Основные объекты биотехнологии и их народнохозяйственное значение. Лекция: Микроорганизмы как основные объекты биотехнологии


1. Общие сведения о биологических объектах

Объектами биотехнологии являются вирусы, бактерии, грибы – микромицеты и макромицеты, протозоиные организмы, клетки (ткани) растений, животных и человека, некоторые биогенные и функционально сходные с ними вещества (например, ферменты, простагландины, лектины, нуклеиновые кислоты и др.). Следовательно, объекты биотехнологии могут быть представлены организованными частицами (вирусы), клетками (тканями) или их метаболитами (первичными, вторичными). Даже при использовании биомолекулы как объекта биотехнологии исходный биосинтез ее осуществляется в большинстве случаев соответствующими клетками. В этой связи можно сказать, что объекты биотехнологии относятся либо к микробам, либо к растительным и животным организмам. В свою очередь организм можно образно характеризовать как систему экономного, сложнейшего, компактного, саморегулируемого и, следовательно, целенаправленного биохимического производства, устойчиво и активно протекающего при оптимальном поддержании всех необходимых параметров. Из такого определения следует, что вирусы не являются организмами, но по содержанию молекул наследственности, приспособляемости, изменчивости и некоторым другим свойствам они относятся к представителям живой природы.

Как видно из приводимой схемы, объекты биотехнологии исключительно разнообразны, диапазон их распространяется от организованных частиц (вирусов) до человека.

Вирусы занимают положение между живой и неживой природой, у них нет ядра, хотя имеется наследственный ядерный материал – рибонуклеиновая кислота (РНК) или дезоксирибонуклеиновая кислота (ДНК).

В отличие от микробов клеточной организации РНК и ДНК в вирусных частицах вместе никогда не обнаруживаются.

В настоящее время большинство объектов биотехнологии составляют микробы, относящиеся к трем надцарствам (безъядерные, предъядерные, ядерные) и пяти царствам (вирусы, бактерии, грибы, растения и животные). Причем первые два надцарства состоят исключительно из микробов, тогда как третье - преимущественно из растений и животных.

В первой половине XIX в. было сделано одно из самых основных обобщений биологии – клеточная теория (М. Шлейден, Т. Шванн, Р. Вирхов), которая стала общепризнанной. Она же оказалась фундаментом науки – цитология (от греч. kitos – полость). Из всех объектов биотехнологии лишь вирусы, вироиды и биомолекулы не имеют клеточной организации. Однако вирусы, находясь в клетках, ведут себя как живые существа – они реплицируются («размножаются») и их генетический материал функционирует, в основном, по общим законам, присущим клеткам любого происхождения. По мере совершенствования методов и техники цитологических исследований ученые глубже проникают в сущность организованных частиц и клеток, а в результате такого проникновения удается обосновать принадлежность всех живых существ к трем надцарствам: Acaryotae – безъядерные, Procaryotae – предъядерные и Eucaryotae – ядерные (от греч. а – нет, pro – до, ей – хорошо, полностью, karyon – ядро). К первому относятся организованные частицы – вирусы и вироиды, ко второму – бактерии, к третьему – все другие организмы (грибы, водоросли, растения, животные).

Несмотря на то, что представители всех надцарств содержат генетический материал, различные акариоты лишены какого-либо одного типа нуклеиновой кислоты РНК или ДНК. Они не способны функционировать (в том числе – реплицироваться) вне живой клетки, и, следовательно, правомочно именовать их безъядерными.

Клетки грибов, водорослей, растений и животных имеют настоящее, отграниченное от цитоплазмы, ядро и поэтому их относят к эукариотам.

В основе классификации прокариот и эукариот лежат многочисленные структурные различия, основные из них следующие: 1) наличие или отсутствие ядра, содержащего хромосомную ДНК; 2) строение и химический состав клеточной стенки и 3) наличие или отсутствие субклеточных цитоплазматиче-ских органелл. В прокариотической клетке, например бактериальной, хромосомная ДНК находится непосредственно в цитоплазме, клетка окружена ригидной клеточной стенкой, в состав которой часто входит пептидогликан, но не хитин или целлюлоза; в клетке нет субклеточных цитоплазматических органелл. В эукариотической клетке имеется ядро, отделенное от цитоплазмы ядерной мембраной, хромосомная ДНК находится в ядре; клеточная стенка, если она есть, может содержать хитин или целлюлозу, но не пептидогликан; в цитоплазме содержатся различные субклеточные органеллы (митохондрии, аппарат Гольджи, хлоропласт в клетках растений) (рис. 1).

Рис. 1. Схема прокариотической бактериальной клетки (А) и эукариотической животной клетки (Б)

2. Вирусы и вироиды

Нуклеиновые кислоты – вещества наследственности вирусов. По типу нуклеиновой кислоты их подразделяют на РНК-содержащие вирусы и ДНК-содержащие вирусы. К первым относят все вирусы растений, ко вторым – большинство бактериофагов, ряд вирусов человека и животных (аденовирусы, вирусы герпеса, осповакцины и др.).

Белок структурируется вокруг вирусной нуклеиновой кислоты (генома) в виде оболочки и называется капсидом. Форма вириона определяется его капсидом. Вместе с нуклеиновой кислотой капсид образует нуклеокапсид.

Примерный перечень вирусов включает 17 семейств вирусов позвоночных и 7 семейств вирусов беспозвоночных животных, 10 семейств вирусов бактерий. Описаны 20 родов вирусов растений и 5 родов вирусов грибов. Классификационные схемы вирусов до конца еще не устоявшиеся, к тому же открывают новые для науки вирусы (пример с вирусами эбола, иммунодефицита человека). Представителями ДНК-содержащих вирусов являются вирусы контагиозного моллюска, оспы, герпеса, большинство фагов бактерий; РНК-содержащими являются вирусы растений, вирусы гриппа человека, бешенства, полиомиелита и др.

Вироиды. По молекулярной структуре вироиды представляют собой одноцепочечные, ковалентно замкнутые, кольцевые молекулы РНК, лишенные капсидов. Число нуклеотидов в таких РНК находится в пределах 240-400. По форме вироиды могут быть линейные и кольцевидные, они способны принимать шпилечную, квазидвухцепочечную конформацию (от лат. quasi – якобы, как-будто, почти, близко; conformatio – форма, расположение). Каждый тип вироида содержит уникальный, только ему присущий, особый вид низкомолекулярной РНК. Размеры вироидов находятся в пределах 15 нм. В чувствительных клетках растений-хозяев они сосредоточиваются в ядре, ассоциируясь с ядрышком в виде белково-нуклеинового комплекса, и реплицируются автономно целиком при помощи предшествующих или активированных ферментов хозяина. Вироиды не транслируются. Это подтверждается структурным сходством их между собой и отсутствием у ряда вироидов кодонов-инициаторов. В то же время репликация происходит благодаря транскрипции последовательностей вироидных РНК с РНК-матриц при участии РНК-полимераз.

3. Бактерии

Бактерии – существа клеточной организации, у которых ядерный материал не отделен от цитоплазмы элементарными мембранами и не связан с какими-либо основными белками. Цитоплазма в них с нерегулярно разбросанными рибосомами неподвижна, клетки не обладают способностями к эндо- и экзоцитозу. В большинстве своем бактерии одноклеточны, наименьший диаметр их 0,2-10,0 мкм.

