Оплодотворение, его фазы, биологическая сущность. Биологическое значение оплодотворения


36. Оплодотворение – начальный этап развития нового организма. Фазы оплодотворения. Биологическая сущность.

Оплодотворение – процесс слияния мужской и женской гамет , приводящее к образованию зиготы. При оплодотворении взаимодействуют мужская и женская гаплоидные гаметы, при этом сливаются их ядра (пронуклеусы), объединяются хромосомы, и возникает первая диплоидная клетка нового организма – зигота . Начало оплодотворения – момент слияния мембран сперматозоида и яйцеклетки, окончание оплодотворения – момент объединения материала мужского и женского пронуклеусов.

Оплодотворение происходит в дистальном отделе маточной трубы и проходит 3 стадии:

I стадия – дистантное взаимодействие, включает в себя 3 механизма:

· хемотаксис – направленное движение сперматозидов навстречу к яйцеклетке (гинигамоны 1,2);

· реотаксис – движение сперматозоидов в половых путях против тока жидкости;

· капацитация – усиление двигательной активности сперматозоидов, под воздействием факторов женского организма (рН, слизь и другие).

II стадия – контактное взаимодействие, за 1,5–2 ч сперматозоиды приближаются к яйцеклетке, окружают ее и приводят к вращательным движениям, со скоростью 4 оборота в минуту. Одновременно из акросомы сперматозоидов выделяются сперматозилины, которые разрыхляют оболочки яйцеклетки. В том месте где оболочка яйцеклетки истончается максимально происходит оплодотворение, оволемма выпячивается и головка сперматозоида проникает в цитоплазму яйцеклетки, занося с собой центриоли, но оставляя снаружи хвостик.

III стадия – проникновение, самый активный сперматозоид приникает головкой в яйцеклетку, сразу после этого в цитоплазме яйцеклетки образуется оболочка оплодотворения, которая препятствуетполиспермии. Затем происходит слияние мужского и женского пронуклеусов, этот процесс носит название синкарион. Этот процесс (сингамия) и есть собственно оплодотворение, появляется диплоидная зигота (новый организм, пока одноклеточный).

Условия необходимые для оплодотворения:

· концентрация сперматозоидов в эякуляте, не менее 60 млн в 1 мл;

· проходимость женских половых путей;

· нормальная температура тела женщины;

· слабощелочная среда в женских половых путях.

Биологическое значение оплодотворения состоит в том, что при слиянии мужских и женских половых клеток, происходящих обычно из разных организмов, образуется новый организм , несущий признаки отца и матери. При образовании половых клеток в гаметы с разным сочетанием хромосом, поэтому после оплодотворения новые организмы могут сочетать в себе признаки обоих родителей в самых различных комбинациях. В результате этого происходит колоссальное увеличение наследственного разнообразия организмов.

37. Характеристика и значение основных этапов эмбрионального развития. Зависимость типы дробления зиготы от строения яйцеклетки. Способы гаструляции .

Эмбриональный период начинается с момента образования зиготы. После, зигота вступает в стадию дробления.

Дробление- это митотическое деление зиготы, при котором бластомеры не увеличиваются в размерах. В результате дробления образуется многоклеточный организм (бластула) , которая имеет бластодерму и бластоцель.

Типы дробления.

Дробление может быть:


  • Полным – глобалистическим (ланцетники, амфибии, млекопитающие)-зигота полностью делится на бластомеры.

  • Частичным – меробластическим (рептилии, птицы) – дробится лишь часть зиготы.
Может быть:

  • Равномерным - бластомеры одинаковых размеров.

  • Неравномерным – бластомеры разных размеров.
Может быть:

  • Синхронным

  • Асинхронным

Полное дробление по расположению бластомеров может быть:


  • Радиальным- бластомеры расположены друг над другом.

  • Спиральным- Вышележащие бластомеры смешены относительно нижележащих.

  • Билатеральнвм- расположены по закону билатеральной симметрии.

  • Хаотическое.

Частичное дробление может быть:


  • Дискоидальным- на бластомеры делится лишь часть цитоплазмы у анимального полюса.

  • Поверхностным – дробится только поверхностный слой цитоплазмы.

Тип дробления определяется строением яйцеклетки.

При алицетальном (лишены желтка или незначительное кол-во равномерно расположено по цитоплазме, ядро в центре) и изолицетальном(незначительное кол-во равномерно расположено по цитоплазме, ядро в центре) – происходит полное равномерное или неравномерное деление.

При телолицетальном типе (значительное кол-во желтка, расположено большинство около вегетативного полюса, ядро смещено к анимальному полюсу) – дробление полное неравномерное или частичное дискоидальное.

При центролицетальном типе (значительное кол-ко желтка равномерно расположен в цитоплазме, но поверхностный слой цитоплазмы приимущественно свободен) – дробление частичное поверхностное.
Гаструляция – это процесс образования двухслойного зародыша. Этот процесс характеризуется перемещением клеток зародыша. Сущность заключается в образовании из однослойного зародыша – двухслойного.

Способы гаструляции.


  1. Инвагинация- впячивания участка бластодермы внутрь целым пластом.(ланцетник)

  2. Эпиболия – обрастание мелкими клетками анимального полюса, более крупных клеток вегетативного полюса (амфибии)

  3. Деламинациям – расслоение клеток бластодермы на 2 слоя лежащих друг над другом (рептилии, птицы)

  4. Иммиграция – перемещение групп или отдельных клеток не объединенных в пласт (высшие позвоночные)

  5. Смешанный – (первая фаза диламинация вторая иммиграция)

38. Основные этапы эмбриогенеза. Первичный органогенез(нейруляция) как процесс образования комплекса осевых органов хордовых. Вторичные органогенезы. Образование органов и тканей.
Первоначальный органогенез – нейруляция.

В процессе нейруляции образуется мезодерма.

1способ: Энтероцельный- с двух сторон от первичной кишки образуются выпячивания- карманы. Они полностью отшнуровываются от первичной кишки, разрастаются между эктодермой и энтодермой и превращаются в мезодерму (у хордовых)

2способ: Телобластический – в близи бластопора с двух сторон от первичной кишки образуется по одной крупной клетке- телобласту. В результате размножения телобластов и образуется мезодерма.(у безпозвоночных)

Образование осевых органов у зародышев хордовых


  • Эктодерма на спинной стороне зародыша прогибается, образуя продольный желоб, края которого смыкаются. Образовавшаяся нервная трубка погружается в эктодерму

  • Спинная часть энтодермы, расположенная под нервным зачатком, постепенно обособляется и образуется хорда.

  • Из эктодермы и энтодермы образуется кишечная трубка.

Эктодерма – эпидермис, кожные железы, волосы, эмаль, конъюктива, хрусталик, сетчатка глаза, уши, эпителиальная выстилка полости носа и ротовой полости, анального отверстия и влагалища, передняя и задняя доля гипофиза, ЦНС, мозговое вещество надпочечников, челюсти.

Мезодерма – скелетные мышцы, диафрагма, позвонки, дентин, почечные канальцы, мочеточники, яйцеводы, матка,часть яичников и яичик, кора надпочечников, сердце, кровь, лимфатическая система, легкие склера, сосудистая и роговая оболочка глаза.

Энтодерма- хорда, большая часть пищеварительного тракта, выстилка кишечника, мочевого пузыря, легких, поджелудочной железы, тимус, щитовидная железа, околощитовидная железа.

