин представляет собой дезоксирибонуклеопротеид (ДНП), выявляемый под световым микроскопом в виде тонких тяжей (фибрилл) мелких гранул или глыбок. Основу хроматина составляют нуклеопротеины – длинные нитивидные молекулы ДНК (около 40%), соединенные со специфическими белками - гистонами (40%), содержащими большое количество лизина и аргинина.

В процессе деления ядра нуклеопротеины спирализуются, укорачиваются, тем самым уплотняются (в 100 – 500 раз) в компактные палочковидные хромосомы.

Хромосомы (греч. хрома – краска и сома – тело) были так названы в связи со способностью к интенсивному окрашиванию. В состав хромосом входят также РНК, кислые белки, липиды и минеральные вещества (ионы Ca и Mg), а также фермент ДНК-полимераза, необходимые для репликации ДНК. В интерфазу хромосомы видны только под электронным микроскопом и представляет собой ДНП, именуемые хроматином (деспирализованное состояние хромосом).

Метафазная хромосома состоит из двух продольных нитей ДНП – хроматид, соединенных друг с другом в области первичной перетяжки - центромеры . В центральной части центромеры находятся кинетохоры , к которым во время митоза прикрепляются микротрубочки нитей веретена деления. Некоторые хромосомы имеют вторичную перетяжку , не связанную с прикреплением нити веретена. Этот участок хромосом контролирует синтез ядрышка (ядрышковый организатор), и называется спутником. Центромера делит хромосому на два плеча.

Расположение центромеры определяет 3 основных типа хромосом:


Равноплечие (метацентрические) – с плечами равной длины;

Субметацентрические или неравноплечие - плечи неравной длины;

Палочковидные – с одним длинным и вторым очень коротким плечом (акроцентрические).

Строение хромосом хорошо видно на стадии метафазы митоза. Изучение хромосом позволило установить следующие факты:

ü Во всех соматических клетках любого растительного или животного организма число хромосом одинаково;

ü В половых клетках содержатся всегда вдвое меньше хромосом, чем в соматических клетках данного вида организмов;

ü У всех организмов, относящихся к одному виду, число хромосом в клетки одинаково.

Пример: лошадиная аскарида – 2; Муха дрозофила – 8; Шимпанзе – 48; Ясень – 46; Человек – 46; Голубь – 80; Сазан – 104; Радиолярия (протист) – 1000 – 1600.

Число хромосом не зависит от высоты организации и не всегда указывает на филогенетическое родство: одно и то же число может встречаться у видов очень далеких друг от друга в систематическом отношении и сильно отличаться у близких по происхождению организмов. Число хромосом не является, таким образом, видоспецифическим признаком. Однако, характеристика хромосомного набора в целом видоспецифична, т.е. свойственна только одному какому–то виду растений или животных.

Кариотип - совокупность количественных (число и размеры) и качественных (формы) признаков хромосомного набора соматической клетки. Число хромосом в кариотипе всегда четное. Это объясняется тем, что в соматических клетках находится 2 одинаковых по форме и размерам хромосомы. Одна происходит от отцовского организма, вторая от материнского.

Хромосомы одинаковые по форме и размерам и несущие одинаковые гены называются гомологичными.

Число хромосом в зрелых половых клетках называются гаплоидным (одинарным) и обозначается латинской буквой n. Соматические клетки содержат двойное число хромосом – диплоидный набор – обозначаемое 2n. Клетки, имеющие более двух наборов хромосом, называются полиплоидными (4n, 8n, 16n и т.д.)

Ядрышки – это округлые, сильно уплотненные, не ограниченные мембраной участки клеточного ядра диаметром 1 – 2 мкм и больше. Форма, размеры и количество ядрышек зависит от функционального состояния ядра: чем крупнее ядрышко, тем выше его активность. В ядре может содержаться от 1 до 10 ядрышек, а иногда, например в ядрах у дрожжей, их нет совсем. В состав ядрышек входит около 80% белка, 10 – 15% РНК, некоторое количество ДНК и других химических компонентов.

Ядрышки есть только в неделящихся ядрах, во время деления они исчезают, а после завершения деления образуются вновь, вокруг определенных участков хромосом – генов, называемых ядрышковыми организаторами.

В ядрышке происходит объединение РНК с белками, в результате чего образуются рибонуклеопротеины – предшественники рибосом. Последние через поры ядерной оболочки переходят в цитоплазму, где заканчивается их формирование. Таким образом, ядрышки – это скопление рРНК и рибосом на разных этапах формирования.

Ядро было открыто и описано в 1833 г. англичанином Р. Броуном. Ядро присутствует во всех эукариотических клетках, за исключением зрелых эритроцитов и ситовидных трубок растений. Клетки, как правило, имеют одно ядро, но иногда встречаются многоядерные клетки.

Ядро бывает шаровидной или овальной формы. В некоторых клетках встречаются сегментированные ядра. Размеры ядер - от 3 до 10 мкм в диаметре.

Ядро необходимо для жизни клетки. Оно регулирует активность клетки. В ядре хранится наследственная информация, заключенная в ДНК. Эта информация, благодаря ядру, при делении клетки передается дочерним клеткам. Ядро определяет специфичность белков, синтезируемых в клетке. В ядре содержится множество белков, необходимых для обеспечения его функций. В ядре синтезируется РНК.