Все бактерии составляют единое царство Bacteria, хотя одни из них – археобактерии (Archaeobacteria) заметно отличаются от других, названных эубактериями (Eubacteria). Очевидно, археобактерии являются более древними представителями прокариот, чем эубактерии. Они обитают в средах с экстремальными условиями – высокие концентрации неорганических солей, повышенные температуры, оксид и диоксид углерода – как единственные источники углерода. К археобактериям относятся галобактерии, термоацидофильные бактерии и метанобразующие, или метаногенные бактерии.

Фототрофными бактериями являются оксигенные цианобактерии, аноксигенные пурпурные и зеленые бактерии; хемотрофными – грамположительные и грамотрицательные бактерии и бациллы, миксобактерии, стебельковые и почкующиеся бактерии, вибрионы, спириллы, спирохеты, актиномицеты, коринебактерии, микобактерии, риккетсии, хламидии, микоплазмы и спироплазмы.

Бактерия Escherichia coli – один из наиболее хорошо изученных организмов. За последние годы удалось получить исчерпывающую информацию о ее генетике, молекулярной биологии, биохимии, физиологии и общей биологии. Это грамотрицательная непатогенная подвижная палочка длиной менее 1 мкм. Ее средой обитания является кишечник человека, но она также может высеваться из почвы и воды. Благодаря способности размножаться простым делением на средах, содержащих только ионы Na + , K + , Mg 2+ , Ca 2+ , NH 4 + , Cl~, НР0 4 2 ~ и S0 4 2 ~, микроэлементы и источник углерода (например, глюкозу), Е. coli стала излюбленным объектом научных исследований. При культивировании E . coli на обогащенных жидких питательных средах, содержащих аминокислоты, витамины, соли, микроэлементы и источник углерода, время генерации (т. е. время между образованием бактерии и ее делением) в логарифмической фазе роста при температуре 37°С составляет примерно 22 мин.

Для каждого живого организма существует определенный температурный интервал, оптимальный для его роста и размножения. При слишком высоких температурах происходит денатурация белков и разрушение других важных клеточных компонентов, что ведет к гибели клетки. При низких температурах биологические процессы существенно замедляются или останавливаются совсем вследствие структурных изменений, которые претерпевают белковые молекулы. Исходя из температурного режима, который предпочитают те или иные микроорганизмы, их можно подразделить на термофилы (от 45 до 90°С и выше), мезофилы (от 10 до 47°С) и психрофилы, или психротрофы (от -5 до 35°С). Микроорганизмы, активно размножающиеся лишь в определенном диапазоне температур, могут быть полезным инструментом для решения различных биотехнологических задач. Например, термофилы часто служат источником генов, кодирующих термостабилъные ферменты, которые применяются в промышленных или в лабораторных процессах, а генетически видоизмененные психротрофы используют для биодеградации токсичных отходов, содержащихся в почве и воде, при пониженных температурах.

E . coli можно культивировать как в аэробных (в присутствии кислорода), так и в анаэробных (без кислорода) условиях. Однако для оптимальной продукции рекомбинантных белков Е. coli и другие микроорганизмы обычно выращивают в аэробных условиях. Если целью культивирования бактерий в лаборатории является синтез и выделение определенного белка, то культуры выращивают на сложных жидких питательных средах в колбах. Для поддержания нужной температуры и обеспечения достаточной аэрации культуральной среды колбы помещают в водяную баню или термостатируемую комнату и непрерывно встряхивают. Такой аэрации достаточно для размножения клеток, но не всегда - для синтеза белка. Рост клеточной массы и продукция белка лимитируются не содержанием в питательной среде источников углерода или азота, а содержанием растворенного кислорода: при 20°С оно равно примерно девяти миллионным долям. Это становится особенно важно при промышленном получении рекомбинантных белков с помощью микроорганизмов. Для обеспечения условий, оптимальных для максимальной продукции белков, конструируют специальные ферментеры и создают системы аэрации.

Помимо Е. coli , в молекулярной биотехнологии используют множество других микроорганизмов. Их можно разделить на две группы: микроорганизмы как источники специфических генов и микроорганизмы, созданные генно-инженерными методами для решения определенных задач. К специфическим генам относится, например, ген, кодирующий термостабильную ДНК-полимеразу, которая используется в широко применяемой полимеразой цепной реакции (ПЦР). Этот ген был выделен из термофильных бактерий и клонирован в Е. coli . Ко второй группе микроорганизмов относятся, например, различные штаммы Corynebacterium glutamicum , которые были генетически модифицированы с целью повышения продукции промышленно важных аминокислот.

4. Грибы

Биотехнологические функции грибов разнообразны. Их используют для получения таких продуктов, как:

· антибиотики (пенициллы, стрептомицеты, цефалоспорины);

· гиббереллины и цитокинины (физариум и ботритис);

· каротиноиды (например, астаксантин, придающий мякоти лососевых рыб красно-оранжевый оттенок вырабатывают Rhaffia rhodozima, которых добавляют в корм на рыбозаводах);

· белок (Candida, Saccharomyces lipolitica);

· сыры типа рокфор и камамбер (пенициллы);

· соевый соус (Aspergillus oryzae).

К грибам относятся актиномицеты, дрожжи и плесени. Истинные актиномицеты – строгие аэробы, они грамположительны и не образуют спор. Наиболее представительный в этой группе – род Streptomyces, отдельные виды которого продуцируют широко применяемые антибиотики. При росте на твердых средах актиномицеты образуют очень тонкий мицелий с воздушными гифами, которые дифференцируются в цепочки конидиоспор. Каждая конидиоспора способна образовать микроколонию.

Антибиотики продуцирует и другой вид актиномицетов, Micromonospora, колонии которого лишены воздушных гиф и образуют конидиоспоры непосредственно на мицелии.

Из 500 известных видов дрожжей первым люди научились использовать Saccharomyces cerevisiae, этот вид наиболее интенсивно культивируется. Дрожжи Saccharomyces cerevisiae – это непатогенные одноклеточные микроорганизмы с диаметром клетки примерно 5 мкм, которые во многих отношениях представляют собой эукариотический аналог Е. coli . Их генетика, молекулярная биология и метаболизм детально изучены. S . cere visiae размножаются почкованием и хорошо растут на такой же простой среде, как и Е. coli . Их способность к превращению сахара в этанол и углекислый газ издавна использовалась для изготовления алкогольных напитков и хлеба. Дрожжи S . cerevisiae представляют также большой научный интерес. В частности, они являются наиболее удобной моделью для исследования других эукариот, в том числе человека, поскольку многие гены, ответственные за регуляцию клеточного деления S . cerevisiae , сходны с таковыми у человека. Это открытие способствовало идентификации и характеристике генов человека, отвечающих за развитие новообразований. Широко используемая генетическая система дрожжей (искусственная хромосома) является непременным участником всех исследований по изучению ДНК человека. В 1996 г. была определена полная нуклеотидная последовательность всего набора хромосом S . cerevisiae , что еще более повысило ценность этого микроорганизма для научных исследований.