39. Понятие провизорных органов хордовых. Особенности развития этих органов в группе Anamnia и Amniota. Типы плацент. Нарушение процессов развития и редукции зародышевых оболочек у человека.
Провизорные органы- это временные органы необходимые для жизнедеятельности зародыша. Время их формирования зависит от яйцеклетки и условий среды.

Наличие или отсутствие провизорных органов лежит в основе деления позвоночных на группы: Amniota и Anamnia .

К группе анамниев относятвя эволюционно более древние животные, которые развиваются в водной среде и не нуждаются в дополнительных водных и других оболочках зародыша.(Круглоротые, рыбы, земноводные)

К группе амниот относятся первичноназемные позвоночные, эмбриональное развитие которых протекает в наземных условиях. (Пресмыкающиеся, птицы, млекопитающие)

В строении и функциях провизорных органов амниот много общего. Провизорные органы высших позвоночных называются зародышевыми оболочками. Они развиваются из клеточного материала уже сформировавшихся зародышевых листков.

Провизорные органы.


  1. Амнион- мешок заполненный амниотической жидкостью, которая создает водную среду и защищает зародышей от высыхания и повреждения.

  2. Хорион- наружняя зародышевая оболочка прилегающая к скорлупе или материнским тканям. Служит для обмена с окружающей средой, участвует в дыхании питании и выделении.

  3. Желточный мешок – он участвует в питании зародыша и является кроветворным органом.

  4. Алантоис – вырост задней кишки участвует в газообмене, является вместилищем для мочевины и мочевой кислоты. У млекопитающих он вместе с хорионом образует плаценту.От аллантоиса к хориону ростут сосуды при помощи которых плацента выполняет выделительную,дыхательную и питатальную функции.
Типы плацент.

1.Эпителиохориональная – (полуплацента) имеет наиболее простую структуру. При ее образовании на поверхности хориона появляются ворсинки в форме не больших бугоркав.Они погружаются в соответствующие углубления слизистой оболочки матки, не нарушая ее. (хорион контактирует с эпителием маточных желез) Свини лошади

2. Десмохориальная – характеризуется установлением наиболее тесной связи хориона зародыша со стенкой матки. В месте соприкосновения с ворсинками хориона эпителий разрушается. Разветвленные пластинки погружаются в соединительную ткань.(хорион контактирует с соед. Тканью.)

3. Эндотельнохориональная – разрушается не только эпителий но и соединительная ткань. Ворсинки соприкосаются с сосудами и отделены от материнской крови только их тонкой эндотелиальной стенкой.(хищники)

4. Гемохориальная- происходят глубокие изменения в матке. Ворсинки омываются кровью и всасывают из нее питательные вещества.

По внешнему виду:

1Диффузная- Ворсинки росположены равномерно по всей поверхности хориона.

2 Котиледонная – ворсинки собранны в группы в виде кустиков

3Поясная- ворсинки образуют пояс опоясывающий водный пузырь.

4Дисковидная – Ворсинки расположены в пределах дисковидной области на поверхности хориона.

41. Постэмбриональный период онтогенеза, его периодизация у человека. Основные процессы: рост, формирование дефинитивных структур, половое созревание, репродукция. Роль эндокринной регуляции в постнатальном периоде.
Постэмбриональный период начинается с момента выхода организми из яйцевых оболочек, до момента смерти.

Постнатальный период может быть прямым и не прямым.

При прямом развитии новорожденный организм похож на взрослый и отличается только размерами и неполным развитием органов. Прямое развитие характерно для человека и других млекопитающих, птицам, пресмыкающимся и некоторым насекомым.

Не прямое развитие протекает с метаморфозом.

С не полным метаморфозом организм проходит три стадии развития. Яйцо, личинка и иманго.

С полным проходит 4 стадии (куколка).

Периоды постэмбрионального развития человека.

1.Новорожденный – от момента рождения до 4 недель. Характерно не пропорциональное строение, кости черепа и таза не срощены. Позвоночник без изгибов.

2. Грудной – от 4 недель до 12 месяцев.- ребенок оврадевает движениями появляются молочные зубы.

3. Ясельный до 3 лет. Изменяются пропорции тела, развивается мозг.

4. Дошкольный до 7 лет. Смена зубов.

5. Школьный до 17 лет пропорция тела как у взрослых.

6. Юношеский- 16-20 девушки, 17-21 юноши. Завершаются процессы рости и формирование организма.

7. Зрелый с 21 года.

8. Пожилой 55-60 лет.

9. Старчиский – 75 лет
Рост – он проявляется в прогрессивном увеличении массы и размера организма.

У беспозвоночных рост обуславливается увеличением размеров клеток.

Более распространен пролиферационный рост – в основе его лежит клеточное деление. клеток возрастает в геометрической прогрессии. N n =2 n Где N- кол во клеток, n-очередность деления.

В процессе индивидуального развития показатели роста изменяются. У многих животных рост приурочен к определенным стадиям онтогенеза. Такой рост называется ограниченным.

Существуют организмы которые ростут на протяжении всей жизни (рыбы) но по достижению полового созревания скорость роста замедляется. Такой тип роста называется не ограниченным.

Показатели роста с одной стороны ограниченны генетически, а с другой стороны зависят от окружающей среды.
Роль эндокринных желез в постэмбриональном развитии велика.

Э. ж. вырабатывают гормоны которые влияют на рост организма, на половое созревание. Особенно важны гормоны которые вырабатывает гипофиз, щитовидная железа и половые железы. Вопросы влияния э. ж. на рост и развитие организма рассматривал Заводской.
42.Биологические и социальные аспекты старения и смерти организма. Генетические, молекулярные, клеточные и системные механизмы старения. Проблема долголетия. Понятие о геронтологии и гериатрии.

Старение-это стадия индивидуального развития по достижению которой в организме наблюдаются закономерные изменения в физическом состоянии, внешнем виде. Состояние старости достигается благодаря изменениям, составляющим содержание процесса старения. Этот процесс захватывает все уровни структурной организации – молекулярный, субклеточный, клеточный, тканевой, органный. В результате этого происходит снижение жизниспособности, что приводит к повышению вероятности смертности. Биологический смысл старения заключается в том, что он делает неизбежной смерть организма. Наступлению биологической часто предшествует состояние клинической смерти, в котором клетки и ткани сохраняют достаточный уровень жизниспособности.

Молекулярные и клеточные проявления старения многообразны. Отмечается снижение содержания ДНК и РНК, но состав их существенно не изменяется. Изменяются физико химические свойства белков хроматина клеточных ядер, увеличивается плотность связывания гистоновых белков с ДНК. Это может привести к репрессии некоторой части генома. При старении повреждаются все молекулярно –генетические процессы - транскрипция и трансляция наследственной информации , репликации и репарации ДНК. Это приводит к неизбежным ошибкам в ходе синтеза и преобразований макромолекул. Молекулярные изменения совместимые с жизнью клеток, существенно повреждают их функцию.

Механизмы старения

Согласно стохастическим гипотезам в основе старения лежит накопление ошибок и повреждений случайно возникающих в процессе жизнидеятельности индивида на разных уровнях его организации.

Согласно программным гипотезам старение детерминировано генетически, тоесть информация о начале и содержании его представлена в геноме клеток. Эти гипотезы основаны на допущении что в организме функционируют своеобразные часы. В основе этих часов могут лежать запрограммированное число делений в клоне клеток.

Проблема долголетия.