Ядро имеет ядерную оболочку, отделяющую его от цитоплазмы, кариоплазму (ядерный сок), одно или несколько ядрышек, хроматин

Ядерная оболочка состоит из двух мембран. В ней имеются поры, играющие важную роль в переносе веществ в цитоплазму и из нее. Поры не являются постоянными образованиями. Их число меняется в зависимости от функциональной активности ядра. Число пор увеличивается в период наибольшей ядерной активности. Ядерная оболочка связана непосредственно с эндоплазматической сетью.

На наружной мембране ядерной оболочки, с внешней стороны находятся рибосомы, синтезирующие специфические белки, образующиеся только на рибосомах ядерной оболочки.

Ядерный сок (кариоплазма) - внутреннее содержимое ядра, представляет собой раствор белков, нуклеотидов, ионов, более вязкий, чем гиалоплазма. В нем

присутствуют также фибриллярные белки. В кариоплазме находятся ядрышки и хроматин. Ядерный сок обеспечивает нормальное функционирование генетического материала.

Ядрышки - обязательный компонент ядра, обнаруживаются в интерфазных ядрах и представляют собой мелкие тельца, шаровидной формы. Ядрышки имеют большую плотность, чем ядро. В ядрышках происходит синтез р-РНК, других видов РНК и образование субъединиц рибосом.

Возникновение ядрышек связано с определенными зонами хромосом, называемыми ядрышковыми организаторами. Число ядрышек определяется числом ядрышковых организаторов. В них содержатся гены р-РНК.

Хроматин (окрашенный материал) - плотное вещество ядра, хорошо окрашиваемое основными красителями. В состав хроматина входят молекулы ДНК в комплексе с белками (гистонами и негистонами), РНК.

В неделящихся (интерфазных) ядрах хроматин может равномерно заполнять объем ядра, находясь в деконденсированном состоянии. Этот диффузный хроматин (эухроматин) генетически активен. Молекулы ДНК, содержащие наследственную информацию, способны удваиваться при репликации, и возможна передача (транскрипция) генетической информации с ДНК на и-РНК.

Иногда в интерфазном ядре бывают видны глыбки хроматина, представляющие собой участки конденсированного хроматина (гетерохроматина). Это неактивные участки. Например, в клетках женского организма, где присутствуют две X -хромосомы, одна находится в активном диффузном состоянии, а вторая в неактивном, конденсированном состоянии.

Во время деления ядра хроматин окрашивается интенсивнее, происходит его конденсация - образование более спирализованных (скрученных) нитей, называе­мых хромосомами.

Хромосомы синтетически неактивны. Строение хромосом лучше всего изучать в момент их наибольшей конденсации, т. е. в метафазе и начале анафазы митоза.

Каждая хромосома в метафазе митоза состоит из двух хроматид, образовавшихся в результате редупликации, и соединенных центромерой (первичной перетяжкой). В центральной части центромеры находятся кинетохоры, к которым во время митоза прикрепляются микротрубочки нитей веретена (рис. 47). В анафазе хроматиды отделены друг от друга. Из них образуются дочерние хромосомы, содержащие одинаковую генетическую информацию. Центромера делит хромосому на два плеча. Хромосомы с равными плечами называют равноплечими или метацентрическими, с плечами неодинаковой длины - неравноплечими -субметацентрическими, с одним коротким и вторым почти незаметным - палочковидными или акроцентрическими.

Некоторые хромосомы имеют вторичную перетяжку, отделяющую спутник. Вторичные перетяжки называют ядрышковыми организаторами. В них в интерфазе происходит образование ядрышка. В ядрышковых организаторах находится ДНК,

отвечающая за синтез р-РНК. Плечи хромосом оканчиваются участками, называемыми теломерами, не способными соединяться с другими хромосомами.

Кинетохоры располагаются в центромерном районе хромосом. / - кинетохор, 2 - пучок кинетохорных микротрубочек; 3 - хроматида.

Число, размер и форма хромосом в наборе у разных видов могут варьировать. Совокупность признаков хромосомного набора называют кариотипом

Хромосомный набор специфичен и постоянен для особей каждого вида. У человека 46 хромосом, у мыши - 40 хромосом и т.д.

В соматических клетках, имеющих диплоидный набор хромосом, хромосомы парные. Их называют гомологичными. Одна хромосома в паре происходит от материнского организма, другая - от отцовского.

Изменения в структуре хромосом или в их числе возникают в результате мутаций.

Каждая пара хромосом в наборе индивидуальна. Хромосомы из разных пар называют негомологичными.

В кариотипе различают половые хромосомы (у человека это Х-хромосома и Y -хромосома) и аутосомы (все остальные).

Половые клетки имеют гаплоидный набор хромосом.

Основу хромосомы составляет молекула ДНК, связанная с белками (гистонами и др.) в нуклеопротеид.

Основное положение молекулярной биологии, сформулированное Ф. Криком, утверждает, что перенос генетической информации осуществляется:

1) от ДНК к ДНК путем репликации;

2) от ДНК через и-РНК (м-РНК) к белку.

Процесс самовоспроизведения макромолекул нуклеиновых кислот (репликация) обеспечивает точное копирование генетической информации и передачу ее от поколения к поколению.

Принцип комплементарности, лежащий в основе структуры молекулы ДНК, дает возможность понять, как синтезируются новые молекулы в синтетическом периоде интерфазы жизненного цикла клетки перед ее делением.