Синтезированный бактериальной клеткой эукариотический белок часто приходится подвергать ферментативной модификации, присоединяя к белковой молекуле низкомолекулярные соединения – во многих случаях это необходимо для правильного функционирования белка. К сожалению, Е. coli и другие прокариоты не способны осуществлять эти модификации, поэтому для получения полноценных эукариотических белков используют S . cerevisiae , а также другие виды дрожжей: Kluyveromyces lactis , Saccharomyces diastaticus , Schizisaccharomyces pombe , Yarrowia lipolytica , Pichia pastoris , Hansenula polymoгрha . Наиболее эффективными продуцентами полноценных рекомбинантных белков являются P . pastoris и Н. polymoгрha .

К дрожжам, сбраживающим лактозу, относится Kluyveromyces fragilis , который используют для получения спирта из сыворотки. Saccharomycopsis lipolytica деградирует углеводороды и употребляется для получения белковой массы. Все три вида принадлежат к классу аскомицетов. Другие полезные виды относятся к классу дейтеромицетов (несовершенных грибов), так как они размножаются не половым путем, а почкованием. Candida utilis растет в сульфитных сточных водах (отходы бумажной промышленности). Trichosporon cutaneum, окисляющий многочисленные органические соединения, включая некоторые токсичные (например, фенол), играет важную роль в системах аэробной переработки стоков. Phaffia rhodozyma синтезирует астаксантин – каротиноид, который придает мякоти форели и лосося, выращиваемых на фермах, характерный оранжевый или розоватый цвет. Промышленные дрожжи обычно не размножаются половым путем, не образуют спор и полиплоидны. Последним объясняется их сила и способность адаптироваться к изменениям среды культивирования (в норме ядро клетки S.cerevisiae содержит 17 или 34 хромосомы, т.е. клетки либо гаплоидны, либо диплоидны).

Плесени вызывают многочисленные превращения в твердых средах, которые происходят перед брожением. Их наличием объясняется гидролиз рисового крахмала при производстве сакэ и гидролиз соевых бобов, риса и солода при получении пищи, употребляемой в азиатских странах. Пищевые продукты на основе сброженных плесневыми грибами Rhizopus oligosporus соевых бобов или пшеницы содержат в 5-7 раз больше таких витаминов, как рибофлавин, никотиновая кислота) и отличаются повышенным в несколько раз содержанием белка. Плесени также продуцируют ферменты, используемые в промышленности (амилазы, пектиназы и т.д.), органические кислоты и антибиотики. Их применяют и в производстве сыров, например, камамбера и рокфора.

Искусственное выращивание грибов способно внести и иной, не менее важный вклад в дело обеспечения продовольствием возрастающего населения земного шара. Люди употребляют грибы в пищу с глубокой древности. Поэтому сделать грибы такой же управляемой сельскохозяйственной культурой, как зерновые злаки, овощи, фрукты, давно уже стало актуальной задачей. Наиболее легко поддаются искусственному выращиванию древоразрушающие грибы. Это связано с особенностями их биологии, которые стали нам известны и понятны только сейчас. Их способность легко расти и плодоносить использовали с древнейших времен.

Искусственное разведение древоразрушающих грибов получило довольно широкое распространение. Мицелий съедобных грибов можно выращивают на жидких средах, например на молочной сыворотке и др., в специальных ферментерах, в так называемой глубинной культуре.

5. Простейшие

Простейшие относятся к числу нетрадиционных объектов биотехнологии. До недавнего времени они использовались лишь как компонент активного ила при биологической очистке сточных вод. В настоящее время они привлекли внимание исследователей как продуценты биологически активных веществ.

В этом качестве рациональнее использовать свободноживущих простейших, обладающих разнообразными биосинтетическими возможностями и потому широко распространенными в природе.

Особую экологическую нишу занимают простейшие, обитающие в рубце жвачных животных. Они обладают ферментом целлюлазой, способствующей разложению клетчатки в желудке жвачных. Простейшие рубца могут быть источником этого ценного фермента. Возбудитель южноамериканского трипаносомоза – Trypanosoma (Schizotrypanum cruzi) стала первым продуцентом противоопухолевого препарата круцина (СССР) и его аналога – трипанозы (Франция). Изучая механизм действия этих препаратов, ученые пришли к выводу, что эти препараты оказывают цитотоксический эффект при прямом контакте с опухолью и ингибируют ее опосредованно, путем стимуляции ретикулоэндотелиальной системы. Выяснилось, что ингирующее действие связано с жирнокислотными фракциями. Характерной особенностью этих организмов является высокое содержание ненасыщенных жирных кислот, составляющее у трипаносомид 70-80 %, а у Astasia longa (свободноживущий жгутиконосец) – 60% от суммы всех жирных кислот. У жгутиконосцев фосфолипиды и полиненасыщенные жирные кислоты имеют такой же состав и строение, как в организме человека и животных. В мире микробов полиненасыщенные жирные кислоты не синтезируются, а многоклеточные животные или растения представляют собой более ограниченную сырьевую базу, чем простейшие, культуры которых можно получать методами биотехнологии независимо от времени года или климатических условий.

Поскольку липидный метаболизм простейших обладает относительной лабильностью, были изучены пути его регуляции. Применение к простейшим общепринятого в микробиологии приема повышения биосинтеза липидов за счет снижения содержания в среде источника азота и увеличения содержания источника углерода привело к резкому торможению или остановке роста культур. Для создания условий направленного биосинтеза липидов в среды для культивирования жгутиконосцев добавляли предшественники и стимуляторы биосинтеза липидов: малонат, цитрат, сукцинат, цитидиннуклеотиды в сочетании с определенным режимом аэрации.

Другой группой биологически активных веществ простейших являются полисахариды. Разнообразие полисахаридов, синтезируемых простейшими, достаточно велико. Особый интерес представляет парамилон, характерный для эвгленоидных жгутиконосцев. Представители родов Astasia и Euglena способны к сверхсинтезу парамилона, составляющему свыше 50 % сухого остатка клеток. Этот полисахарид изучается как стимулятор иммунной системы млекопитающих. Парамилон, выделенный из А. longa, практически нетоксичен. Выраженное иммуномодулирующее действие и низкая токсичность этого препарата являются предпосылкой для его углубленного исследования в сочетании с препаратами прямого противоопухолевого действия, радиотерапией и другими адъювантами.

В настоящее время в мире придается большое значение производству глюканов не только для медицинских целей, но и для пищевой и текстильной промышленности. До сих пор глюканы получали из культур бактерий или морских водорослей. Эвглениды являются одним из наиболее перспективных источников этого вещества. Структурные полисахариды, входящие в состав клеточных мембран простейших, – это гетерополисахариды, содержащие глюкозу, маннозу, ксилозу, арабинозу, рибозу, галактозу, рамнозу, фруктозу, глюкозамин. Наиболее характерными гетерополисахаридами являются арабиногалактаны, Д-галакто-Д-маннан, фосфаноглюканы и другие.

Биомасса простейших содержит до 50% белка. Его высокая биологическая ценность заключается в том, что он содержит все незаменимые аминокислоты, причем содержание свободных аминокислот на порядок выше, чем в биомассе микроводорослей, бактерий и в мясе. Это свидетельствует о широких возможностях применения свободноживущих простейших в качестве источника кормового белка.