Продолжительность жизни как житейская проблема связывается в нашем сознании с возможностью пережить период зрелости и дожить до приклонного возраста. Рост средней продолжительности жизни в экономически развитых странах связан с повышением жизненного уровня, качества питания, медицинской помощи, улучшением санитарно гигиенических и эпидемиологических условий. Так же продолжительность жизни отличается исключительной индивидуальной изменьчивостью.

Геронтология- это наука изучающая биологические и социальные аспекты старения человека его причины и способы борьбы с ними.

Гериатрия – это частный раздел геронтологии занимающийся изучением профилактикой и лечением болезней старческого возраста
46.Регуляция развития человека и животных на различных этапах онтогенеза. Тотипотентность . Онтогенез (индивидуальное развитие) – совокупность процессов развития организма с момента образования зиготы и до смерти на основе реализации генетической информации в определенных условиях среды.

На любом этапе онтогенеза организм существует в единстве с окружающей средой. Так, в зависимости от температуры процессы развития замедляются или интенсифицируются.

Тотипотентность- это возможность клетки делиться и образовывать дифференцированные клетки организма, в том числе наружные ткани эмбриона. Тотипотентные клетки образуются в течение полового и бесполого размножения и представляют собой споры и зиготы. Зиготы - это продукты слияния двух гамет в результате оплодотворения. У некоторых организмов клетки могут дедифференцироваться и обретать тотипотентность

48.Межклеточные взаимодействия на разных этапах онтогенеза. Эмбриональная индукция, её виды… …

Эмбриональная индукция - взаимодействие между частями развивающегося организма у многоклеточных беспозвоночных и всех хордовых.

Явление было открыто в 1901 году при изучении образования зачатка хрусталика глаз у зародышей земноводных. Гипотезу о механизме дифференцировки, получившем название эмбриональной индукции, на основании экспериментальных данных выдвинули Шпеман и Мангольд в 1924 году.

Согласно этой гипотезе, существуют определенные клетки, которые действуют как организаторы на другие, подходящие для этого клетки. В условиях отсутствия клеток-организаторов такие клетки пойдут по другому пути развития, отличном от того, в котором они развивались бы в условиях присутствия организаторов. Проиллюстрировать это можно тем самым экспериментом 1924-го года, показавшим, что дифференцировка в значительной степени контролируется влиянием цитоплазмы клеток одного типа на клетки другого типа.

Г. Шпеман и его сотрудница Х. Мангольд открыли у зародышей амфибий «организатор». Контрольный эксперимент был проведен Хильдой Мангольд в 1921 году. Она вырезала кусочек ткани из дорсальной губы бластопора гаструлы гребенчатого тритона со слабопигментированным зародышем, и пересадила ее в вентральную область другой гаструлы близкого вида, тритона обыкновенного, зародыш которого характеризуется обильной пигментацией. Эта естественная разница в пигментации позволила различить в химерном зародыше ткани донора и реципиента. Клетки дорсальной губы при нормальном развитии образуют хорду и мезодермальные сомиты (миотомы). После пересадки у гаструлы-реципиента из тканей трансплантата развивалась вторая хорда и миотомы. Над ними из эктодермы реципиента возникала новая дополнительная нервная трубка. В итоге это привело к образованию осевого комплекса органов второго головастика на том же зародыше.

Явление эмбриональной индукции тесно связано с такими понятиями, как морфоген и морфогенетическое поле. Еще Шпеманом было показано, что инактивированные нагреванием ткани организатора сохраняют индуцирующую активность и среда из-под изолированного организатора также индуцирует эктодерму.

Гуморальная регуляция - координация физиологических и биохимических процессов, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ (метаболиты, гормоны, гормоноиды ионы), выделяемых клетками, органами и тканями в процессе их жизнедеятельности.

У высокоразвитых животных и человека она подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции.

Продукты обмена веществ действуют не только непосредственно на эффекторные органы, но и на окончания чувствительных нервов (хеморецепторы) и нервные центры, вызывая гуморальным или рефлекторным путём те или иные реакции. Так, если в результате усиленной физической работы в крови увеличивается содержание CO2, то это вызывает возбуждение дыхательного центра, что ведёт к усилению дыхания и выведению из организма излишков CO2.

Гуморальная передача нервных импульсов химическими веществами, т. н. медиаторами, осуществляется в центральной и периферической нервной системе. Наряду с гормонами важную роль в ней играют продукты межуточного обмена.

49.Целостность онтогенеза. Эмбриональная регуляция.

Механизмы, обеспечивающие эмбриогенез:


  1. Дифференциальная активность генов – в течение эмбрионального развития различные блоки генов имеют строго определенный порядок репрессии и дерепрессии.

  2. Детерминация – выбор конкретного пути развития, приобретение клетками способности развиваться в определенном направлении и одновременно ограничение их будущих возможностей развития. В начале эмбриогенеза бластомеры тотипотентны (могут дать начало целому организму) и их развитие зависит от внешних индукторов и соседних клеток. На более поздних стадиях клетки становятся более детерминированными (их развитие предопределено) и они развиваются по намеченному плану.

  3. Дифференцировка – биохимическая, функциональная и морфологическая специализация клеток; изменение развивающейся структуры, при котором относительно однородные образования превращаются во все более различные.
Морфогенез - формообразование, возникновение новых форм и структур , как в онтогенезе, так и в филогенезе организмов. У животных в ходе индивидуального развития возникают субклеточные, клеточные и многоклеточные структуры. В классической эмбриологии под морфогенезом обычно понимают возникновение многоклеточных структур. Они образуются благодаря размножению, изменениям формы и перемещени

ям клеток развивающегося организма. Морфогенез определён генетически, но осуществляется благодаря эпигенетическим взаимозависимостям клеток и их комплексов. Формообразование путём клеточного размножения характерно для постэмбрионального развития животных. Примеры морфогенеза в эмбриональных тканях животных: образование трубчатых зачатков (формирование кишечника, нервной трубки), подразделение их (развитие мозговых пузырей), образование клеточных сгущений при вычленении сомитов. В морфогенезе решающее значение имеют контактные, в меньшей степени - дистантные взаимодействия клеток, обусловливающие морфогенетические корреляции и контролируемые влияния со стороны более широкого клеточного окружения (целого зачатка или зародыша). Это обеспечивает характерное для морфогенеза сочетание точности с высокими способностями к регуляции искусственных, или естественных нарушений. Нерегулируемые искажения морфогенеза приводят к аномалиям развития. В процессе эволюции при наследуемых изменениях генома видоизменяются сложившиеся в организме морфогенетические корреляции. Особи с изменённой структурой подвергаются действию естественного отбора и при благоприятных условиях могут сохраниться, дав начало потомкам с повой структурой.
50.Влияние факторов среды на онтогенез. Критические периоды в онтогенезе человека. Аномалии и пороки развития. Тератогенез.

Критические периоды эмбриогенеза человека – зародыш наиболее чувствителен к действию факторов внешней среды, т.к. изменяются условия его существования (включаются новые блоки генов):

Имплантация (6-7 сутки после оплодотворения)

Плацентация (14-15 сутки после оплодотворения)

Роды (38-40 неделя после оплодотворения).

Действие неблагоприятных факторов среды в эти периоды развития приводит к порокам развития данных систем.

Пороки развития – отклонения в строении органа или целого организма, приводящие к функциональным расстройствам:

Аплазия (гипоплазия) – отсутствие (недоразвитие) органа

Гипо- (гипер) трофия – уменьшение (увеличение) массы органа

Гетеротопия – нетипичная локализация группы клеток или органа

Гетероплазия – нарушение дифференцировки тканей

Стеноз (атрезия) – сужение (отсутствие канала полового органа).