6. Водоросли

Водоросли используются, в основном, для получения белка. Весьма перспективны в этом отношении и культуры одноклеточных водорослей, в частности высокопродуктивных штаммов рода Chlorella и Scenedesmus . Их биомасса после соответствующей обработки используется в качестве добавки в рационы скота, а также в пищевых целях.

Одноклеточные водоросли выращивают в условиях мягкого теплого климата (Средняя Азия, Крым) в открытых бассейнах со специальной питательной средой. К примеру, за теплый период года (6-8 месяцев) можно получить 50-60 т биомассы хлореллы с 1 га, тогда как одна из самых высокопродуктивных трав – люцерна дает с той же площади только 15-20 т урожая.

Хлорелла содержит около 50% белка, а люцерна – лишь 18 %. В целом в пересчете на 1 га хлорелла образует 20-30 т чистого белка, а люцерна – 2-3,5 т. Кроме того, хлорелла содержит 40% углеводов, 7-10% жиров, витамины А (в 20 раз больше), B2, К, РР и многие микроэлементы. Варьируя состав питательной среды, можно процессы биосинтеза в клетках хлореллы сдвинуть в сторону накопления либо белков, либо углеводов, а также активировать образование тех или иных витаминов.

В пищу употребляют не менее 100 видов макрофитных водорослей как в странах Европы и Америки, так и особенно на Востоке. Из них готовят много разнообразных блюд, в том числе диетических, салатов, приправ. Их подают в виде засахаренных кусочков, своеобразных конфет, из них варят варенье, делают желе, добавки к тесту и многое другое. В магазине можно купить консервы из морской капусты – ламинарии дальневосточных или северных морей. Ее консервируют с мясом, рыбой, овощами, рисом, употребляют при приготовлении супов и др. Она наряду с микроводорослью хлореллой является самой популярной съедобной и кормовой водорослью.

Известны и другие съедобные макрофитные водоросли – ульва, из которой делают разные зеленые салаты, а также алария, порфира, родимения, хондрус, ундария и др. В Японии продукты, получаемые из ламинариевых, называют «комбу», и для того, чтобы их вкусно приготовить, существует более десятка способов.

В целом ряде стран водоросли используют как весьма полезную витаминную добавку к кормам для сельскохозяйственных животных. Их прибавляют к сену или дают как самостоятельный корм для коров, лошадей, овец, коз, домашней птицы во Франции, Шотландии, Швеции, Норвегии, Исландии, Японии, Америке, Дании и на нашем Севере. Животным скармливают в виде добавки также биомассу выращиваемых микроводорослей (хлорелла, сценедесмус, дуналиелла и др.).

Гидролизаты белка зеленой водоросли Scenedesmus используются в медицине и косметической промышленности. В Израиле на опытных установках проводятся эксперименты с зеленой одноклеточной водорослью Dunaliella bardaw il, которая синтезирует глицерол. Эта водоросль относится к классу равножгутиковых и похожа на хламидомонаду. Dunadiella может расти и размножаться в среде с широким диапазоном содержания соли: и в воде океанов, и в почти насыщенных солевых растворах Мертвого моря. Она накапливает свободный глицерол, чтобы противодействовать неблагоприятному влиянию высоких концентраций солей в среде, где она растет. При оптимальных условиях и высоком содержании соли на долю глицерола приходится до 85% сухой массы клеток. Для роста этим водорослям необходимы: морская вода, углекислый газ и солнечный свет. После переработки эти водоросли можно использовать в качестве корма для животных, так как у них нет неперевариваемой клеточной оболочки, присущей другим водорослям. Они также содержат значительное количество β-каротина. Таким образом, культивируя эту водоросль, можно получать глицерол, пигмент и белок, что весьма перспективно с экономической точки зрения.

Наряду с кормами водоросли давно применяют в сельском хозяйстве в качестве удобрений. Биомасса обогащает почву фосфором, калием, йодом и значительным количеством микроэлементов, пополняет также ее бактериальную, в том числе азотфиксирующую, микрофлору. При этом в почве водоросли разлагаются быстрее, чем навозные удобрения, и не засоряют ее семенами сорняков, личинками вредных насекомых, спорами фитопатогенных грибов.

Одним из самых ценных продуктов, получаемых из красных водорослей, является агар – полисахарид, присутствующий в их оболочках и состоящий из агарозы и агаропектина. Количество его доходит до 30-40 % от веса водорослей (водоросли лауренция и грацилярия, гелидиум). Водоросли – единственный источник получения агара, агароидов, каррагинина, альгинатов.

Бурые водоросли являются единственным источником получения одних из самых ценных веществ водорослей – солей альгиновой кислоты, альгинатов. Альгиновая кислота – линейный гетерополисахарид, построенный из связанных остатков (3-Д-маннуроновой и α-L-гиалуроновой кислот.

Альгинаты применяются в народном хозяйстве. Это изготовление высококачественных смазок для трущихся деталей машин, медицинские и парфюмерные мази и кремы, синтетические волокна и пластики, стойкие к любой погоде лакокрасочные покрытия, не выцветающие со временем ткани, производство шелка, клеящих веществ исключительно сильного действия, строительных материалов, пищевые продукты отличного качества – фруктовые соки, консервы, мороженое, стабилизаторы растворов, брикетирование топлива, литейное производство и многое другое. Альгинат натрия способен поглощать до 300 весовых единиц воды, образуя при этом вязкие растворы.

Бурые водоросли богаты также весьма полезным соединением – шестиатомным спиртом маннитом, который применяют в пищевой промышленности, фармацевтике, при производстве бумаги, красок, взрывчатки и др. Бурые водоросли в ближайшее время планируется использовать для получения биогаза. Каллусные культуры макрофитных водорослей могут быть использованы далее в различных направлениях. В случае, если они получены от агарофитов, можно непосредственно получать из них агар. Каллусные культуры пищевых макрофитных водорослей, например ламинариевых, могут в перспективе использоваться для получения белка, непосредственно идущего в пищу и в пищевые добавки, а также в корма сельскохозяйственным животным.

7. Растения

Высшие растения (порядка 300 000 видов) – это дифференцированные многоклеточные, преимущественно наземные организмы. В процессе дифференциации и специализации клетки растений группировались в ткани (простые – из однотипных клеток, и сложные – из разных типов клеток). Ткани, в зависимости от функции, подразделяют на образовательные, или меристемные (от греч. meristos – делимый), покровные, проводящие, механические, основные, секреторные (выделительные). Из всех тканей лишь меристематические способны к делению и за их счет образуются все другие ткани. Это важно для получения клеток, которые затем должны быть включены в биотехнологический процесс.

Клетки меристемы, задерживающиеся на эмбриональной стадии развития в течение всей жизни растения, называются инициальными, другие постепенно дифференцируются и превращаются в клетки различных постоянных тканей – конечные клетки. Любой вид растения может дать в соответствующих условиях неорганизованную массу делящихся клеток – каллус (от лат. callus – мозоль), особенно при индуцирующем влиянии растительных гормонов. Массовое производство каллусов с дальнейшей регенерацией побегов пригодно для крупномасштабного производства растений. Вообще каллус представляет собой основной тип культивируемой на питательной среде растительной клетки. Каллусная ткань из любого растения может длительно рекультивироваться. При этом первоначальные растения (в том числе и меристематические), дедифференцируются и деспециализируются, но индуцируются к делению, формируя первичный каллус.