Билет №51 Врождённые аномалии и пороки развития. Определение, классификация, механизмы возникновения. Значение нарушений частных и интегративных механизмов онтогенеза в формировании ВПР

Врожденные аномалии и пороки развития
Пороки развития представляют собой стойкие морфологические изменения органа или организма в целом, выходящие за пределы вариаций нормы и возникающие внутриутробно в результате нарушения развития зародыша либо плода, иногда - после рождения ребенка вследствие нарушения дальнейшего формирования органов. Эти изменения вызывают нарушения соответствующих функций. Под аномалиями развития и понимают только такие пороки, при которых анатомические изменения не приводят к существенному нарушению функций, например деформации ушных раковин, не обезображивающие лица больного и существенно не отражающиеся на восприятии звуков. Грубые пороки развития, при которых обезображивается внешний облик ребенка, нередко называют уродствами.

ПРИЧИНЫ :
1) эндогенные (внутренние) факторы:
а) изменения наследственных структур (мутации);
б) "перезревание" половых клеток; в) эндокринные заболевания;
г) влияние возраста родителей;
2) экзогенные (внешние) факторы:
а) физические - радиационные, механические воздействия ;
б) химические - лекарственные препараты, химические вещества, применяемые в промышленности и в быту, гипоксия, неполноценное питание, нарушения метаболизма;
в) биологические - вирусные заболевания, протозойные инвазии, изоиммунизация.
Одной из главных причин пороков развития являются мутации. В организме они происходят постоянно (спонтанные мутации) под воздействием естественного фона радиации и процессов тканевого метаболизма. При дополнительном воздействии на организм ионизирующего излучения или химических мутагенов происходят индуцированные мутации. Мутации могут быть генными, хромосомными и геномными.. С мутациями связано около 13% пороков.

Хромосомные мутации - это изменения хромосом в виде транслокации, делеции, дупликации и инверсии.

Геномные мутации - изменение числа хромосом или хромосомных наборов.

МЕХАНИЗМЫ РАЗВИТИЯ ЗАБОЛЕВАНИЯ
Формирование пороков происходит преимущественно в период эмбрионального морфогенеза (3-10-я неделя беременности) в результате нарушения процессов размножения, миграции, дифференциации и гибели клеток. Эти процессы происходят на внутриклеточном, экстраклеточном, тканевом, межтканевом, органном и межорганном уровнях. Нарушением размножения клеток объясняют гипоплазию и аплазию органов. Нарушение их миграции лежит в основе гетеротопий. Задержка дифференциации клеток обусловливает незрелость или персистирование эмбриональных структур, а ее полная остановка - аплазию органа или его части. Нарушение физиологической гибели клеток, как и нарушение механизмов адгезии ("склеивание" и срастание эмбриональных структур), лежат в основе многих дизрафий (например, спинномозговых грыж).

КЛАССИФИКАЦИЯ
Выделяют несколько групп пороков. В зависимости от времени воздействия вредных факторов и объекта поражения выделяют следующие формы пороков развития.
1. Гаметопатии - патологические изменения в половых клетках, произошедшие до оплодотворения и приводящие к спонтанному прерыванию беременности, врожденным порокам развития, наследственным заболеваниям..
2. Бластопатии - это повреждения зиготы в первые 2 недели после оплодотворения вызывающие гибель зародыша, внематочную беременность, пороки развития с нарушением формирования оси зародыша
3. Эмбриопатии - поражения зародыша 15-й день после оплодотворения до 75-й день проявляющиеся пороками развития отдельных органов и систем, прерыванием беременности. Большинство врожденных пороков образуется именно в этот период. Локализация дефекта также зависит от интенсивности повреждающего воздействия.
4. Фетопатии - общее название болезней плода, возникающих под воздействием неблагоприятных факторов с 11-й недели внутриутробной жизни до начала родов.


  1. Роль пороков развития-формирование различных видов врожденных патологий:
    1. Агенезия - полное врожденное отсутствие органа.
    2. Аплазия - врожденное отсутствие органа или выраженное его недоразвитие. Отсутствие некоторых частей органа называется термином, включающим в себя греч. слово olygos ("малый") и название пораженного органа. Например, олигодактилия - отсутствие одного или нескольких пальцев.
    3. Гипоплазия - недоразвитие органа, проявляющееся дефицитом относительной массы или размеров органа.
    4. Гипотрофия - уменьшенная масса тела новорожденного или плода.
    5. Гиперплазия (гипертрофия) - повышенная относительная масса (или размеры) органа за счет увеличения количества (гиперплазия) или объема (гипертрофия) клеток.
    6. Макросомия (гигантизм) - увеличенные длина и масса тела. Термины "макросомия" и "микросомия" нередко применяются для обозначения соответствующих изменений отдельных органов.
    7. Гетеротопия (дистопия) - наличие клеток или тканей одного органа в другом или в тех зонах того же органа, где их не должно быть в норме.
    8. Гетероплазия - расстройство разграничения некоторых видов ткани. Гетероплазии следует дифференцировать от метаплазий - вторичного изменения разграничения тканей, которое связывают с хроническим воспалением.
    9. Эктопия - расположение органа в необычном месте. Возможно увеличение числа органов или их частей , например удвоение матки, двойная дуга аорты. Удвоение и увеличение в числе того или иного органа или части его.
    10. Атрезия - полное отсутствие канала или естественного отверстия.
    11. Стеноз - сужение канала или отверстия.

    Билет №52 Понятие о гомеостазе. Общие закономерности гомеостаза живых систем. Генетические, клеточные и системные основы гомеостатических реакций организма. Роль эндокринной и нервной систем в обеспечении гомеостаза и адаптивных реакций.

ГОМЕОСТАЗ - свойство живого организма сохранять относительное динамичное постоянство внутренней среды. Гомеостаз выражается в относительном постоянстве химического состава, осмотическом давлении, устойчивости основных физиологических функций. Гомеостаз специфичен и обусловлен генотипом.

ОБЩИЕ ЗАКОНОМЕРНОСТИ ГОМЕОСТАЗА

1. Способность сохранять гомеостаз - свойство живой системы, находящейся в состоянии динамического равновесия с условиями внешней среды.

2. Молекулярно-генетический уровень гомеостаза обеспечивается процессами редупликации ДНК, репарации на уровне клетки - компенсаторное восстановление ряда органоидов при повышении функции.

3. Контроль за генетическим постоянством осуществляется иммунной системой.

4. В системных механизмах гомеостаза действуют кибернетические принципы отрицательной обратной связи: при любом возмущающем воз действии - влияние нервных и эндокринных механизмов.

5. Нормализация физиологических показателей осуществляется на основе свойства раздражимости, у высших организмов - инстинкты, условные рефлексы, элементы рассудочной деятельности, абстрактное мышление.

6. Каждый возрастной период характеризуется специфическими особенностями обмена вещества, энергии, механизмами гомеостаза:

Ювенильный период - механизмы гомеостаза не созрели - на рушение физиологических процессов, болезненные процессы;

Зрелый - совершенствование обменных процессов. Система восстановления гомеостаза обеспечивает компенсацию;

Старческий - надежность механизма поддержания гомеостаза ослабляется.

7. На поддержание гомеостаза направлены адаптивные реакции организма к окружающим условиям

8. Биоритмы - ритмичные процессы жизнедеятельности.
эндокринная система координирует и регулирует деятельность практически всех органов и систем организма , обеспечивает его адаптацию к постоянно изменяющимся условиям внешней и внутренней среды, сохраняя постоянство внутренней среды , необходимое для поддержания нормальной жизнедеятельности данного индивидуума. Секреция некоторых гормонов, например тироксина, регулируется очень жестко. Однако концентрации большинства других гормонов могут в широких пределах изменяться для поддержания постоянства ряда физиологических параметров при непрерывном изменении сиюминутных потребностей организма. Например, скорости секреции инсулина и глюкагона сильно колеблются, чтобы удерживать концентрацию глюкозы в крови в допустимых пределах. Изменения уровней альдостерона (см. выше табл. 4.1) и вазопрессина отражают необходимость сохранять постоянный объем крови путем регуляции водно-солевого баланса. Концентрации адреналина и норадреналина зависят от степени общей активности организма и могут быть разными в различных локальных сосудистых сетях. Это позволяет им регулировать силу и частоту сердечных сокращений, а также избирательно воздействовать на сосуды, чтобы обеспечивать приток крови к определенным системам органов в соответствии с потребностями.

Особо важное значение имеет постоянство внутренней среды для деятельности центральной нервной системы: даже незначительные химические и физико-химические сдвиги, возникающие в цереброспинальной жидкости, глии и околоклеточных пространствах, могут вызвать резкое нарушение течения жизненных процессов в отдельных нейронах или в их ансамблях. Сложной гомеостатической системой, включающей различные нейрогуморальные , биохимические, гемодинамические и другие механизмы регуляции, является система обеспечения оптимального уровня артериального давления. При этом верхний предел уровня артериального давления определяется функциональными возможностями барорецепторов сосудистой системы тела, а нижний предел - потребностями организма в кровоснабжении.
Билет №53 Регенерация как процесс поддержания целостности биологических систем. Физиологическая регенерация , её значение. Фазы, механизмы регуляции. Значение регенерации для биологии и медицины.
Регенерация - процесс восстановления организмом утраченных или поврежденных структур. Регенерация поддерживает строение и функции организма, его целостность. Различают:физиологическую, репаративную и патологическую

Физиологическая регенерация - восстановление органов, тканей, клеток или внутриклеточных структур после разрушения их в процессе жизнедеятельности организма.

Репаративная регенерация - восстановление структур после травмы или действия других повреждающих факторов. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии..

Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Поддерживается структурный гомеостаз, обеспечивается возможность постоянного выполнения органами их функций. Является проявлением свойства жизни, как самообновление (обновление эпидермиса кожи, эпителия слизистой кишечника). В физиологической регенерации выделяют две фазы: разрушительную и восстановительную. Полагают, что продукты распада части клеток стимулируют пролиферацию других. Большую роль в регуляции клеточного обновления играют гормоны.Физиологическая регенерация присуща организмам всех видов, но особенно интенсивно она протекает у теплокровных позвоночных, так как у них вообще очень высока интенсивность функционирования всех органов по сравнению с другими животными.

В регуляции процессов Регенерации участвуют многочисленные факторы эндо- и экзогенной природы. Наиболее изучено влияние гормонов. Регуляция митотической активности клеток различных органов осуществляется гормонами коры надпочечников, щитовидной железы, половых желез и др.

ОПЛОДОТВОРЕНИЕ

Сущность процесса оплодотворения состоит в слиянии женской и мужской гамет в одну клетку - зиготу, которая является не только клеткой, но и становится одноклеточным зародышем.

Слияние гамет может произойти только при условии совместного действия многих биологических факторов. Циклы развития по­ловых клеток должны протекать синхронно так, чтобы сперма­тозоиды и яйцеклетки созревали и выделялись в одни и те же сроки.

Оплодотворению предшествует осеменение - процесс, приво­дящий к контакту мужской и женской половых клеток. Спер­матозоиды становятся подвижными только после того, как они

попадают в жидкость, являющуюся секретом семенных пузырь­ков, предстательной железы и куперовых желез. У человека спер­матозоиды вводятся в верхнюю часть влагалища, откуда им пред­стоит пройти до маточных труб, в верхней части которых про­исходит встреча и слияние гамет. В одном эякуляте у человека содержится до 250-300 млн сперматозоидов, но только неболь­шой доле из них удается приблизиться к яйцеклетке. Первое препятствие, с которым встречается сперматозоид -~ это естес­твенная кислотность верхней части влагалища, создающая бак­терицидную среду. Семенная жидкость, однако, действует в ка­честве буфера против кислотности и очень быстро (в течение нескольких секунд) изменяет рН среды от 4,3 до 7,2. Некоторые спермин достигают устья маточной трубы уже через 30 мин после осеменения. Столь быстрое продвижение сперматозоидов не может быть объяснено только собственным активным движением, так как их скорость равна лишь 2-4 мм в мин. В этом случае продвижению способствуют спазматические сокращения гладких мышц матки, действие места соединения матки с маточной тру­бой в качестве клапана, а также способность спермиев двигаться против слабого тока жидкости (положительный реотаксис).

Необходимо также принимать во внимание, что обычно канал шейки матки заполнен густой слизью, преобладающей в течение большей части менструального цикла. Она имеет щелочную ре­акцию и способствует проникновению спермиев в матку благо­даря способности изменять состояние (физико-химические ха­рактеристики) мицеллярной сетеподобной структуры слизи под влиянием женских половых гормонов.

По мере продвижения сперматозоиды подвергаются специ­альному воздействию со стороны тканей женских половых ор­ганов, которое обеспечивает им в дальнейшем проникновение через яйцевые оболочки (капаситация). Природа его остается не совсем ясной.

Окруженное клетками лучистого венца овулировавшее яйцо попадает в маточную трубу благодаря усиленной мышечной ак­тивности бахромчатого края устья воронки трубы, а также току жидкости, создаваемому ресничками мерцательного эпителия, и перемещается по направлению к широкой ее части (ампуле). Фолликулярные клетки, образующие лучистый венец, также иг­рают важную роль в направленном перемещении яйцеклетки. Тем не менее установлено, что движение яйцеклетки все же в значительной степени зависит от ее массы, так как другие тела такой же величины способны столь же эффективно перемещаться вниз по маточной трубе.

2.4.1. Жизнеспособность гамет

Жизнеспособность сперматозоидов и яйцеклетки в женских половых органах ограничена во времени. Уже сразу же после овуляции в яйцеклетке возникают изменения, которые можно охарактеризовать как старение. Так, в овоплазме появляется зер­нистость, которая быстро становится грубой, снижается уровень общего обмена, который резко возрастает лишь в том случае, если произойдет оплодотворение. Оплодотворение должно свер­шиться в течение первых суток после овуляции, в противном случае яйцеклетка потеряет жизнеспособность.

Сохранение подвижности сперматозоидов и продолжитель­ность их жизни не может быть приравнена к их способности оплодотворять. Подвижность сперматозоидов сохраняется гораздо дольше. Доказано, что в половых путях сперматозоиды сохраняют способность к оплодотворению в течение первых 1-2 сут, тогда как их подвижность вдвое дольше.

2.4.2. Слияние гамет

Слияние гамет происходит в широкой части маточной трубы. Встреча яйца и сперматозоида - дело случая. Оплодотворение становится возможным только после того, как мужская и женская гаметы пришли в соприкосновение, но перед этим сперматозоид должен пройти через яйцевые оболочки - прежде всего через клетки лучистого венца, затем через блестящую оболочку, и только после этого через плазматическую мембрану яйцеклетки. Однако сначала у сперматозоидов, как уже упоминалось ранее, возникает акросомная реакция, необходимой предпосылкой ко­торой служит капаситация.