Кроме выращивания каллусов удается культивировать клетки некоторых растений в суспензионных культурах.

Важными биообъектами представляются также и протопласты растительных клеток. Методы их получения принципиально сходны с методами получения бактериальных и грибных протопластов.

Кроме культуры растительных клеток, применяется водный папоротник азолла. Он ценится как органическое азотное удобрение, так как растет в тесном симбиозе с сине-зеленой водорослью анабена. Это позволяет симбиотическому организму анабена-азолла накапливать много азота в вегетативной массе. Анабену-азоллу выращивают на рисовых полях перед посевом риса, что позволяет снижать количество вносимых минеральных удобрений.

Представители семейства рясковых (Lemnaceae) – самые мелкие и простые по строению цветковые растения, величина которых редко превышает 1 см. Рясковые - свободноживущие водные плавающие растения. Вегетативное тело напоминает лист или слоевище низших растений, поэтому до начала 18 века ряску относили к слоевищным растениям.

Рясковые ( Lemna minor, L. trisulca, Wolfia, Spirodela polyrhiza ) служат кормом для животных, для уток и других водоплавающих птиц, рыб, ондатры. Их используют и в свежем, и в сухом виде как ценный белковый корм для свиней и домашней птицы. Рясковые содержат много протеина (до 45 % от сухой массы). 45% углеводов, 5% жиров и остальное - клетчатка и т.д. Они высоко продуктивны, неприхотливы в культуре, хорошо очищают воду и обогащают её кислородом. Это делает рясковые ценным объектом для морфогенетических, физиологических и биохимических исследований.

8. Животные

В качестве объектов биотехнологии могут использоваться сами животные и культуры клеток животных.

При всех различиях между типами эукариот методические подходы к культивированию клеток насекомых, растений и млекопитающих имеют много общего. Сначала берут небольшой кусочек ткани данного организма и обрабатывают его протеолитическими ферментами, расщепляющими белки межклеточного материала (при работе с растительными клетками добавляют специальные ферменты, разрушающие клеточную стенку). Высвободившиеся клетки помещают в сложную питательную среду, содержащую аминокислоты, антибиотики, витамины, соли, глюкозу и факторы роста. В этих условиях клетки делятся до тех пор, пока на стенках емкости с культурой не образуется клеточный монослой. Если после этого не перенести клетки в емкости со свежей питательной средой, то рост прекратится. Обычно удается переносить (перевивать, субкультивировать) и поддерживать до 50-100 клеточных генераций исходной (первичной) клеточной культуры, затем клетки начинают терять способность к делению и гибнут. Культивируемые клетки сохраняют некоторые свойства исходного клеточного материала, поэтому их можно использовать для изучения биохимических свойств различных тканей.

Часто некоторые клетки перевиваемых первичных клеточных культур претерпевают генетические изменения, в результате которых ускоряется их рост. Культуры клеток, которые при этом приобретают селективные преимущества, оказываются способными к неограниченному росту in vitro и называются устойчивыми клеточными линиями. Одни клеточные линии сохраняют основные биохимические свойства исходных клеток, другие нет. У большинства клеток, способных к неограниченному росту, имеются значительные хромосомные изменения, в частности отмечается увеличение числа одних хромосом и потеря других. В молекулярной биотехнологии устойчивые клеточные линии животных используют для размножения вирусов и для выявления белков, которые кодируются клонированными последовательностями ДНК. Кроме того, они применяются для крупномасштабного производства вакцин и рекомбинантных белков.

9. Требования, предъявляемые к биологическим объектам

Для реализации биотехнологических процессов важными параметрами биообъектов являются: чистота, скорость размножения клеток и репродукции вирусных частиц, активность и стабильность биомолекул или биосистем.

Следует иметь в виду, что при создании благоприятных условий для избранного биообъекта биотехнологии эти же условия могут оказаться благоприятными, например, и для микробов – контаминантов, или загрязнителей. Представителями контаминирующей микрофлоры являются вирусы, бактерии и грибы, находящиеся в культурах растительных или животных клеток. В этих случаях микробы-контаминанты выступают вредителями производств в биотехнологии. При использовании ферментов в качестве биокатализаторов возникает необходимость предохранения их в изолированном или иммобилизованном состоянии от деструкции банальной сапрофитной (не болезнетворной) микрофлорой, которая может проникнуть в сферу биотехнологического процесса извне вследствие нестерильности системы.

Активность и стабильность в активном состоянии биообъектов – одни из важнейших показателей их пригодности для длительного использования в биотехнологии.

Таким образом, независимо от систематического положения биообъекта, на практике используют либо природные организованные частицы (фаги, вирусы) и клетки с естественной генетической информацией, либо клетки с искусственно заданной генетической информацией, то есть в любом случае используют клетки, будь то микроорганизм, растение, животное или человек. Для примера можно назвать процесс получения вируса полиомиелита на культуре клеток почек обезьян в целях создания вакцины против этого опасного заболевания. Хотя мы заинтересованы здесь в накоплении вируса, репродукция его протекает в клетках животного организма. Другой пример с ферментами, которые будут использованы в иммобилизованном состоянии. Источником ферментов также являются изолированные клетки или специализированные ассоциации их в виде тканей, из которых изолируют нужные биокатализаторы.



Бактерии являются доядерными организмами (прокариотами), так как у них имеется примитивное ядро без оболочки, ядрышка, гистонов, а в цитоплазме отсутствуют высокоорганизованные органеллы {митохондрии, лизосомы, аппарат Гольджи и др.)

К растениям относятся водоросли, являющиеся водными организмами, и высшие растения, обитающие преимущественно на суше. Водоросли не имеют органов и тканей и состоят из недифференцированных (одинаковых) клеток. Высшие растения являются многоклеточными организмами, имеющими специализированные органы - корни, стебли, листья. Они состоят из тканей, образованных специализированными клетками. Растения служат поставщиками питательных веществ для других организмов.

Грибы сочетают в себе черты клеток растений и животных. Они имеют клеточное ядро и, как у растений, прочную клеточную стенку. Как клетки животных, они способны синтезировать полисахариды - хитин и гликоген и нуждаются в некоторых витаминах. Особенно интересны для биотехнологии микроскопические грибы - дрожжи, плесневые и другие микроорганизмы, применяемые в хлебопекарной, пивоваренной и молочной промышленности, а также для получения органических кислот, спиртов, антибиотиков, кормового белка, различных биологически активных веществ.

Основными технологическими принципами, используемыми в биотехнологии, являются:

а) брожение (ферментация);

б) биоконверсия (превращение одного вещества в другое);

в) культивирование бактерий, вирусов, растительных и животных клеток;

г) генетическая инженерия.

Простейшим способом получения биотехнологической продукции является использование животных и их органов и тканей. Ткани высших животных являются источниками белка, липидов, некоторых витаминов. Например, иммунные сывороточные препараты получают из крови иммунизированных животных (лошадей, кроликов); гормон инсулин - из поджелудочных желез крупного рогатого скота и свиней. Гормон роста получают из гипофиза умерших людей; для получения препаратов крови используют донорскую, плацентарную и абортную кровь.

Сырье животного происхождения является наиболее дорогим. В связи с этим в настоящее время все чаще используются культуры клеток животных или человека, выращиваемых на искусственных средах. Примером такой технологии является получение противовирусного препарата интерферона, применяющегося для профилактики и лечения гриппа и других вирусных инфекций. Наиболее перспективным способом производства биологически активных веществ является генная инженерия. В частности, так получают человеческий инсулин - гормон белковой природы.

Для получения многих лекарственных средств (сердечных, мочегонных, противовоспалительных и т.д.) используют растения. Несмотря на то, что традиционные методы извлечения физиологически активных и лекарственных соединений из растений (экстракция, перегонка, фильтрация) по-прежнему широко используются, все большее значение приобретают технологии получения биологически активных веществ из клеточных культур, а также производство продуктов из генетически модифицированных растений.

Из водорослей получают агар-агар и альгинаты - полисахариды, используемые в пищевой промышленности, а также для изготовления микробиологических сред.

Биотехнология, ее объекты и основные направления. Биотехнология - это производство необходимых человеку продуктов и биологически активных соединений с помощью живых организмов, культивируемых клеток и биологических процессов.

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности, а именно - в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна, кож и т.д., т.е. в процессах, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились.

Объектами биотехнологии служат вирусы, бактерии, протисты, дрожжи, а также растения, животные или изолированные клетки и субклеточные структуры (органеллы).

Основными направлениями биотехнологии являются: 1) производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферментов, витаминов, гормонов), лекарственных препаратов (антибиотиков, вакцин, сывороток, высокоспецифичных антител и др.), а также ценных соединений (кормовых добавок, например незаменимых аминокислот, кормовых белков; 2) использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязнений почвы) и защита растений от вредителей и болезней; 3) создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т.п.

Задачи, методы и достижения биотехнологии. Главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной (генетической) и клеточной инженерии.

Генная инженерия - это раздел молекулярной генетики, связанный с целенаправленным созданием новых молекул ДНК, способных реплицироваться в клетке-хозяине и осуществлять контроль за синтезом необходимых метаболитов. Генная инженерия занимается расшифровкой структуры генов, их синтезом и клонированием, вставкой выделенных из клеток живых организмов или вновь синтезированных генов в клетки растений и животных с целью направленного изменения их наследственных свойств.

Для осуществления переноса генов (или трансгенеза) от одного вида организмов в другой, часто очень далекий по своему происхождению, необходимо выполнить несколько сложных операций:

    выделение генов (отдельных фрагментов ДНК) из клеток бактерий, растений или животных. В отдельных случаях эту операцию заменяют искусственным син тезом нужных генов;

    соединение (сшивание) отдельных фрагментов ДНК любого происхождения в единую молекулу в составе плазмиды;

    введение гибридной плазмидной ДНК, содержащей нужный ген, в клетки хозяина;

    копирование (клонирование) этого гена в новом хозяине с обеспечением его работы (рис. 8.11).

Клонированный ген путем микроинъекции вводят в яйцеклетку млекопитающего или протопласт растения (изолированная клетка, лишенная клеточной стенки) и выращивают из них целое животное или растение. Растения и животные, геном которых изменен путем генно-инженерных операций, получили названиетрансгенных растений и трансгенных животных.

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов.

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека - сахарного диабета, некоторых видов злокачественных опухолей и карликовости соответственно.

Клеточная инженерия - метод, позволяющий конструировать клетки нового типа. Метод заключается в культивировании изолированных клеток и тканей на искусственной питательной среде в регулируемых условиях, что стало возможным благодаря способности растительных клеток в результате регенерации формировать целое растение из единичной клетки. Условия регенерации разработаны для многих культурных растений, таких как картофель, пшеница, ячмень, кукуруза, томат и др. Работа с этими объектами делает возможным использование в селекции нетрадиционных методов клеточной инженерии, таких как соматическая гибридизация, гаплоидия, клеточная селекция, преодоление нескрещиваемости в культуре и др.

Соматическая гибридизация - это слияние двух различных клеток в культуре тканей. Сливаться могут разные виды клеток одного организма и клетки разных, иногда очень далеких видов, например, мыши и крысы, кошки и собаки, человека и мыши.

Культивирование клеток растений стало возможным, когда научились с помощью ферментов избавляться от толстой клеточной стенки и получать изолированный протопласт. Протопласты можно культивировать так же, как и клетки животных, обеспечивать слияние их с протопластами других видов растений и получать в соответствующих условиях новые гибридные растения.

Важное направление клеточной инженерии связано с ранними стадиями эмбриогенеза. Например, оплодотворение яйцеклеток в пробирке уже сейчас позволяет преодолевать некоторые распространенные формы бесплодия у человека. У сельскохозяйственных животных с помощью инъекции гормонов удается получить от одной коровы-рекордистки десятки яйцеклеток, оплодотворить их в пробирке спермой породистого быка, а затем имплантировать в матку других коров и таким путем получить от одного ценного экземпляра в 10 раз большее потомства, чем это было бы возможно обычным путем.

Культуру растительных клеток выгодно использовать для быстрого размножения медленно растущих растений - женьшеня, маслинной пальмы, малины, персика и др. Так, при обычном разведении куст малины может дать не более 50 отростков в год, в то время как с помощью культуры клеток можно получить более 50 тыс. растений. При таком разведении иногда возникают растения более продуктивные, чем исходный сорт.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. Внедрение нужных генов в клетки растений, животных и человека позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем - непосредственно белки и незаменимые аминокислоты, употребляемые в пищу. Используя методы, уже освоенные природой, биотехнологи надеются получать с помощью фотосинтеза водород - самое экологически чистое топливо будущего, электроэнергию, превращать в аммиак атмосферный азот при обычных условиях.

Биотехнология - это производство необходимых человеку продуктов и материалов с помощью живых организмов, культивируемых клеток и биологических процессов. Основными направлениями биотехнологии являются: производство биологически активных соединений (витаминов, гормонов, ферментов), лекарственных препаратов и других ценных соединений, разработка и использование биологических методов борьбы с загрязнением окружающей среды, создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т.д. Решению этих сложных задач способствуют методы генной и клеточной инженерии.

Главным объектом биотехнологического процесса является клетка. В ней синтезируется целевой продукт. По сути, клетка представляет собой миниатюр­ный химический завод, где ежеминутно синтезируются сотни сложнейших со­единений.

Основа современного биотехнологического производства - синтез различных веществ с помощью клеток микроорганизмов. Клетки высших растений и животных еще не нашли широкого применения, ввиду их высокой требовательности к условиям культивирования.

Начальным этапом биотехнологической разработки является получе­ние чистых культур клеток и тканей. Дальнейшие манипуляции с этими куль­турами характеризуется единообразием подходов, основанных на классических методах микробиологии. При этом культуры клеток и тканей высших растений и животных уподобляются культурам микроорганизмов.