Акросомная реакция сперматозоида вызывает растворение оболочек, окружающих яйцеклетку (рис. 2.7). Хотя ее развитие не до конца ясно, имеются сведения, что начало реакции ини­циируется увеличением концентрации ионов Са +2 в сперматозо­иде во время оплодотворения. Повышение концентрации ионов Са +2 активирует фосфолипазы оболочки и акросомальные про-теазы. Эти ферменты соответственно разрушают оболочки акро-сомы и апикальную плазмолемму сперматозоида, а также акти­вируют акросомальные ферменты. Считается, что акросома со­держит, по крайней мере, три фермента:

- фермент, растворяющей клетки лучистого венца (СРЕ);

- акросомин - трипсиноподоб-ный фермент, разрыхляющий блес­тящую оболочку яйцеклетки;

- гиалуронидазу - растворяю­щую блестящую оболочку.

Пройдя через zona pellucida , сперматозоид попадает в периви-теллиновое пространство, отделяю­щее блестящую оболочку от плаз-молеммы яйцеклетки (рис. 2.8). В месте образования контакта спер­матозоида с яйцеклеткой, установ­ление которого облегчается за счет микроворсинок яйцеклетки, образу­ется выпячивание плазмолеммы, из­вестной под названием бугорка оп­лодотворения. После слияния плаз­матических мембран яйцеклетки и

сперматозоида бугорок оплодотворения втягивается, внося го­ловку сперматозоида в овоплазму. Сперматозоид при этом ли­шается большинства цитоплазматических структур, а именно: хвоста, митохондрий вставочной части, остатков акросомы. Ос­тается не совсем ясным, сохраняются ли у него центриоли.

После проникновения сперматозоида в яйцеклетку происходит подготовка молекул ДНК к возобновлению синтетических про­цессов, морфологически выражающаяся в набухании высококон­денсированного ядра, сопровождающимся раскручиванием хро-матиновых нитей. Уже в течение первых 12 ч наблюдается на­бухание ядер мужской и женской гамет (пронуклеусов), миграция их к центру яйцеклетки и появление хорошо заметных ядрышек. Затем, после исчезновения ядерных оболочек, окружавших про-нуклеусы, они сближаются друг с другом и происходит смешение материнских и отцовских хромосом (сингамия), являющееся пос­ледней стадией процесса оплодотворения.

Объединение генетического материала сперматозоида и яй­цеклетки с образованием нового одноклеточного организма - зиготы, знаменуется следующими важными событиями:

Гаплоидные наборы хромосом гамет объединяются в дип­лоидный набор зиготы;

Отцовская наследственность объединяется с материнской наследственностью;

Сперматозоид, вероятнее всего, вносит в овоплазму цент­риоли, которые становятся клеточным центром зиготы;

Сперматозоид активирует яйцеклетку, и поэтому зигота при­обретает высокий уровень обменных процессов.

2.4.3. Реакции оплодотворения

В процессе эволюции у животных возникло множество раз­нообразных биомеханизмов, характеризующих особенности раз­личных аспектов оплодотворения. Ярким подтверждением ска­занного являются результаты изучения способов, с помощью которых яйцеклетка предотвращает полиспермию, т. е. смешение своего генетического материала с генетическим материалом более чем одного сперматозоида. Так, некоторые виды животных (хвос­татые амфибии, рептилии и птицы) выработали специальные механизмы, позволяющие яйцеклеткам инактивировать ядра из­быточных сперматозоидов. Яйцеклетки же большинства позво­ночных с помощью поверхностного слоя кортикальных гранул научились предотвращать полиспермию.

У животных при моноспермном оплодотворении первая ре­акция, возникающая в ответ на слияние сперматозоида с яйцом, состоит в быстром изменении электрических свойств плазмолеммы яйцеклетки. Так, Cross и Elinson (1980) установили, что у лягушки мембранный потенциал яйдеклетки изменяется от -28 до +8 мВ уже через несколько секунд после слияния со сперматозоидом и остается положительным в течение 20 мин., препятствуя воз­никновению полиспермии, тогда как снижение его у оплодот­воренного яйца делает ее возможной.

Уже через несколько минут после проникновения спермато­зоида в яйцеклетку возникает другая поверхностная реакция, препятствующая полиспермии - кортикальная. Суть ее заклю­чается в том, что кортикальные гранулы, начиная с той точки, в которой произошло слияние яйца со сперматозоидом, пере­мещаются к внутренней поверхности плазмолеммы, сливаясь с ней, а затем выделяют свое содержимое в перивителлиновое пространство.

Кроме того, полиспермия блокируется блестящей оболочкой, которая становится непроницаемой для сперматозоидов уже через несколько минут после развития кортикальной реакции. И хотя природа поверхностных реакций остается не совсем ясной, вы­сказываются предположения, что полисахаридные комплексы, входящие в состав кортикальных гранул, вызывают уплотнение блестящей оболочки или же разрушают на ней рецепторы к сперматозоидам, или даже непосредственно инактивируют зона-лизин сперматозоидов. Плазматическая мембрана яйцеклетки также становится непроницаемой для сперматозоидов, но это происходит только через несколько часов после изменения блес­тящей оболочки.

Вопрос 1. Что такое оплодотворение?

Вопрос 2. Какие типы оплодотворения вы знаете?

Существует два основных типа оплодотво­рения.

Наружное оплодотворение — половые клетки сливаются вне организма самки. Такой тип оплодотворения существует у многих рыб, земноводных, моллюсков и некоторых червей. При наружном оплодотворении организмы об­разуют большое количество как женских, так и мужских половых клеток (например, луна- рыба выметывает до 30 млн икринок).

Внутреннее оплодотворение — встреча и слияние гамет — происходит в половых пу­тях самки. В этом случае вероятность оплодот­ворения и выживания зиготы намного выше, поэтому половых клеток (особенно яйцекле­ток) образуется гораздо меньше. Внутреннее оплодотворение присуще многим водным орга­низмам, а на суше оно становится единствен­ным надежным способом обеспечить слияние гамет. При внутреннем оплодотворении зигота получает возможность развиваться, оставаясь в теле матери.

Вопрос 3. В чем заключается процесс двойного оплодотворения?

Двойное оплодотворение характерно для цветковых растений. В их завязи образуется зародышевый мешок с восемью гаплоидными ядрами. Два из них сливаются, образуя дипло­идную клетку; одно, отделяясь, превращается в яйцеклетку; остальные пять являются вспо­могательными.

Когда пыльца попадает на рыльце пести­ка, гаплоидная клетка пыльцевого зерна де­лится, образуя два неподвижных спермия и особую, так называемую вегетативную клетку. Вегетативная клетка, прорастая, формирует пыльцевую трубку, переносящую спермии к завязи.

Попадая в завязь, один из спермиев слива­ется с яйцеклеткой, образуя диплоидную зиготу, из которой в дальнейшем развивается заро­дыш семени. Второй спермий сливается с дип­лоидной клеткой завязи, образуя триплоидную клетку, из которой затем формируется питательная ткань семени (эндосперм).

Вопрос 4. Каково значение искусственного оп­лодотворения в растениеводстве и животноводстве?

Применяя искусственное оплодотворение в растениеводстве, можно осуществлять оп­ределенное, заранее запланированное скрещи­вание, получать сорта растений с необходимы­ми свойствами. Кроме того, можно поддержи­вать свойства сорта, производя самоопыление.