Эукариотыи прокариоты. Большинство микроорганизмов - однокле­точные существа. Микробная клетка отделена от внешней среды клеточной стен­кой, а иногда лишь цитоплазматической мембраной и содержит различные суб­клеточные структуры. Существует два основных типа клеточного строения, кото­рые отличаются друг от друга рядом фундаментальных признаков. Это эукариотические и прокариотические клетки. Микроорганизмов, имеющих истинное яд­ро, называют эукариотами (эу - от греческого - истинный, карио - ядро). Микро­организмы с примитивным ядерным аппаратом относятся к прокариотам (до ядерным).

Среди микроорганизмов к прокариотам относятся бактерии, актиномицеты и сине-зеленые водоросли (цианобактерии), к эукариотам - прочие водо­росли (зеленые, бурые, красные), микомицеты (слизевики), низшие грибы - микромицеты (включая дрожжи), простейшие (жгутиконосцы, инфузории и др.).

Их общее свойство - малые размеры, они видны лишь в микроскоп. В на­стоящее время известно более 100 тыс. видов различных микроорганизмов.

У прокариот не происходят процессы митоза и мейоза. Они размножают­ся чаще простым делением клетки.

В эукариотической клетке имеется ядро, отделенное от окружающей его цитоплазмы двухслойной ядерной мембраной с порами. В ядре находятся 1-2 ядрышка - центры синтеза рибосомальной РНК и хромосомы - основные носите­ли наследственной информации, состоящие из ДНК и белка. При делении хромосомы распределяются между дочерними клетками в результате сложных процес­сов - митоза и мейоза. Цитоплазма эукариот содержит митохондрии, а у фотосинтезирующих организмов и хлоропласта. Цитоплазматическая мембрана, ок­ружающая клетку, переходит внутри цитоплазмы в эндоплазматическую сеть; имеется также мембранная органелла - аппарат Гольджи.

Прокариотическиеклетки устроены проще. В них нет четкой границы между ядром и цитоплазмой, отсутствует ядерная мембрана. ДНК в этих клетках не образует структур, похожих на хромосомы эукариот. У прокариот не происходят процессы митоза и мейоза. Большинство прокариот не образует внутрикле­точных органелл, ограниченных мембранами, нет митохондрий и хлоропластов.

Подбор форм микроорганизмов с заданными свойствами

Подбор необходимых для культивирования форм микроорганизмов с за­данными свойствами включает несколько этапов.

2.1. Выделение микроорганизмов. Отбираются пробы из мест обитания микроорганизмов (почва, растительные остатки и т.д.). Применительно к углеводородокисляющим микроорганизмам таким местом может быть почва возле бензоколонок, винные дрожжи обильно встречаются на винограде, анаэробные целлюлозаразлагающие и метанобразующие микроорганизмы в больших количест­вах обитают в рубце жвачных животных.

2.2. Получение накопительных культур. Образцы вносят в жидкие питательные среды специального состава, создают благоприятные условия для развития продуцента (температура, РН, источники энергии, углерода,
азота и т.д.). Для накопления продуцента холестериноксидазы используют среды с холестерином в качестве единственного источника углерода; углеводородокисляющих микроор­ганизмов - среды с парафинами; продуцентов протеолитических или липолитических ферментов - среды, содержащие белки или липиды.

2.3. Выделение чистых культур. На плотные питательные среды засевают образцы проб из накопительных культур. Отдельные клетки микроорганизмов на плотных питательных средах образуют изолированные
колонии или клоны, при их пересеве получаются чистые культуры, состоящие из клеток одного вида про­дуцента.

Другой путь подбора микроорганизмов - из имеющихся коллекций. Например, продуцентами антибиотиков чаще являются актиномицеты, этанола -дрожжи.

Клон - культура, полученная из одной клетки, чистая культура - сово­купность особей одного вида микроорганизмов, штаммы - культуры, выделен­ные из различных природных сред или из одной среды в разное время.

2.4. Определение способности синтезировать целевой продукт - главный критерий при отборе продуцентов. Микроорганизмы должны соответство­вать следующим требованиям:

1)обладать высокой скоростью роста;

2)использовать для жизнедеятельности дешевые субстраты;

3)быть устойчивыми к заражению посторонней микрофлорой.

Одноклеточные организмы характеризуются более высокими скоростями синтетических процессов, чем высшие растения и животные. Так, корова массой 500 кг в течение одних суток синтезирует около 0,5 кг белка. Такое Же количест­во белка за одни сутки можно получить с помощью 5 г дрожжей. Интерес пред­ставляют фотосинтезирующие микроорганизмы, использующие энергию света, способные к усвоению атмосферного азота. Выгодны термофильные микроорга­низмы. Их использование снижает дополнительные затраты на стерилизацию промышленного оборудования. Скорость роста и обмен веществ у этих организмов в 1,5-2 раза выше, чем у мезофилов. Синтезирующие ими ферменты устой­чивы к нагреванию, действию кислот, органических растворителей.

Методыбиотехнологии

В биотехнологии выделяют 2 метода: 1) Селекция; 2) Генная инженерия. Для получения высокоактивных продуктов используют методы селекции. С помощью селекции получены промышленные штаммы микроорганизмов, син­тетическая активность которых превышает активность исходных штаммов в де­сятки и сотни раз.

Селекция

Селекция - направленный отбор мутантов (организмов, наследственность которых претерпела скачкообразное изменение). Генеральный путь селекции -переход от простого отбора продуцентов к сознательному конструированию их геномов. На каждом из этапов из популяции микроорганизмов отбираются наи­более высокоэффективные клоны. Таким путем за длительное время были ото­браны штаммы пивных, винных, пекарских, уксуснокислых дрожжей, пропионовокислых бактерий и др. Применяется ступенчатый отбор: на каждом из этапов из популяции микроорганизмов отбираются наиболее высокоэффективные кло­ны. Ограниченность метода селекции, основанного на спонтанных мутациях, свя­зана с их низкой частотой, что значительно затрудняет интенсификацию процес­са. Изменения в структуре ДНК происходят редко. Ген должен удвоиться в сред­нем 10 6 -10 8 раз, чтобы возникла мутация. Примером отбора наиболее продуктив­ных мутантов при культивировании в непрерывном режиме является отбор дрожжей по признаку устойчивости к этанолу, продукту жизнедеятельности дрожжей. К значительному ускорению селекции ведет индуцированный мутагенез - резкое увеличение частоты мутаций биообъекта при искусственном повреждении генома. Мутагенным действием обладают ультрафиолетовое, рентгеновское или у-излучение, некоторые химические соединения, вызывающие изменения пер­вичной структуры ДНК. К числу наиболее известных и используемых мутагенов относятся азотистая кислота, алкилирующие агенты и т.д.

Проводят тотальную проверку (скрининг) полученных клонов. Отобрав наиболее продуктивные клоны, повторяют обработку тем же или другим мутагеном, вновь отбирают наиболее продуктивный вариант и т.д., т.е. речь идет о сту­пенчатом отборе по интересующему признаку.

Трудоемкость - основной недостаток метода индуцированного мутагенеза и последующего ступенчатого отбора. Недостатком метода является также от­сутствие сведений о характере мутаций, исследователь проводит отбор по конеч­ному результату.

Генетическая инженерия

Генетическая инженерия – направленная модификация биообъектов в ре­зультате введения искусственно созданных генетических программ. Уровни генетической инженерии:

1)генная – прямое манипулирование рекомбинантными ДНК, включающими отдельные гены;

2)хромосомная – манипулирование с группами генов или отдельными хромосомами;

3)геномная (клеточная) – перенос всего или большей части генетиче­кого материала от одной клетки к другой (клеточная инженерия). В современном понимании генетическая инженерия включает технологию рекомбинантных ДНК.

Работа в области генетической инженерии включает 4 этапа: 1) полу­чение нужного гена; 2) встраивание его в вектор, способный к репликации; 3) введение гена с помощью вектора в организм; 4) питание и селекция клеток, ко­торые приобрели желаемый ген.

Генетическая инженерия высших растений осуществляется на клеточном, тканевом и организменном уровне.

Основой клеточной инженерии является гибридизация соматических кле­ток – слияние неполовых клеток с образованием единого целого. Слияние клеток может быть полным или с введением их отдельных частей (митохондрий, хлоропластов и т.д.).

Соматическая гибридизация позволяет скрещивать генетически отдален­ные организмы. Растительные, грибные и бактериальные клетки перед слиянием освобождают от клеточной стенки и получают протопласты. Затем проводят де­поляризацию наружных цитоплазматических мембран переменным электриче­ским или магнитным полем, используют катионы Са + . Клеточную стенку под­вергают ферментативному гидролизу.

Вопросы для самопроверки

1. Что является объектом биотехнологии?

2. Какие существуют типы клеточного строения?

3. Какие выделяют этапы роста культуры?

4. Что такое селекция и генная инженерия?

В природе существует огромное число микроорганизмов, которые способны синтезировать продукты или осуществлять реакции, которые могут быть полезны для биотехнологии. Однако практическое применение нашли не более 100 видов микроорганизмов (бактерии, грибы, дрожжи, вирусы, водоросли).

Дрожжи широко используют в хлебопечении, пивоварении, виноделии, получении соков, кормового белка, питательных сред для выращивания бактерий и культур животных клеток. Из 500 известных видов дрожжей используется только несколько видов – Saccharomyces cerevisiae, Saccharamyces carlsbergencis, Saccharomyces uwarum.

Среди бактерий чаще всего применяют в биотехнологии представителей следующих родов: Acetobacter, которые превращают этанол в уксусную кислоту и уксусную кислоту в углекислый газ и воду; Bacillus – для получения ферментов (B. subtilis), средств защиты растений (В. thuringiensis); Clostridium – для сбраживания сахаров в ацетон, этанол, бутанол; псевдомонады – например, P. Denitrificans – для получения витамина В 12 , Corynebacterium glutamatum – для получения аминокислот и др.

Для получения разнообразных антибиотиков в биотехнологии применяют актиномицеты (род Streptomyces), грибы рода Penicillium и др.

Многие микроорганизмы – бактерии, дрожжи, вирусы – используются в качестве реципиентов чужеродного генетического материала с целью получения рекомбинантных штаммов–продуцентов биотехнологической продукции. Получены рекомбинантные штаммы E. coli, продуцирующие интерфероны, инсулин, гормон роста, антигены вируса СПИДа; штаммы B. subtilis, вырабатывающие интерферон; штаммы дрожжей, продуцирующие интерлейкин–2, антиген вируса гепатита В; рекомбинантные вирусы осповакцины, синтезирующие антигены гепатита В, вируса бешенства, клещевого энцефалита и др.

Для получения вакцин и диагностических препаратов используют также патогенные микроорганизмы (брюшного тифа, коклюша, дифтерии, столбняка и др.).

Широкое применение в биотехнологии нашли культуры животных и растительных клеток . Известно, что строение, физиология и биотехнология животных и растительных клеток более сложные, чем у бактериальных клеток. Из культур животных и растительных клеток можно извлечь более широкий ассортимент продуктов сложной, цепной реакции, но процесс культивирования растительных и животных клеток более трудоемкий и дорогостоящий. Из культур тканей растений можно получать разнообразные соединения, используемые в медицине (алкалоиды, противовоспалительные вещества, противолейкозные и противоопухолевые, противобактериальные, сердечные и почечные средства, ферменты, витамины, опиаты и др.), сельском хозяйстве, химической и других отраслях промышленности. Животные клетки используют как для получения продукции, так и для выращивания в клетках вирусов с целью получения из них вакцин и диагностических препаратов.

Таким образом, в современном биотехнологическом производстве используют весьма широкий ассортимент биообъектов, классификация которых весьма сложна и наиболее рационально может быть выполнена на основе принципа их соразмерности. В таблице приведены биологические объекты, объединенные в 5 групп, причем, соразмерность в первых четырех имеет кратность в три порядка и только в пятой группе собраны биообъекты, отличающиеся по размерам от предшествующей (четвертой) группы всего на один порядок.

Биообъекты, используемые при биотехнологических способах производства лекарственных (диагностических, лечебных и профилактических) средств:

Требования, предъявляемые к биообъектам для реализации биотехнологических процессов: чистота, высокая скорость размножения клеток и репродукции вирусных частиц, активность и стабильность биомолекул или биосистем.

Основные термины и понятия биотехнологии:

Нуклеиновые кислоты – высокомолекулярные сложные органические соединения, состоящие из серии компонентов более простого строения, названных нуклеотидами.

Нуклеотид – это комплекс, включающий одно из азотистых оснований, углевод (рибозу или дезоксирибозу) и остаток фосфорной кислоты.

ДНК (дезоксирибонуклеиновые кислоты) – нуклеиновые кислоты, содержащие в качестве углеводного компонента дезоксирибозу, а в качестве азотистых оснований – аденин, гуанин, цитозин, тимин. ДНК присутствуют в клетках любого организма, входят в состав многих вирусов. Первичная структура молекулы ДНК строго индивидуальна и специфична, представляет собой кодовую форму записи биологической информации, т.е. генетический код.

РНК (рибонуклеиновые кислоты) – нуклеиновые кислоты, содержащие в качестве углеводного компонента рибозу, а в качестве азотистых оснований – аденин, гуанин, цитозин, урацил. РНК присутствуют в клетках любого живого организма, входят в состав многих вирусов; участвуют в реализации генетической информации.

Ген – наследственный фактор, функционально неделимая информация генетического материала; участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной и рибосомальной РНК или взаимодействующий с регуляторным белком.

Генотип – совокупность генов данной клетки или организма.

Геном – совокупность генов, характерных для гаплоидного набора хромосом данного вида организмов; основной гаплоидный набор хромосом.

Вектор – любая плазмида или фаг, в которые может быть встроена чужеродная молекула ДНК с целью клонирования.

Плазмида – кольцевая внехромосомная ДНК, способная к автономной репликации.

Репликация – самоудвоение молекулы ДНК путем образования её копии при помощи набора ферментов (ДНК-полимераз, лигаз и т.п.).

Гибридизация – процесс образования или получения гибридов, в основе которого лежит объединение генетического материала разных клеток в одной клетке.

Клон – совокупность клеток или особей, произошедших от общего предка путем бесполого размножения.

Штамм – чистая культура микроорганизма, выделенного из определенного источника или полученного в результате мутаций.

Эукариоты – организмы, состоящие из клеток, в которых обязательно содержится особый органоид – ядро.