В животноводстве искусственное опло­дотворение позволяет получить многочислен­ное потомство от одного производителя, т. е. за короткое время вырастить большое ко­личество животных с нужными признаками. Современные технологии позволяют длитель­но сохранять гаметы перспективных особей и перевозить их на большие расстояния, что также расширяет возможности животноводов и селекционеров.

На этой странице искали:

  • в чем заключается процесс двойного оплодотворения
  • какие типы оплодотворения вы знаете
  • Наружное Оплодотворение это
  • типы оплодотворения
  • 3 7 оплодотворение

Оплодотворение - это процесс слияния половых клеток. Образующаяся в результате оплодотворения диплоидная клетка - зигота - представляет собой начальный этап развития нового организма.

Процесс оплодотворения складывается из трех последовательных фаз: а) сближения гамет; б) активации яйцеклетки; в) слияния гамет, или сингамии.

1. Сближение сперматозоида с яйцеклеткой обеспечивается совокупностью неспецифических факторов, повышающих вероятность их встречи и взаимодействия. К ним относят скоординированность наступления готовности к оплодотворению у самца и самки, поведение самцов и самок, обеспечивающее совокупление и осеменение, избыточную продукцию сперматозоидов, крупные размеры яйцеклетки, а также вырабатываемые яйцеклетками и сперматозоидами химические вещества, способствующие сближению и взаимодействию половых клеток. Эти вещества, называемые гамонами (гормоны гамет), с одной стороны, активируют движение сперматозоидов, а с другой - их склеивание. В особой структуре сперматозоида - акросоме -локализуются протеолитические ферменты. У млекопитающих большое значение имеет пребывание сперматозоидов в половых путях самки, в результате чего мужские половые клетки приобретают оплодотворяющую способность (капацитация), т.е. способность к акросомной реакции.

В момент контакта сперматозоида с оболочкой яйцеклетки происходит акросомная реакция, во время которой под действием протеолитических ферментов акросомы яйцевые оболочки растворяются. Далее плазматические мембраны яйцеклетки и сперматозоида сливаются и через образующийся вследствие этого цитоплазматический мостик цитоплазмы обеих гамет объединяются. Затем в цитоплазму яйца переходят ядро и центриоль сперматозоида, а мембрана сперматозоида встраивается в мембрану яйцеклетки. Хвостовая часть сперматозоида у большинства животных тоже входит в яйцо, но потом отделяется и рассасывается, не играя какой-либо роли в дальнейшем развитии.

2. В результате контакта сперматозоида с яйцеклеткой происходит ее активация. Она заключается в сложных структурных и физико-химических изменениях. Благодаря тому что участок мембраны сперматозоида проницаем для ионов натрия, последние начинают поступать внутрь яйца, изменяя мембранный потенциал клетки. Затем в виде волны, распространяющейся из точки соприкосновения гамет, происходит увеличение содержания ионов кальция, вслед за чем также волной растворяются кортикальные гранулы. Выделяемые при этом специфические ферменты способствуют отслойке желточной оболочки; она затвердевает, это оболочка оплодотворения. Все описанные процессы представляют собой так называемую кортикальную реакцию. Одним из значений кортикальной реакции является предотвращение полиспермии, т.е. проникновения в яйцеклетку более одного сперматозоида. У млекопитающих кортикальная реакция не вызывает образования оболочки оплодотворения, но суть ее та же.

У таких животных, как морской еж, костистые рыбы и земноводные, все изменения цитоплазмы сопровождаются видимыми морфологическими перестройками. Эти явления получили название расслоения или сегрегации плазмы. Значение ее для дальнейшего эмбрионального развития будет рассмотрено ниже.

Активация яйцеклетки завершается началом синтеза белка на трансляционном уровне, поскольку мРНК, тРНК, рибосомы и энергия были запасены еще в овогенезе. Активация яйцеклетки может начаться и протекать до конца без ядра сперматозоида и без ядра яйцеклетки, что доказано опытами по энуклеации зиготы.

3. Яйцеклетка в момент встречи со сперматозоидом обычно находится на одной из стадий мейоза, заблокированной с помощью специфического фактора. У большинства позвоночных этот блок осуществляется на стадии метафазы II; у многих беспозвоночных, а также у трех видов млекопитающих (лошади, собаки и лисицы) блок происходит на стадии диакинеза. В большинстве случаев блок мейоза снимается после активации яйцеклетки вследствие оплодотворения. В то время как в яйцеклетке завершается мейоз, ядро сперматозоида, проникшее в нее, видоизменяется. Оно принимает вид интерфазного, а затем профазного ядра. За это время удваивается ДНК и мужской пронуклеус получает количество наследственного материала, соответствующего п2с, т.е. содержит гаплоидный набор редуплицированных хромосом.

Ядро яйцеклетки, закончившее мейоз, превращается в женский пронуклеус, также приобретая п2с. Оба пронуклеуса проделывают сложные перемещения, затем сближаются и сливаются (синкарион), образуя общую метафазную пластинку. Это, собственно, и есть момент окончательного слияния гамет - сингамия. Первое митотическое деление зиготы приводит к образованию двух клеток зародыша (бластомеров) с набором хромосом 2n2c в каждом.

23. Эмбриональное развитие организма. Дробление. Типы дробления, Гаструляция, способы гаструляции.

Дробление

Сущность стадии дробления. Дробление - это ряд последовательных митотических делений зиготы и далее бластомеров, заканчивающихся образованием многоклеточного зародыша - бластулы. Первое деление дробления начинается после объединения наследственного материала пронуклеусов и образования общей метафазной пластинки. Возникающие при дроблении клетки называют бластомерами (от греч. бласте-росток, зачаток). Особенностью митотических делений дробления является то, что с каждым делением клетки становятся все мельче и мельче, пока не достигнут обычного для соматических клеток соотношения объемов ядра и цитоплазмы. У морского ежа, например, для этого требуется шесть делений и зародыш состоит из 64 клеток. Между очередными делениями не происходит роста клеток, но обязательно синтезируется ДНК.

Все предшественники ДНК и необходимые ферменты накоплены в процессе овогенеза. В результате митотические циклы укорочены и деления следуют друг за другом значительно быстрее, чем в обычных соматических клетках. Сначала бластомеры прилегают друг к другу, образуя скопление клеток, называемое морулой. Затем между клетками образуется полость - бластоцель, заполненная жидкостью. Клетки оттесняются к периферии, образуя стенку бластулы - бластодерму. Общий размер зародыша к концу дробления на стадии бластулы не превышает размера зиготы.

Главным результатом периода дробления является превращение зиготы в многоклеточный односменный зародыш.

Морфология дробления. Как правило, бластомеры располагаются в строгом порядке друг относительно друга и полярной оси яйца. Порядок, или способ, дробления зависит от количества, плотности и характера распределения желтка в яйце. По правилам Сакса - Гертвига клеточное ядро стремится расположиться в центре свободной от желтка цитоплазмы, а веретено клеточного деления - в направлении наибольшей протяженности этой зоны.

В олиго- и мезолецитальных яйцах дробление полное, или голобластическое. Такой тип дробления встречается у миног, некоторых рыб, всех амфибий, а также у сумчатых и плацентарных млекопитающих. При полном дроблении плоскость первого деления соответствует плоскости двусторонней симметрии. Плоскость второго деления проходит перпендикулярно плоскости первого. Обе борозды первых двух делений меридианные, т.е. начинаются на анимальном полюсе и распространяются к вегетативному полюсу. Яйцевая клетка оказывается разделенной на четыре более или менее равных по размеру бластомера. Плоскость третьего деления проходит перпендикулярно первым двум в широтном направлении. После этого в мезолецитальных яйцах на стадии восьми бластомеров проявляется неравномерность дробления. На анимальном полюсе четыре более мелких бластомера - микромеры, на вегетативном - четыре более крупных - макромеры. Затем деление опять идет в меридианных плоскостях, а потом опять в широтных.

В полилецитальных яйцеклетках костистых рыб, пресмыкающихся, птиц, а также однопроходных млекопитающих дробление частичное, или мероб-ластическое, т.е. охватывает только свободную от желтка цитоплазму. Она располагается в виде тонкого диска на анимальном полюсе, поэтому такой тип дробления называют дискоидальным.

При характеристике типа дробления учитывают также взаимное расположение и скорость деления бластомеров. Если бластомеры располагаются рядами друг над другом по радиусам, дробление называют радиальным. Оно типично для хордовых и иглокожих. В природе встречаются и другие варианты пространственного расположения бластомеров при дроблении, что определяет такие его типы, как спиральное у моллюсков, билатеральное у аскариды, анархичное у медузы.

Замечена зависимость между распределением желтка и степенью синхронности деления анимальных и вегетативных бластомеров. В олиголецитальных яйцах иглокожих дробление почти синхронное, в мезолецитальных яйцевых клетках синхронность нарушена после третьего деления, так как вегетативные бластомеры из-за большого количества желтка делятся медленнее. У форм с частичным дроблением деления с самого начала асинхронны и бластомеры, занимающие центральное положение, делятся быстрее.


Гаструляция

Сущность стадии гаструляции заключается в том, что однослойный зародыш - бластула - превращается в многослойный - двух- или трехслойный, называемый гаструлой (от греч. гастер - желудок в уменьшительном смысле).

У примитивных хордовых, например у ланцетника, однородная однослойная бластодерма во время гаструляции преобразуется в наружный зародышевый листок -эктодерму -и внутренний зародышевый листок - энтодерму. Энтодерма формирует первичную кишку с полостью внутри-гастроцель. Отверстие, ведущее в гастроцель, называют бластопором или первичным ртом. Два зародышевых листка являются определяющими морфологическими признаками гаструляции. Их существование на определенной стадии развития у всех многоклеточных животных, начиная с кишечнополостных и кончая высшими позвоночными, позволяет думать о гомологии зародышевых листков и единстве происхождения всех этих животных.

У позвоночных помимо двух упомянутых во время гаструляции образуется еще третий зародышевый листок - мезодерма, занимающая место между экто- и энтодермой. Развитие среднего зародышевого листка, представляющего собой хордомезодерму, является эволюционным усложнением фазы гаструляции у позвоночных и связано с ускорением у них развития на ранних стадиях эмбриогенеза. У более примитивных хордовых животных, таких, как ланцетник, хордомезодерма обычно образуется в начале следующей после гаструляции фазы - органогенезе. Смещение времени развития одних органов относительно других у потомков по сравнению с предковыми группами является проявлением гетерохронии. Изменение времени закладки важнейших органов в процессе эволюции встречается не редко.

Процесс гаструляции характеризуется важными, клеточными преобразованиями, такими, как направленные перемещения групп и отдельных клеток, избирательное размножение и сортировка клеток, начало цитодифференцировки и индукционных взаимодействий. Перечисленные клеточные механизмы онтогенеза подробно разбираются в гл. 8.2.

Рис. 7.3. Презумптивные зачатки, гаструляция и нейруляция у ланцетника.

А - презумптивные зачатки на стадии бластулы (вид снаружи) и ранней гаструлы (вид на срезе); Б - поздняя гаструла и нейруляция на сагиттальном (левый ряд) и поперечном (правый ряд) разрезах; В - пластическая модель зародыша в конце периода нейруляции:

1-анимальный полюс, 2-вегетативный полюс, 3-бластоцель, 4-гастроцель, 5-спинная и брюшная губы бластопора, 6 - головной конец зародыша, 7- модулярная пластинка, 8 - хвостовой конец зародыша, 9-спинная часть мезодермы, 10-полость вторичной кишки. 11 -сегментированные сомиты, 12-брюшная часть мезодермы; а, б, в, г, д - обозначения презумптивных и развивающихся органов: а - эктодерма кожная, б - нервная трубка, в - хорда, г - эндотерма, эпителий кишки, д -мезодерма

Оплодотворение это объединение ядер мужских и женских поло-вых клеток — гамет, приводящее к формированию зиготы и последующему развитию из неё нового (дочернего) организма.

Центральным моментом этого процесса является слияние двух ядер по-ловых клеток родителей.

В результате в зиготе формируется двойной (диплоидный — 2n) набор хромосом, полученных от мужского и женского организмов . Объединение в зиготе генетического материала двух разных родительских наборов генов (генотипов) и образование нового генотипа у дочернего организма — выдаю-щееся биологическое событие живого мира, обеспечивающее увеличение из-менчивости, а это важно для эволюции органического мира.

В результате объединения при оплодотворении отцовского и материн-ского наборов генов возникают в каждом случае уникальные комбинации ге-нов у дочерних организмов. Таким путём поддерживается генетическое мно-гообразие организмов, которое служит материалом для естественного отбора и эволюции популяции и вида.

В зависимости от того, в какой среде протекает процесс объединения гамет, различают наружное и внутреннее оплодотворение.

Наружное оплодотворение осуществляется в окружающей среде, обычно в водных условиях, куда попадают мужские и женские половые клет-ки. Примером может служить оплодотворение у большинства животных, оби-тающих или размножающихся в воде: кольчатых червей , двустворчатых моллюсков , большинства рыб , бесхвостых земноводных . Выделяемые этими организмами мужские и женские гаметы поступают в воду, где происходит их встреча и слияние — образование зиготы.

Внутреннее оплодотворение обеспечивается переносом сперматозои-дов (или спермиев) мужского организма в женский. Примером внутреннего оплодотворения является оплодотворение у птиц и млекопитающих. Полага-ют, что при оплодотворении в яйцеклетку проникает лишь один спермий. Оплодотворенная яйцеклетка даёт начало зиготе, деление которой обеспечи-вает развитие зародыша, а затем и организма. Материал с сайта

Внутреннее оплодотворение у многих животных (пресмыкающихся, птиц) сопро-вождается откладыванием яиц во внешнюю среду, где в течение определённого срока из яиц развиваются маленькие детеныши: птенцы , черепашата , крокодильчики и др. У большинства млекопитающих зигота и образовавшийся из неё заро-дыш претерпевают внутреннее развитие в половых органах самки. У млекопи-тающих (кроме яйцекладущих — утконоса и ехидны ) для выращивания зародыша (эмбриона) в матке формируется так называемое детское место или плацента. В виде зачатков она имеется даже у сумчатых животных. Через плаценту устанав-ливается связь между кровеносными руслами эмбриона и самки. Благодаря этому обеспечивается газообмен в теле зародыша, его питание и удаление про-дуктов распада и, конечно, защита зародыша от неблагоприятных условий внеш-ней среды.

Внутреннее оплодотворение у животных — процесс, возникший в ходе эволюции позднее наружного оплодотворения, и значительно более прогрес-сивное морфобиологическое явление. То же следует отметить о появлении плаценты в истории развития животного мира. Они обеспечивают воспроиз-ведение здорового молодого поколения при существенной защите, сохране-нии (и экономии) половых клеток размножающихся организмов и заботе ма-тери о развитии зародышей.